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Linear Dependencies among Subsets of a Finite Set 

P. FRANKL AND N. M. SINGHI 

A O-design for given integers k, t; k> t;. 0 is a family of k-subsets {F" .. Fm} along with rational 
numbers 0', ... am such that for any t-element set G, }:GI:F; aj =0 holds. We prove that if c: 1), ... , (k~~~ J have a common divisor d which does not divide aj than 3i' such that 

IFjnFi"I=k-t-1 (Theorem 1). 
We deduce some extremal set theoretic consequences (Theorems 2 and 3), relating to problems 

of Erdos. 

1. INTRODUCTION 

Let X = {Xl> X2, ••• , xn} be a finite set of n elements. For an integer k, O:s;; k:s;; n we 

denote by (~) the k-subsets of X Further we denote by V(n, k) the free vector space 

generated by the elements of (~) over the rationals, i.e. V (n, k) is consisting of all the 

formal rational linear combinations of k-subsets of X We will also think of an element 

{Xi" Xi2 ," • Xi.} of (J as square-free monomial Xi,Xi2 ••• Xi.' Let t be a fixed integer, 

O:s;; t:s;; k. 

DEFINITION. An element 

of V(n, k) is a O-design if for every G E (~) the following holds 

Obviously the O-designs form a subspace of dimension (;) - (;) of V(n, k). We say 

that the O-design JI = I aFF is primitive if all the aFs are integers and their g.c.d. is 1. 
Notice that for every O-design there exists a unique rational number c such that CJl is 
primitive. The simplest O-designs have the following form 

Such O-designs are called basic. Graham, Li and Li [8] exhibited a basis for the space of 
all O-designs consisting of basic O-designs. We shall only use the following corollary 
(which was first proved by Graver and lurkat [9]). 

COROLLARY [8,9]. Every primitive O-design can be expressed as an integral linear 
combination of basic 0 -designs. 
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Our main theorem is the following. 

THEOREM 1. Let II = LFE(~) aFF be a primitive O-design. Let d be the g.c.d. of 

{( t+1 .),0"';i<k-t-1}(d=+oofor k=t+1). 
k-t-1-1 

Let FoE (~) be such that dlaFo then there exists an F1 E (~) such that dlaF1 , in 

particular aF
1 
;c 0, and such that IFo n F11 = k - t-1. 

In [1] Erdos stated the following. 

CONJECTURE 1. Let 0".; 1< k be fixed, and suppose ;g; £ ( ~) for any F, where 

F' E ;g;IF n F'I;c I holds. Then for (k, I) ;c (3, 1) and n> no(k, I) one has 

The case 1=0 is contained in Erdos-Ko-Rado [3]. The case 1= 1 was already earlier 
conjectured by Erdos and S6s (cf. [2]) and it was proved by Frankl [4]. Frankl [5] proved 
that for k> 31 + 1 one has 

(
n-I-1) 

1;g;1".;(1+o(1» k-I-1 . 

Most recently Frankl and Wilson [7] proved 

for k ~ 21 + 1 and k -I is a prime power. We prove 

THEOREM 2. If k - I has a prime power divisor which is greater than I then, with the 
conditions of Conjecture 1, one has 

1;g;1".; (k _ ~ -1)' moreover I { G E (J: 3F E ;g;, F::::> G} I ~ 1;g;1, 

for every k - 1- 1 ".; r"'; k. 

Notice that the condition of Theorem 2 is satisfied for all k ~ 3 if 1= 1 also if k -I is a 
prime power and k> 2/. In [1] Erdos also asked to determine m(l, n) = 
max{I;g;I:;g; £ 2x IF n F'I;c I for every F, F' E S1. For 1=0 trivially m(l, n) = 2n

-
1 and 

m(1, n) was determined by Frankl [6], who made the following conjecture: 

CONJECTURE 2. For n > no( I) 

1 

/-1 (n) (n) L . + L . 
i=O I i>(n+/)/2 I 

m(l, n) = 
/-1 n n-1 n 

i~O C) + en + 1)/2) i>E'/2 (;), 

if n+ I is odd 

if n + I is even. 



Here we prove 

m(l, n) = 
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1 

L (~) +O(nQ(I)+I) 
i>(n+I )/2 I 

n - 1 L n (Q(l)+' ) 

Cn+l)/2)+;>(n+I/2) (;)+0 n , 

if n + I is odd, 

if n + I is even. 

REMARK. Conjecture 1 is the analogue of the Erdos-Ko-Rado [3] theorem 

(if IF nF'I> I, n> no(k, I) then I~I~ (~= ~=!)), 
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Conjecture 2 is an analogue of a theorem of Katona [10] (if IF n F'I > I and IFI is not 
restricted then 

I~I~ L (nl)ifn+/isoddandl~I~(n-/)1/2)+ L (~) 
i>(n+l)!2 n + i > (n+l)/ 2 I 

if n + I is even.) In the case 1=0 there are many ways to have equality in Katona's 
inequality. However, for I ~ 1, Katona proved that the only families which achieve equality 
are the following. 

(a) n+ I is odd and 

{ 
n+l} ~= F£;X:IFI>-2- , 

(b) n + I is even, x E X is fixed, 

{ 
n + I} (X -{x} ) ~= F£;X:IFI>-2- u (n+/)/2 . 

2. THE PROOF OF THEOREM 1 

We start with a lemma. 

LEMMA 1. Let FoE (~), O~ s~ k, and U =L aFF, F a basic O-design, i.e. 

Then 

L aF =0, unless IFon{xi2,+I ' Xi2,..2}1 = 1 for all o~ l~ t. 
IF'-' Fol= s 

PROOF. Suppose by symmetry IFon{x;I' xi,}1 ¥= 1. Let ±XiIY2Y3· .. Yk be a term in the 
expansion of u. Then ±Xi,Y2 ... Yk is also a term in the expansion of u, moreover it is 
of exactly opposite sign. One has 

I{Xil , Y2 , . . . , Yk} n Fol = I {Xi2 , Y2, . . . , Yk} n Fol, 

and all the terms in the expansion of u contain either Xl or X2. Thus the statement of 
the lemma follows. 
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To prove the theorem it is sufficient to show that (under the hypothesis of the theorem). 

I CXF 
Fe(;;) 

!FnFo!=k-t-l 

is not divisible by d. (1) 

To calculate this sum we write II as an integer linear combination of basic O-designs: 

II = I cx(it> i2,· .. , ik+t+1)(Xil - Xi2) ... (Xi2,+1 - Xi2 ,+2)Xi2,+3 ... Xik+,+l 

(XiI" .. Xik+t+l> 

In view of Lemma 1, to count (1) it is sufficient to consider the O-designs for which 
FOn{xi" xi,"'" Xi2 ,+,} ={Xi" Xi3,·" ,xi,,+J Let IFd~) {3FF be such a basic O-design. Then 
one has 

k-i( t+ 1) . I { }I I {3F = (-1) k . ,where I = Fon X2t+3,···' Xk+t+l 
!FnFo!=k-t-l - t-1-1 

Fe(;;) 

(2) 

Notice that i = k - t -1 corresponds to the basic O-designs in which Fo occurs as a term, 
and it has coefficient 1. Thus (1) extended over such basic O-designs only gives CXFo( -1)1+1, 
which is of course not divisible by d. 

As by definition d I (k _ tt ~ ~ _ i) for 0.;;; i < k - t - 1, thus taking into consideration 

(2) we deduce for (1). 

I == (_1)t+1 CXFo (mod d) which yields the statement. 
!F,..,Fo!=k-t-l 

Fe (f) 

3. THE PROOF OF THEOREM 2 

Suppose 31' C (J has the desired property, i.e., for F, F' E 31', IF n F'I ¢ 1 holds. Let 

us set t = k - 1- 1. RecaU that V (n, t) is the free vector space of all the formal rational 
linear combinations of t-subsets of X. Let us associate with every FE 31' a vector 

u(F) = I G of V(n, t). 
O<;;F,!O!=t 

As dim V(n, t) = (;) the first statement of Theorem 2 will follow if we prove that the 

vectors u(F) are linearly independent. 
Suppose the contrary and let 

I cxFu(F) = 0 be a nontrivial linear combination, 
FefJi 

but this means that 

I cxFF is a nontrivial O-design. 
FefJi 

By multiplying, if necessary, all the coefficients CXF with the same rational number we 
may suppose the cx FS are integers with g.c.d. equal to 1 i.e. the O-design is primitive. 
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Let q = pO be the prime power which divides k - I = t + 1 but which is greater than 

1= k - t -1. Then it is easy to check that piC: 1) for 1.;;; i.;;; 1= k - t -1. Now with 

the notation of Theorem 1 we have pld. As L aFF is a primitive O-design, there exists 
an Fo E fIF such that p-r a (Fo). Now Theorem 1 implies the existence of FI E fIF with 
IFo n FII = k - t -1 = I, a contradiction, proving 

We have proved that the vectors u(F) E V(n, t) are independent. This implies the 
independence of the vectors u,(F) E V(n, r): 

U,(F) = H for k ~ r ~ k - 1- 1. 

In fact any linear dependence L a (F) u,(F) = 0 is also a linear dependence for the vectors 
u,.(F), r ~ r', i.e., L a(F)u,.(F) = O. Thus for every k -1-1.;;; r';;; k the u,(F)s span a 

vector space of dimension IflFl, and consequently its support {G E ( ~): 3F E fIF, G ~ F} 

has cardinality at least IflFl. 

4. THE PROOF OF THEOREM 3 

Set fIF.={FEfIF:IFI=s}, where fIF~2x is s.t.lflFl=m(l,n) and IFnF'I~1 for every 
F, F' E fIF. For s> q( l) + I of course s -I has a prime power divisor which is greater than 
1. Set 

Then by Theorem 2 we have IfIF~I~lfIF.l. 

PROPOSITION 1. Forq(l)+I<s«n+/)/2 we have 

(3) 

THE PROOF OF THE PROPOSITION. Let us set fj n+I-. = {X - F: F E fIF n+I-.}. Suppose 
fIF~ n fjn+l-s ~ 0. Let G be an element of the intersection, thus there exist F, F' such 
that G ~ FE fIF., X - G = F' E flFn + I- •• But this implies IF n F'I = 1, a contradiction. Thus 

fIF. n fj n+I-. = 0 yielding IfIF~ I + Ifj n+I-.I.;;; C ~ J As IfIF.l.;;; IfIF~ I and Ifj n+I-.1 = IfIF n+I-.1 

(3) follows. 
Now sum up (3) for q(l)+I<s«n+/)/2 to obtain 

(n) L .;;; L 
q(I)+I<s<n-q(l) (n+I)/2<.<n-q(l) S 

,"(n+I)/2 

Taking into consideration that for every 0.;;; s.;;; n we have IfIF.l.;;; (;) and IflFl = LO"'.",n Iff.1 

the statement of Theorem 3 follows for n + I odd and for n + I even as well as soon as 
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we show 

( 
n-1 ) 

!,<J;(n+/)/2!"; (n+l)/2 . (4) 

To show (4) observe that for F, F' E ,<J;(n+/)/2, !F n F'! = I is equivalent to !F u F'! = X i.e. 
to (X - F) n (X - F') = 0. Applying the Erdos-Ko-Rado theorem (case 1=0 of Conjec
ture 1) to ~(n+I)/2 = {X - F: F E ,<J;(n+/)/2} we obtain 

NOTE ADDED IN PROOF. Frankl and Fiiredi-using the methods of this paper and a 
stronger version of Theorem 2-have proved Conjecture 2. By completely different 
methods they proved Conjecture 1 for k ~ 21 + 2. Examples of the first author show that 
it is not true for k..; 21 + 1. Both these results appeared or will appear in Journal of 
Combinatorial Theory A. 
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