
SETS OF FINITE SETS SATISFYING UNION CONDITIONS

DAVID E. DAYKIN AND PETER FRANKL

Abstract. Let .<F denote a set of subsets of X = {1, 2, . . . , n). Let deg(() be the
number of members of 3F containing i and val (.F) = min {deg (i) : i e X). Suppose
no k members of .#" have union X. We conjecture val(JF) < 2"~k~1 for k ^ 3. This
is known for n < 2/c and we prove it for k ^ 25. For k = 2 an example has
val(.F) > 2 " ~ 2 ( l - n ~ 0 6 5 1 ) and we prove va l (^ ) < 2"~ 2 (1-n" 1 ) . We also prove
that if the union of k sets one from each of 3FX,..., 3Fk has cardinality at most n — t
then min {cardinality #}} < 2 V where a* = 2a — 1 and j < <x < 1.

§1. Introduction and Statement of Results. L e t k,n,t b e in t ege r s 2 ^ k and
n ^ r ^ 1. We shall always let J^ denote a set of subsets of the set A' = {1, 2,...,«}.
We say !F has property F(n, /c, t) if the union of any k members of #" has cardinality
at most n — t. Let s denote a non-negative integer with t + ks ^ n. Then £(n, k, t, s) is
the set of all .#", for which there exists a subset Y = Y(^) of A' with cardinality
|7 | = t + ks, such that 3F has the form #" = {F <= X : |F n 7| ^ s}. Clearly, if
•F e E(n,k,t,s), t h e n ^ h a s P(n,k,t). W e wr i t e e(n,k,t,s) for t he c o m m o n
cardinalities of members of E(n,k,t,s). In particular e(rc, fc, f, 0) = 2"" ' and
e(n,fe, 1, 1) = (k + 2)2n~k~1. Consider

CONJECTURE 1. (Erd6s and Frankl [6]). If .<F has P{n, k, t) and \2F\ is maximal,
then 3P e E{n, k, t, s)for some s, unless k = 2, t = 1.

The conjecture is true in the following cases.

Ca.se 1. t = 1. Trivial (cf. [5] p. 319(ii)). The case k = 2, t = 1 is only
excluded because there are examples not of the form E.

Case 2. (Katona [8]). k = 2.

Case 3. (Frankl [6]). k = 3, t = 2 and then s = 0.

Case 4. (Frankl [7]). t ^ k2k/150.

Case 5. (Frankl [7]). k ^ 6, t ^ (e+l)-1(2k~i -k+ 1 ) - 1 and then s = 0.

Consider k sets # j , . . . , J V We give

THEOREM 2. Suppose k ^ 3 am/ t/ie union of any k sets, one from each J*";, nas
cardinality at most n — t. Let a = a(/c) be the unique root of xk — 2x+l = 0 in
\ < a < 1. Tnen min |#|| < 2V. .4/so t/iere ;'s an example with min |#|| > c2"a'ls/t,
where c is an absolute constant.
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We say !F is covering if \J (F e ,'¥)F = X. There is

THEOREM 3. (Brace and Daykin [1]). //'3F is covering and has P(n,k, 1) and
\!F\ is maximal, then 2F e E(n, k, 1, 1).

This leads us to make

CONJECTURE 4. Suppose k ^ 3 and the union of any k sets, one from each # j , has
cardinality at most n—\. If each Ĵ - is covering, then min |J^| ^ e(n, k, 1, 1).

For i e X the degree of i is the number of members of 2F which contain i. The
minimum of these degrees is called the valency v a l ^ ) . For example if
& eE(n, k, 1, 1) then val(J*) = 2"~k~l. We say !W has no k-cover if the union of any
/c members of J* is not X. We make

CONJECTURE 5. If 3F has no k-cover and k ^ 3, then va

This conjecture is true in

Case 1. (Daykin [4]). n ^ 2k.

We shall prove it true in

Case 2. k ^ 25.

When J^ has no 2-cover the problemf is harder and we present

THEOREM 6. If & has no 2-cover then val(J^) < 2"~2(l—n~1). There is an
example with n = 7P and val(#") > 2"~ 2 ( l -n~ 0 ' 6 5 1 ) .

§2. The Proofs. Proof of Theorem 2. This is almost a copy of Frankl's proof in
[6], so we leave out some details. Let 1 ^ i < j ^ n and let #f be a set of subsets of
X. We define a set Au(je) of subsets of X by

}) u {>}, if; eH,i$ H, (H\{j}) u {«} £ Jf ,

, otherwise.

Notice that \Atj(3V)\ = \3f\.
For convenience we replace all the sets in each &g by their complements. The

condition on ^ , . . . , J^ then becomes that the intersection of any k sets, one from
each #"9, has cardinality at least t. Call this the intersection condition. It is clear that

fThis problem was discussed by Daykin at the Oxford Conference of 1972. There Paul Erd6s offered a
£5.00 prize for the best example. This prize was won by Daykin for the example given here. However he
made mistakes when writing up [3] and these unfortunately make it appear that Erd6s gave the prize for
nothing.
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Aij(S'l),...,Aij(^'k) satisfy this intersection condition. Repeating AtJ for various i,j
we change $Fx,...,!Fk into <Si,...,

 fSk, which satisfy both the intersection condition
and

Au(^g) = &g for 1 < i < j < n and 1 ^ g < k. (1)

Let T = {1,2,..., t—1} and K = {0, 1,..., fc-1}. If f,h are integers with
0 ^ h ^ fc-1, put

;jeK\{h}},

(t + Kh) u (k + t + Kh) u (2fc + f + Kh) u ...,

If |SA| =f |S0| for some h, then n e S t and we remove n from S,, without changing
notation. Suppose So e ^ g for some #. Then because (1) holds we have Sh e ^Sg for all
h. Hence, if So € <$g for every 3, then So e 0 1 ; St e ^ 2 , . . . , Sk_j e ^ k . However this
contradicts the intersection condition because So n St n ... n Sk^t = T and
|T| = f — 1. Hence by symmetry we may assume s0 ^

 <SX.
We associate with every subset T of the set {1,2,...} a random walk in the real

plane as follows. We start from the origin (0, 0). If after q steps we are at (x, y), then
we move to (x, y+1), if q+ 1 e T, otherwise, we move to (x + 1 , y). We denote this
walk by W(T).

PROPOSITION 1. IfGe^^ then W(G) hits the line y = (fc-l)x + f.

Proof. The walk W(SQ) does not hit the line but is as close as possible to it.
Thus every random walk either hits the line or lies entirely under W(S^). If W(G) lies
under W(SQ), we can obtain W(S0) from W(G) by iteration of the operations: (i)
replace ;'+l by i in G; and (ii) adjoin the element i to G. Notice that operation (i)
changes J to r in W(G), while operation (ii) lifts W(G). Applying these operations
to G produces sets which are in ^ because ^ is an up-set and (1) holds. In this way
we eventually deduce that Soe^1 contradicting our assumption.

PROPOSITION 2. Consider the random walk which starts from the origin and moves
up or to the right with equal probabilities \, \. The probability that this walk hits the
line y = {k-l)x + t is a(k)'.

Proof. The result is part of more general theorems in [9] Chapter XII.

The proof of Theorem 2 now follows by observing firstly, that the set of all
subsets of X gives a model for random walks with probabilities \, \, and secondly,
that the probability of hitting the given line in ^ n steps is strictly less than the
probability of ever hitting it.

Proof of Case 2 of Conjecture 5. We shall use Case 5 of Conjecture 1. So we let m
be the least integer such that

k < ( e + l ) - 1 ( 2 m " 1 - m + l ) - l . (2)
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Since m = 8 when k = 25 we always have

m ^ 8 and 2 ^ k - 2m + 1 .
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(3)

We may assume that if F e J* then all subsets of F are in J*", in other words that
f is a down-set. We may also assume that all singletons are in 3F. Let
M = M(m, !F) be the maximum cardinality of the union of m members of J*.

Case. M ^ n — k. This means that J* has P(n,m,k). So by Case 5 of
Conjecture 1 we have \3F\ ^ 2"~k. Since J* is a down-set, every ie X is in at most
half the sets in J^, so val(J^) ^ 2"~k~1 as required.

Case. M ^ n-k+1. We choose F1,...,Fm in J^ with |C| = M where
C = Fj u ... u Fm. We put Bo = X\C. If there is an F e & with |B0 n F\ Ss 2,
because J^ is a down-set, there is an Fm + J s 3F with |Fm+1| = 2 and Fm + 1 <= Bo.
When this happens we put Bx = B0\Fm + l. Then we look for Fm + 2 c Bt with
|Fm + 2| = 2 to put B2 = B1\Fm + 2. We repeat this process as many times as possible
until we get a Bz with

Bz n F| < 1 for all F e (4)

Of course z = 0 if we cannot find Fm + 1. We used m sets to cover C, then z sets to
cover BO\BZ. Hence

k-m-z < b = \BZ\, (5)

for otherwise a singleton for each point of Bz together with the m sets and the z sets
would contradict the assumption that 3F has no fc-cover.

Suppose m ^ z and put D = Fx u ... u F2m. Then

= M + 2m > n-k+l+2m so fe-2m-l.

Taking a singleton for each point of X\D together with the 2m sets would again
contradict the fact that J5" has no fc-cover. This proves that z ^ m — 1.

Using (3) and adding z < m— 1 to (5) gives

2 < / c - 2 m + l < b.

Let B2 = {al5 a2,..., a6} and put

g&. = {F\{aJ ; ^ e F e J^} for 1 < i ^ b .

By (4) we know that the degree of a, in #" is | ^ | . We let

^ = U (F e ®i)F for 1 ^ i ^ b ,

then F; CZ X \ B Z for each i. We also assume that

\VJi > n-k for 1 ^ i < b,

for otherwise va^J^) < 2""*"1 as required.

(6)

(7)
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Case. After renumbering {ax,..., ab) there exist Rle@i,R2£ 3$2, R3 e @3 with

n-2k + 2m + 2 < \Rt u R2 u R3 (8)

(9)
Suppose that in fact

n-k < I/?! u R2 u i?3 | ,

which is a stronger condition than (8) by (3). Then

n-k + 3 ^ \(Rl u {fll}) u (R2 u {a2}) u (R3 u {a3})|,

and we could choose k — 3 singletons to contradict the fact that J^ has no k-cover.
Hence (9) does not hold. It now follows by (7) that we can find an RAeMA

containing a point of X\(B, u Rx u R2 u #3)- By a similar argument to that used
on (9) we cannot have

n-k < I/?! u K2 u # 3 u R4|,

and hence there is an R5 e ^?5 with a point in X\ ( f? z u R ( U . . . u K4). We repeat
the argument till we have Rt e Mt for 1 ^ ; ^ fo. Then

u...u«Jn-k + b-l

where the first inequality holds because J* has no /c-cover, and the last inequality is
(8). However the result contradicts (6), so this case is impossible.

Case. Inequality (8) is false for all R1 e ^l, R2 e Si2, R3 e Sk3. Hence we apply
to J1!, J"2? 0t3 the case k = 3 of Theorem 2 which has a = j ( - 1 + v'5)- We recall
that J>

1 ,^?2,^>
3 are sets of subsets of ^ \ B Z which has cardinality

n —d < n — k + 2m — 2 by (6). Hence

val(J^) ^ minjl^il, \&2\, \S13\} < 2"-" + 2 m - 2 ( i ( - l +V5))*~3,

and this last expression is < 2"~k~1 by choice of m. This completes the proof of Case
2 of Conjecture 5.

Proof of Theorem 6. Firstly we can add sets till #" is a down-set and J^ will still
have no 2-cover. Further we can assume that for each U a X either U or its
complement is in !F. Let / ; be the number of sets in J^ of cardinality i. Then

m /2m\ n (n — 1

The Erd6s-Ko-Rado Theorem [5] says that

if n = 2w is even .
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Hence for \n < n — i we have
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. / n l \ , .

Finally

„_ .

X degree (j) = £ ,

= »l/m + (« — /)./„-,}

and so val(J^) ^ 2"~2(l-n

0 « i

~1)

Remark. Actually the proof shows that in a set without a 2-cover the average
degree cannot exceed 2""2(1 — n"1). This is best possible because one can take J* to
be all the 2""1 sets missing a given is X.

Finally we must construct the example for Theorem 6. Let us say that J^ is good
if it is a vertex-transitive up-set on X containing 2|X|"' members no two of which
have an empty intersection. This implies that, if #"" = {X\F : F e J^}, then &c is a
vertex-transitive down-set with no 2-cover and

Our example will be an 3FC but it is more convenient to work with 3F. For
p = 1,2,... we shall define a good family J*B on Xp = {1,.. . , 7P}.

Let S be the Steiner triple system on Xl. Then J^ is the up-set generated by S so
^i = {F ; 3GeS with G <= F <= X^. A calculation shows that J^ is good with
v a l ^ J = 41 so vaUJ^i) = 23. We inductively define # p + 1 in terms of #"p and J v
For 1 < i ^ 7 let Zp>i = (i- l)7p + ATp and let J%>r = (;-1)7" +J% so J% , is a copy
of J5,,. Notice that Xp+1 is the disjoint union XpA u ... u Xp>7. For F <= A'p+1 put

n(F) = {j ; 1 < i < 7 , f n X P ] i € f f ] i }

and let = {F ; F 1, TC(F) e
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It is not hard to show that #"p+1 is good with

1) = (41 val(J^) + 23val {&p)\\Qpf where Bp = 21P.

If we make the substitution 1 + «5P = 4\al(^p)/6p this equation reduces to
<5p+1 = (9/32)<5p and ^ = 9/32 so 8p = (9/32)" for all p. We conclude that

val(J^) = (l-(9/32)')0p/4.

If (9/32)" = {lpf, then fi = -0-651 and this completes the proof of Theorem 6. We
conjecture that this example is best possible.
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