SETS OF FINITE SETS SATISFYING UNION CONDITIONS

DAVID E. DAYKIN AND PETER FRANKL

Abstract. Let \mathscr{F} denote a set of subsets of $X = \{1, 2, ..., n\}$. Let deg(i) be the number of members of \mathscr{F} containing i and val(\mathscr{F}) = min {deg(i) : $i \in X$ }. Suppose no k members of \mathscr{F} have union X. We conjecture val(\mathscr{F}) $\leq 2^{n-k-1}$ for $k \geq 3$. This is known for $n \leq 2k$ and we prove it for $k \geq 25$. For k = 2 an example has val(\mathscr{F}) $> 2^{n-2}(1-n^{-0.651})$ and we prove val(\mathscr{F}) $\leq 2^{n-2}(1-n^{-1})$. We also prove that if the union of k sets one from each of $\mathscr{F}_1, ..., \mathscr{F}_k$ has cardinality at most n-t then min {cardinality \mathscr{F}_i } $< 2^n \alpha^t$ where $\alpha^k = 2\alpha - 1$ and $\frac{1}{2} < \alpha < 1$.

§1. Introduction and Statement of Results. Let k, n, t be integers $2 \le k$ and $n \ge t \ge 1$. We shall always let \mathscr{F} denote a set of subsets of the set $X = \{1, 2, ..., n\}$. We say \mathscr{F} has property P(n, k, t) if the union of any k members of \mathscr{F} has cardinality at most n-t. Let s denote a non-negative integer with $t+ks \le n$. Then E(n, k, t, s) is the set of all \mathscr{F} , for which there exists a subset $Y = Y(\mathscr{F})$ of X with cardinality |Y| = t+ks, such that \mathscr{F} has the form $\mathscr{F} = \{F \subset X : |F \cap Y| \le s\}$. Clearly, if $\mathscr{F} \in E(n, k, t, s)$, then \mathscr{F} has P(n, k, t). We write e(n, k, t, s) for the common cardinalities of members of E(n, k, t, s). In particular $e(n, k, t, 0) = 2^{n-t}$ and $e(n, k, 1, 1) = (k+2)2^{n-k-1}$. Consider

CONJECTURE 1. (Erdős and Frankl [6]). If \mathscr{F} has P(n, k, t) and $|\mathscr{F}|$ is maximal, then $\mathscr{F} \in E(n, k, t, s)$ for some s, unless k = 2, t = 1.

The conjecture is true in the following cases.

Case 1. t = 1. Trivial (cf. [5] p. 319(ii)). The case k = 2, t = 1 is only excluded because there are examples not of the form E.

Case 2. (Katona [8]). k = 2.

Case 3. (Frankl [6]). k = 3, t = 2 and then s = 0.

Case 4. (Frankl [7]). $t \le k2^k/150$.

Case 5. (Frankl [7]). $k \ge 6, t \le (e+1)^{-1}(2^{k-1}-k+1)-1$ and then s = 0.

Consider k sets $\mathscr{F}_1, ..., \mathscr{F}_k$. We give

THEOREM 2. Suppose $k \ge 3$ and the union of any k sets, one from each \mathscr{F}_i , has cardinality at most n-t. Let $\alpha = \alpha(k)$ be the unique root of $x^k - 2x + 1 = 0$ in $\frac{1}{2} < \alpha < 1$. Then $\min |\mathscr{F}_i| < 2^n \alpha'$. Also there is an example with $\min |\mathscr{F}_i| > c2^n \alpha' / \sqrt{t}$, where c is an absolute constant.

We say \mathscr{F} is covering if $\bigcup (F \in \mathscr{F})F = X$. There is

THEOREM 3. (Brace and Daykin [1]). If \mathscr{F} is covering and has P(n, k, 1) and $|\mathscr{F}|$ is maximal, then $\mathscr{F} \in E(n, k, 1, 1)$.

This leads us to make

CONJECTURE 4. Suppose $k \ge 3$ and the union of any k sets, one from each \mathscr{F}_i , has cardinality at most n-1. If each \mathscr{F}_i is covering, then $\min |\mathscr{F}_i| \le e(n, k, 1, 1)$.

For $i \in X$ the degree of *i* is the number of members of \mathscr{F} which contain *i*. The minimum of these degrees is called the valency val (\mathscr{F}) . For example if $\mathscr{F} \in E(n, k, 1, 1)$ then val $(\mathscr{F}) = 2^{n-k-1}$. We say \mathscr{F} has no *k*-cover if the union of any *k* members of \mathscr{F} is not *X*. We make

CONJECTURE 5. If \mathscr{F} has no k-cover and $k \ge 3$, then val $(\mathscr{F}) \le 2^{n-k-1}$.

This conjecture is true in

Case 1. (Daykin [4]). $n \leq 2k$.

We shall prove it true in

Case 2. $k \ge 25$.

When \mathcal{F} has no 2-cover the problem[†] is harder and we present

THEOREM 6. If \mathscr{F} has no 2-cover then $\operatorname{val}(\mathscr{F}) \leq 2^{n-2}(1-n^{-1})$. There is an example with $n = 7^p$ and $\operatorname{val}(\mathscr{F}) > 2^{n-2}(1-n^{-0.651})$.

§2. The Proofs. Proof of Theorem 2. This is almost a copy of Frankl's proof in [6], so we leave out some details. Let $1 \le i < j \le n$ and let \mathscr{H} be a set of subsets of X. We define a set $A_{ij}(\mathscr{H})$ of subsets of X by

$$A_{ii}(\mathscr{H}) = \{A_{ii}(H) : H \in \mathscr{H}\},\$$

where

 $A_{ij}(H) = \begin{cases} (H \setminus \{j\}) \cup \{i\}, & \text{if } j \in H, i \notin H, (H \setminus \{j\}) \cup \{i\} \notin \mathcal{H}, \\ \\ H, & \text{otherwise}. \end{cases}$

Notice that $|A_{ij}(\mathcal{H})| = |\mathcal{H}|$.

For convenience we replace all the sets in each \mathscr{F}_g by their complements. The condition on $\mathscr{F}_1, \ldots, \mathscr{F}_k$ then becomes that the intersection of any k sets, one from each \mathscr{F}_g , has cardinality at least t. Call this the intersection condition. It is clear that

[†]This problem was discussed by Daykin at the Oxford Conference of 1972. There Paul Erdős offered a £5.00 prize for the best example. This prize was won by Daykin for the example given here. However he made mistakes when writing up [3] and these unfortunately make it appear that Erdős gave the prize for nothing.

 $A_{ij}(\mathcal{F}_1), ..., A_{ij}(\mathcal{F}_k)$ satisfy this intersection condition. Repeating A_{ij} for various i, j we change $\mathcal{F}_1, ..., \mathcal{F}_k$ into $\mathcal{G}_1, ..., \mathcal{G}_k$, which satisfy both the intersection condition and

$$A_{ij}(\mathscr{G}_g) = \mathscr{G}_g \quad \text{for} \quad 1 \leq i < j \leq n \quad \text{and} \quad 1 \leq g \leq k .$$
(1)

Let $T = \{1, 2, ..., t-1\}$ and $K = \{0, 1, ..., k-1\}$. If f, h are integers with $0 \le h \le k-1$, put

$$\begin{split} f+K_h &= \left\{f+j \ ; \ j \in K \setminus \{h\}\right\},\\ S_h^\infty &= T \cup (t+K_h) \cup (k+t+K_h) \cup (2k+t+K_h) \cup \dots,\\ S_h &= X \cap S_h^\infty \,. \end{split}$$

If $|S_h| \neq |S_0|$ for some *h*, then $n \in S_h$ and we remove *n* from S_h without changing notation. Suppose $S_0 \in \mathscr{G}_g$ for some *g*. Then because (1) holds we have $S_h \in \mathscr{G}_g$ for all *h*. Hence, if $S_0 \in \mathscr{G}_g$ for every *g*, then $S_0 \in \mathscr{G}_1, S_1 \in \mathscr{G}_2, ..., S_{k-1} \in \mathscr{G}_k$. However this contradicts the intersection condition because $S_0 \cap S_1 \cap ... \cap S_{k-1} = T$ and |T| = t-1. Hence by symmetry we may assume $s_0 \notin \mathscr{G}_1$.

We associate with every subset T of the set $\{1, 2, ...\}$ a random walk in the real plane as follows. We start from the origin (0, 0). If after q steps we are at (x, y), then we move to (x, y+1), if $q+1 \in T$, otherwise, we move to (x+1, y). We denote this walk by W(T).

PROPOSITION 1. If $G \in \mathcal{G}_1$, then W(G) hits the line y = (k-1)x + t.

Proof. The walk $W(S_0^{\infty})$ does not hit the line but is as close as possible to it. Thus every random walk either hits the line or lies entirely under $W(S_0^{\infty})$. If W(G) lies under $W(S_0^{\infty})$, we can obtain $W(S_0)$ from W(G) by iteration of the operations: (i) replace i + 1 by i in G; and (ii) adjoin the element i to G. Notice that operation (i) changes \Box to \Box in W(G), while operation (ii) lifts W(G). Applying these operations to G produces sets which are in \mathscr{G}_1 because \mathscr{G}_1 is an up-set and (1) holds. In this way we eventually deduce that $S_0 \in \mathscr{G}_1$ contradicting our assumption.

PROPOSITION 2. Consider the random walk which starts from the origin and moves up or to the right with equal probabilities $\frac{1}{2}$, $\frac{1}{2}$. The probability that this walk hits the line y = (k-1)x + t is $\alpha(k)^t$.

Proof. The result is part of more general theorems in [9] Chapter XII.

The proof of Theorem 2 now follows by observing firstly, that the set of all subsets of X gives a model for random walks with probabilities $\frac{1}{2}$, $\frac{1}{2}$, and secondly, that the probability of hitting the given line in $\leq n$ steps is strictly less than the probability of ever hitting it.

Proof of Case 2 of Conjecture 5. We shall use Case 5 of Conjecture 1. So we let m be the least integer such that

$$k < (e+1)^{-1}(2^{m-1}-m+1)-1.$$
⁽²⁾

Since m = 8 when k = 25 we always have

$$m \ge 8$$
 and $2 \le k - 2m + 1$. (3)

We may assume that if $F \in \mathscr{F}$ then all subsets of F are in \mathscr{F} , in other words that \mathscr{F} is a down-set. We may also assume that all singletons are in \mathscr{F} . Let $M = M(m, \mathscr{F})$ be the maximum cardinality of the union of m members of \mathscr{F} .

Case. $M \leq n-k$. This means that \mathscr{F} has P(n, m, k). So by Case 5 of Conjecture 1 we have $|\mathscr{F}| \leq 2^{n-k}$. Since \mathscr{F} is a down-set, every $i \in X$ is in at most half the sets in \mathscr{F} , so val $(\mathscr{F}) \leq 2^{n-k-1}$ as required.

Case. $M \ge n-k+1$. We choose $F_1, ..., F_m$ in \mathscr{F} with |C| = M where $C = F_1 \cup ... \cup F_m$. We put $B_0 = X \setminus C$. If there is an $F \in \mathscr{F}$ with $|B_0 \cap F| \ge 2$, because \mathscr{F} is a down-set, there is an $F_{m+1} \in \mathscr{F}$ with $|F_{m+1}| = 2$ and $F_{m+1} \subset B_0$. When this happens we put $B_1 = B_0 \setminus F_{m+1}$. Then we look for $F_{m+2} \subset B_1$ with $|F_{m+2}| = 2$ to put $B_2 = B_1 \setminus F_{m+2}$. We repeat this process as many times as possible until we get a B_z with

$$|B_z \cap F| \leqslant 1 \qquad \text{for all } F \in \mathscr{F} . \tag{4}$$

Of course z = 0 if we cannot find F_{m+1} . We used *m* sets to cover *C*, then *z* sets to cover $B_0 \ B_z$. Hence

$$k - m - z < b = |B_z|, \qquad (5)$$

for otherwise a singleton for each point of B_z together with the *m* sets and the *z* sets would contradict the assumption that \mathscr{F} has no *k*-cover.

Suppose $m \leq z$ and put $D = F_1 \cup ... \cup F_{2m}$. Then

$$|D| = M + 2m \ge n - k + 1 + 2m$$
 so $|X \setminus D| \le k - 2m - 1$.

Taking a singleton for each point of $X \setminus D$ together with the 2*m* sets would again contradict the fact that \mathscr{F} has no *k*-cover. This proves that $z \leq m-1$.

Using (3) and adding $z \leq m-1$ to (5) gives

$$2 \leqslant k - 2m + 1 < b . \tag{6}$$

Let $B_z = \{a_1, a_2, ..., a_b\}$ and put

$$\mathscr{R}_i = \{F \setminus \{a_i\} ; a_i \in F \in \mathscr{F}\} \quad \text{for } 1 \leq i \leq b.$$

By (4) we know that the degree of a_i in \mathscr{F} is $|\mathscr{R}_i|$. We let

$$V_i = \bigcup (F \in \mathscr{R}_i) F \quad \text{for } 1 \leq i \leq b ,$$

then $V_i \subset X \setminus B_z$ for each *i*. We also assume that

$$|V_i| \ge n-k \quad \text{for } 1 \le i \le b , \tag{7}$$

for otherwise val $(\mathscr{F}) \leq 2^{n-k-1}$ as required.

Case. After renumbering $\{a_1, ..., a_b\}$ there exist $R_1 \in \mathcal{R}_1, R_2 \in \mathcal{R}_2, R_3 \in \mathcal{R}_3$ with

$$n - 2k + 2m + 2 \le |R_1 \cup R_2 \cup R_3|.$$
(8)

Suppose that in fact

$$n-k \leqslant |R_1 \cup R_2 \cup R_3|, \qquad (9)$$

which is a stronger condition than (8) by (3). Then

$$n-k+3 \leq |(R_1 \cup \{a_1\}) \cup (R_2 \cup \{a_2\}) \cup (R_3 \cup \{a_3\})|,$$

and we could choose k-3 singletons to contradict the fact that \mathscr{F} has no k-cover. Hence (9) does not hold. It now follows by (7) that we can find an $R_4 \in \mathscr{R}_4$ containing a point of $X \setminus (B_z \cup R_1 \cup R_2 \cup R_3)$. By a similar argument to that used on (9) we cannot have

$$n-k \leq |R_1 \cup R_2 \cup R_3 \cup R_4|,$$

and hence there is an $R_5 \in \mathscr{R}_5$ with a point in $X \setminus (B_z \cup R_1 \cup ... \cup R_4)$. We repeat the argument till we have $R_i \in \mathscr{R}_i$ for $1 \le i \le b$. Then

$$n-k+b-1 \ge |(R_1 \cup \{a_1\}) \cup \dots \cup (R_b \cup \{a_b\})| = b+|R_1 \cup \dots \cup R_b|$$
$$\ge b+(b-3)+|R_1 \cup R_2 \cup R_3| \ge 2b+n-2k+2m-1,$$

where the first inequality holds because \mathscr{F} has no k-cover, and the last inequality is (8). However the result contradicts (6), so this case is impossible.

Case. Inequality (8) is false for all $R_1 \in \mathcal{R}_1$, $R_2 \in \mathcal{R}_2$, $R_3 \in \mathcal{R}_3$. Hence we apply to $\mathcal{R}_1, \mathcal{R}_2, \mathcal{R}_3$ the case k = 3 of Theorem 2 which has $\alpha = \frac{1}{2}(-1+\sqrt{5})$. We recall that $\mathcal{R}_1, \mathcal{R}_2, \mathcal{R}_3$ are sets of subsets of $X \setminus B_z$ which has cardinality $n-b \leq n-k+2m-2$ by (6). Hence

$$\operatorname{val}(\mathscr{F}) \leq \min\left\{|\mathscr{R}_1|, |\mathscr{R}_2|, |\mathscr{R}_3|\right\} \leq 2^{n-k+2m-2} \left(\frac{1}{2}(-1+\sqrt{5})\right)^{k-3}.$$

and this last expression is $\leq 2^{n-k-1}$ by choice of *m*. This completes the proof of Case 2 of Conjecture 5.

Proof of Theorem 6. Firstly we can add sets till \mathscr{F} is a down-set and \mathscr{F} will still have no 2-cover. Further we can assume that for each $U \subset X$ either U or its complement is in \mathscr{F} . Let f_i be the number of sets in \mathscr{F} of cardinality *i*. Then

$$mf_m = \frac{m}{2} \binom{2m}{m} = \frac{n}{2} \binom{n-1}{\frac{1}{2}n}$$
, if $n = 2m$ is even.

The Erdős-Ko-Rado Theorem [5] says that

$$f_{n-i} \leq \binom{n-1}{i-1}$$
 for $\frac{1}{2}n < n-i$.

132

Hence for $\frac{1}{2}n < n-i$ we have

$$if_{i} + (n-i)f_{n-i} = i\left\{\binom{n}{i} - f_{n-i}\right\} + (n-i)f_{n-i}$$
$$= i\binom{n}{i} + (n-2i)f_{n-i} \leq i\binom{n}{i} + (n-2i)\binom{n-1}{n-i}$$
$$= i\binom{n-1}{i} + (n-i)\binom{n-1}{n-i}.$$

Finally

$$\sum_{\substack{1 \le j \le n}} \text{degree}(j) = \sum_{\substack{0 \le i \le n}} if_i$$
$$= mf_m + \sum_{\frac{1}{2}n \le n-i} \{if_i + (n-i)f_{n-i}\}$$
$$\le mf_m + \sum_{\frac{1}{2}n \le n-i} \{i\binom{n-1}{i} + (n-i)\binom{n-1}{n-i}\}$$
$$= \sum_{\substack{0 \le i \le n}} i\binom{n-1}{i} = (n-1)2^{n-2}$$

and so val $(\mathscr{F}) \leq 2^{n-2}(1-n^{-1})$.

Remark. Actually the proof shows that in a set without a 2-cover the average degree cannot exceed $2^{n-2}(1-n^{-1})$. This is best possible because one can take \mathscr{F} to be all the 2^{n-1} sets missing a given $i \in X$.

Finally we must construct the example for Theorem 6. Let us say that \mathscr{F} is good if it is a vertex-transitive up-set on X containing $2^{|X|-1}$ members no two of which have an empty intersection. This implies that, if $\mathscr{F}^c = \{X \setminus F : F \in \mathscr{F}\}$, then \mathscr{F}^c is a vertex-transitive down-set with no 2-cover and

$$|\mathscr{F}^{c}| = |\mathscr{F}| = 2^{|X|-1} = \operatorname{val}(\mathscr{F}) + \operatorname{val}(\mathscr{F}^{c}).$$

Our example will be an \mathscr{F}^c but it is more convenient to work with \mathscr{F} . For p = 1, 2, ... we shall define a good family \mathscr{F}_p on $X_p = \{1, ..., 7^p\}$.

Let S be the Steiner triple system on X_1 . Then \mathscr{F}_1 is the up-set generated by S so $\mathscr{F}_1 = \{F ; \exists G \in S \text{ with } G \subset F \subset X_1\}$. A calculation shows that \mathscr{F}_1 is good with $\operatorname{val}(\mathscr{F}_1) = 41$ so $\operatorname{val}(\mathscr{F}_1) = 23$. We inductively define \mathscr{F}_{p+1} in terms of \mathscr{F}_p and \mathscr{F}_1 . For $1 \leq i \leq 7$ let $X_{p,i} = (i-1)7^p + X_p$ and let $\mathscr{F}_{p,i} = (i-1)7^p + \mathscr{F}_p$ so $\mathscr{F}_{p,i}$ is a copy of \mathscr{F}_p . Notice that X_{p+1} is the disjoint union $X_{p,1} \cup \ldots \cup X_{p,7}$. For $F \subset X_{p+1}$ put

$$\pi(F) = \{i \ ; \ 1 \leq i \leq 7, F \cap X_{p,i} \in \mathscr{F}_{p,i}\}$$

and let $\mathscr{F}_{p+1} = \{F ; F \subset X_{p+1}, \pi(F) \in \mathscr{F}_1\}.$

It is not hard to show that \mathscr{F}_{p+1} is good with

$$\operatorname{val}(\mathscr{F}_{p+1}) = (41 \operatorname{val}(\mathscr{F}_p) + 23 \operatorname{val}(\mathscr{F}_p))(\frac{1}{2}\theta_p)^6$$
 where $\theta_p = 2^{7p}$.

If we make the substitution $1 + \delta_p = 4 \operatorname{val}(\mathscr{F}_p)/\theta_p$ this equation reduces to $\delta_{p+1} = (9/32)\delta_p$ and $\delta_1 = 9/32$ so $\delta_p = (9/32)^p$ for all p. We conclude that

$$\operatorname{val}(\mathscr{F}_{p}^{c}) = (1 - (9/32)^{p})\theta_{p}/4$$
.

If $(9/32)^p = (7^p)^{\beta}$, then $\beta = -0.651$ and this completes the proof of Theorem 6. We conjecture that this example is best possible.

References

- 1. A. Brace and D. E. Daykin. Cover theorems for finite sets, I, II, III. Bull. Austral. Math. Soc., 5 (1971), 197-202 and 6 (1972), 19-24 and 6 (1972), 417-433.
- 2. A. Brace and D. E. Daykin. A finite set covering theorem IV. Coll. Math. Soc. Jänos Bolyai, Keszthey, (1973), 199-203.
- 3. A. Brace and D. E. Daykin. Sperner type theorems for finite sets. In Combinatorics Proc. Conf. Oxford 1972 (Inst. of Mathematics and its Applications, 1972), 18-37.
- 4. D. E. Daykin. Minimum subcover of a finite set. Amer. Math. Monthly, 85 (1978), 766.
- 5. P. Erdős, C. Ko and R. Rado. Intersection theorems for systems of finite sets. Quart. J. Math. Oxford. II, 12 (1961), 313-320.
- P. Frankl. Families of finite sets satisfying an intersection condition. Bull. Austral. Math. Soc., 15 (1976), 73-79.
- 7. P. Frankl. Families of finite sets satisfying a union condition. Discrete Math., 26 (1979), 111-118.
- 8. G. Katona. Intersection theorems for finite sets. Acta. Math. Acad. Sci. Hungar., 15 (1964), 329-337.
- 9. W. Feller. An introduction to probability theory and its applications, Vol II (John Wiley, New York, 1966; second edition 1971).

Dr. D. E. Daykin, University of Reading, Reading. RG6 2AX

Dr. P. Frankl,

C.N.R.S., Paris, France. 05A05: COMBINATORICS; Classical combinatorial problems; Combinatorial choice problems (subsets, representatives, permutations).

Received on the 6th of April, 1981.

134