SETS OF FINITE SETS SATISFYING UNION CONDITIONS

DAVID E. DAYKIN and PETER FRANKL

Abstract. Let \mathscr{F} denote a set of subsets of $X=\{1,2, \ldots, n\}$. Let deg (i) be the number of members of \mathscr{F} containing i and $\operatorname{val}(\mathscr{F})=\min \{\operatorname{deg}(i): i \in X\}$. Suppose no k members of \mathscr{F} have union X. We conjecture val $(\mathscr{F}) \leqslant 2^{n-k-1}$ for $k \geqslant 3$. This is known for $n \leqslant 2 k$ and we prove it for $k \geqslant 25$. For $k=2$ an example has $\operatorname{val}(\mathscr{F})>2^{n-2}\left(1-n^{-0.651}\right)$ and we prove $\operatorname{val}(\mathscr{F}) \leqslant 2^{n-2}\left(1-n^{-1}\right)$. We also prove that if the union of k sets one from each of $\mathscr{F}_{1}, \ldots, \mathscr{F}_{k}$ has cardinality at most $n-t$ then $\min \left\{\right.$ cardinality $\left.\mathscr{\mathscr { F }}_{j}\right\}<2^{n} \alpha^{t}$ where $\alpha^{k}=2 \alpha-1$ and $\frac{1}{2}<\alpha<1$.
§1. Introduction and Statement of Results. Let k, n, t be integers $2 \leqslant k$ and $n \geqslant t \geqslant 1$. We shall always let \mathscr{F} denote a set of subsets of the set $X=\{1,2, \ldots, n\}$. We say \mathscr{F} has property $P(n, k, t)$ if the union of any k members of \mathscr{F} has cardinality at most $n-t$. Let s denote a non-negative integer with $t+k s \leqslant n$. Then $E(n, k, t, s)$ is the set of all \mathscr{F}, for which there exists a subset $Y=Y(\mathscr{F})$ of X with cardinality $|Y|=t+k s$, such that \mathscr{F} has the form $\mathscr{F}=\{F \subset X:|F \cap Y| \leqslant s\}$. Clearly, if $\mathscr{F} \in E(n, k, t, s)$, then \mathscr{F} has $P(n, k, t)$. We write $e(n, k, t, s)$ for the common cardinalities of members of $E(n, k, t, s)$. In particular $e(n, k, t, 0)=2^{n-1}$ and $e(n, k, 1,1)=(k+2) 2^{n-k-1}$. Consider

Conjecture 1. (Erdös and Frankl [6]). If \mathscr{F} has $P(n, k, t)$ and $|\mathscr{F}|$ is maximal, then $\mathscr{F} \in E(n, k, t, s)$ for some s, unless $k=2, t=1$.

The conjecture is true in the following cases.
Case 1. $t=1$. Trivial (cf. [5] p. 319(ii)). The case $k=2, t=1$ is only excluded because there are examples not of the form E.

Case 2. (Katona [8]). $k=2$.
Case 3. (Frankl [6]). $k=3, t=2$ and then $s=0$.
Case 4. (Frankl [7]). $t \leqslant k 2^{k} / 150$.
Case 5. (Frankl [7]). $k \geqslant 6, t \leqslant(e+1)^{-1}\left(2^{k-1}-k+1\right)-1$ and then $s=0$.
Consider k sets $\mathscr{F}_{1}, \ldots, \mathscr{F}_{k}$. We give
Theorem 2. Suppose $k \geqslant 3$ and the union of any k sets, one from each \mathscr{F}_{i}, has cardinality at most $n-t$. Let $\alpha=\alpha(k)$ be the unique root of $x^{k}-2 x+1=0$ in $\frac{1}{2}<\alpha<1$. Then $\min \left|\mathscr{F}_{i}\right|<2^{n} \alpha^{t}$. Also there is an example with $\min \left|\mathscr{F}_{i}\right|>c 2^{n} \alpha^{t} / \sqrt{ }$, where c is an absolute constant.

We say \mathscr{F} is covering if $\bigcup(F \in \mathscr{F}) F=X$. There is
Theorem 3. (Brace and Daykin [1]). If \mathscr{F} is covering and has $P(n, k, 1)$ and $|\mathscr{F}|$ is maximal, then $\mathscr{F} \in E(n, k, 1,1)$.

This leads us to make
Conjecture 4. Suppose $k \geqslant 3$ and the union of any k sets, one from each \mathscr{F}_{i}, has cardinality at most $n-1$. If each \mathscr{F}_{i} is covering, then $\min \left|\mathscr{F}_{i}\right| \leqslant e(n, k, 1,1)$.

For $i \in X$ the degree of i is the number of members of \mathscr{F} which contain i. The minimum of these degrees is called the valency val (\mathscr{F}). For example if $\mathscr{F} \in E(n, k, 1,1)$ then $\operatorname{val}(\mathscr{F})=2^{n-k-1}$. We say \mathscr{F} has no k-cover if the union of any k members of \mathscr{F} is not X. We make

Conjecture 5. If \mathscr{F} has no k-cover and $k \geqslant 3$, then $\operatorname{val}(\mathscr{F}) \leqslant 2^{n-k-1}$.
This conjecture is true in
Case 1. (Daykin [4]). $n \leqslant 2 k$.
We shall prove it true in
Case 2. $k \geqslant 25$.
When \mathscr{F} has no 2 -cover the problem ${ }^{\dagger}$ is harder and we present
Theorem 6. If \mathscr{F} has no 2-cover then $\operatorname{val}(\mathscr{F}) \leqslant 2^{n-2}\left(1-n^{-1}\right)$. There is an example with $n=7^{p}$ and $\operatorname{val}(\mathscr{F})>2^{n-2}\left(1-n^{-0.651}\right)$.
§2. The Proofs. Proof of Theorem 2. This is almost a copy of Frankl's proof in [6], so we leave out some details. Let $1 \leqslant i<j \leqslant n$ and let \mathscr{H} be a set of subsets of X. We define a set $A_{i j}(\mathscr{H})$ of subsets of X by

$$
A_{i j}(\mathscr{H})=\left\{A_{i j}(H): H \in \mathscr{H}\right\},
$$

where

$$
A_{i j}(H)=\left\{\begin{array}{l}
(H \backslash\{j\}) \cup\{i\}, \quad \text { if } j \in H, i \notin H,(H \backslash\{j\}) \cup\{i\} \notin \mathscr{H} \\
H, \text { otherwise }
\end{array}\right.
$$

Notice that $\left|A_{i j}(\mathscr{H})\right|=|\mathscr{H}|$.
For convenience we replace all the sets in each \mathscr{F}_{g} by their complements. The condition on $\mathscr{F}_{1}, \ldots, \mathscr{F}_{k}$ then becomes that the intersection of any k sets, one from each \mathscr{F}_{g}, has cardinality at least t. Call this the intersection condition. It is clear that

[^0]$A_{i j}\left(\mathscr{F}_{1}\right), \ldots, A_{i j}\left(\mathscr{F}_{k}\right)$ satisfy this intersection condition. Repeating $A_{i j}$ for various i, j we change $\mathscr{F}_{1}, \ldots, \mathscr{F}_{k}$ into $\mathscr{G}_{1}, \ldots, \mathscr{G}_{k}$, which satisfy both the intersection condition and
\[

$$
\begin{equation*}
A_{i j}\left(\mathscr{G}_{g}\right)=\mathscr{G}_{g} \quad \text { for } \quad 1 \leqslant i<j \leqslant n \quad \text { and } \quad 1 \leqslant g \leqslant k \tag{1}
\end{equation*}
$$

\]

Let $T=\{1,2, \ldots, t-1\}$ and $K=\{0,1, \ldots, k-1\}$. If f, h are integers with $0 \leqslant h \leqslant k-1$, put

$$
\begin{aligned}
f+K_{h} & =\{f+j ; j \in K \backslash\{h\}\}, \\
S_{h}^{\infty} & =T \cup\left(t+K_{h}\right) \cup\left(k+t+K_{h}\right) \cup\left(2 k+t+K_{h}\right) \cup \ldots, \\
S_{h} & =X \cap S_{h}^{\infty} .
\end{aligned}
$$

If $\left|S_{h}\right| \neq\left|S_{0}\right|$ for some h, then $n \in S_{h}$ and we remove n from S_{h} without changing notation. Suppose $S_{0} \in \mathscr{G}_{g}$ for some g. Then because (1) holds we have $S_{h} \in \mathscr{G}_{g}$ for all h. Hence, if $S_{0} \in \mathscr{G}_{g}$ for every g, then $S_{0} \in \mathscr{G}_{1}, S_{1} \in \mathscr{G}_{2}, \ldots, S_{k-1} \in \mathscr{G}_{k}$. However this contradicts the intersection condition because $S_{0} \cap S_{1} \cap \ldots \cap S_{k-1}=T$ and $|T|=t-1$. Hence by symmetry we may assume $s_{0} \notin \mathscr{G}_{1}$.

We associate with every subset T of the set $\{1,2, \ldots\}$ a random walk in the real plane as follows. We start from the origin (0,0). If after q steps we are at (x, y), then we move to $(x, y+1)$, if $q+1 \in T$, otherwise, we move to $(x+1, y)$. We denote this walk by $W(T)$.

Proposition 1. If $G \in \mathscr{G}_{1}$, then $W(G)$ hits the line $y=(k-1) x+t$.
Proof. The walk $W\left(S_{0}^{\infty}\right)$ does not hit the line but is as close as possible to it. Thus every random walk either hits the line or lies entirely under $W\left(S_{0}^{\infty}\right)$. If $W(G)$ lies under $W\left(S_{0}^{\infty}\right)$, we can obtain $W\left(S_{0}\right)$ from $W(G)$ by iteration of the operations: (i) replace $i+1$ by i in G; and (ii) adjoin the element i to G. Notice that operation (i) changes \lrcorner to Γ in $W(G)$, while operation (ii) lifts $W(G)$. Applying these operations to G produces sets which are in \mathscr{G}_{1} because \mathscr{G}_{1} is an up-set and (1) holds. In this way we eventually deduce that $S_{0} \in \mathscr{G}_{1}$ contradicting our assumption.

Proposition 2. Consider the random walk which starts from the origin and moves up or to the right with equal probabilities $\frac{1}{2}, \frac{1}{2}$. The probability that this walk hits the line $y=(k-1) x+t$ is $\alpha(k)^{t}$.

Proof. The result is part of more general theorems in [9] Chapter XII.
The proof of Theorem 2 now follows by observing firstly, that the set of all subsets of X gives a model for random walks with probabilities $\frac{1}{2}, \frac{1}{2}$, and secondly, that the probability of hitting the given line in $\leqslant n$ steps is strictly less than the probability of ever hitting it.

Proof of Case 2 of Conjecture 5. We shall use Case 5 of Conjecture 1. So we let m be the least integer such that

$$
\begin{equation*}
k<(e+1)^{-1}\left(2^{m-1}-m+1\right)-1 \tag{2}
\end{equation*}
$$

Since $m=8$ when $k=25$ we always have

$$
\begin{equation*}
m \geqslant 8 \quad \text { and } \quad 2 \leqslant k-2 m+1 \tag{3}
\end{equation*}
$$

We may assume that if $F \in \mathscr{F}$ then all subsets of F are in \mathscr{F}, in other words that \mathscr{F} is a down-set. We may also assume that all singletons are in \mathscr{F}. Let $M=M(m, \mathscr{F})$ be the maximum cardinality of the union of m members of \mathscr{F}.

Case. $M \leqslant n-k$. This means that \mathscr{F} has $P(n, m, k)$. So by Case 5 of Conjecture 1 we have $|\mathscr{F}| \leqslant 2^{n-k}$. Since \mathscr{F} is a down-set, every $i \in X$ is in at most half the sets in \mathscr{F}, so $\operatorname{val}(\mathscr{F}) \leqslant 2^{n-k-1}$ as required.

Case. $\quad M \geqslant n-k+1$. We choose F_{1}, \ldots, F_{m} in \mathscr{F} with $|C|=M$ where $C=F_{1} \cup \ldots \cup F_{m}$. We put $B_{0}=X \backslash C$. If there is an $F \in \mathscr{F}$ with $\left|B_{0} \cap F\right| \geqslant 2$, because \mathscr{F} is a down-set, there is an $F_{m+1} \in \mathscr{F}$ with $\left|F_{m+1}\right|=2$ and $F_{m+1} \subset B_{0}$. When this happens we put $B_{1}=B_{0} \backslash F_{m+1}$. Then we look for $F_{m+2} \subset B_{1}$ with $\left|F_{m+2}\right|=2$ to put $B_{2}=B_{1} \backslash F_{m+2}$. We repeat this process as many times as possible until we get a B_{z} with

$$
\begin{equation*}
\left|B_{z} \cap F\right| \leqslant 1 \quad \text { for all } F \in \mathscr{F} . \tag{4}
\end{equation*}
$$

Of course $z=0$ if we cannot find F_{m+1}. We used m sets to cover C, then z sets to cover $B_{0} \backslash B_{z}$. Hence

$$
\begin{equation*}
k-m-z<b=\left|B_{z}\right|, \tag{5}
\end{equation*}
$$

for otherwise a singleton for each point of B_{z} together with the m sets and the z sets would contradict the assumption that \mathscr{F} has no k-cover.

Suppose $m \leqslant z$ and put $D=F_{1} \cup \ldots \cup F_{2 m}$. Then

$$
|D|=M+2 m \geqslant n-k+1+2 m \quad \text { so } \quad|X \backslash D| \leqslant k-2 m-1
$$

Taking a singleton for each point of $X \backslash D$ together with the $2 m$ sets would again contradict the fact that \mathscr{F} has no k-cover. This proves that $z \leqslant m-1$.

Using (3) and adding $z \leqslant m-1$ to (5) gives

$$
\begin{equation*}
2 \leqslant k-2 m+1<b \tag{6}
\end{equation*}
$$

Let $B_{z}=\left\{a_{1}, a_{2}, \ldots, a_{b}\right\}$ and put

$$
\mathscr{R}_{i}=\left\{F \backslash\left\{a_{i}\right\} ; a_{i} \in F \in \mathscr{F}\right\} \quad \text { for } 1 \leqslant i \leqslant b
$$

By (4) we know that the degree of a_{i} in \mathscr{F} is $\left|\mathscr{R}_{i}\right|$. We let

$$
V_{i}=\bigcup\left(F \in \mathscr{R}_{i}\right) F \quad \text { for } 1 \leqslant i \leqslant b
$$

then $V_{i} \subset X \backslash B_{z}$ for each i. We also assume that

$$
\begin{equation*}
\left|\boldsymbol{V}_{i}\right| \geqslant n-k \quad \text { for } 1 \leqslant i \leqslant b \tag{7}
\end{equation*}
$$

for otherwise $\operatorname{val}(\mathscr{F}) \leqslant 2^{n-k-1}$ as required.

Case. After renumbering $\left\{a_{1}, \ldots, a_{b}\right\}$ there exist $R_{1} \in \mathscr{R}_{1}, R_{2} \in \mathscr{R}_{2}, R_{3} \in \mathscr{R}_{3}$ with

$$
\begin{equation*}
n-2 k+2 m+2 \leqslant\left|R_{1} \cup R_{2} \cup R_{3}\right| . \tag{8}
\end{equation*}
$$

Suppose that in fact

$$
\begin{equation*}
n-k \leqslant\left|R_{1} \cup R_{2} \cup R_{3}\right|, \tag{9}
\end{equation*}
$$

which is a stronger condition than (8) by (3). Then

$$
n-k+3 \leqslant\left|\left(R_{1} \cup\left\{a_{1}\right\}\right) \cup\left(R_{2} \cup\left\{a_{2}\right\}\right) \cup\left(R_{3} \cup\left\{a_{3}\right\}\right)\right|,
$$

and we could choose $k-3$ singletons to contradict the fact that \mathscr{F} has no k-cover. Hence (9) does not hold. It now follows by (7) that we can find an $R_{4} \in \mathscr{R}_{4}$ containing a point of $X \backslash\left(B_{z} \cup R_{1} \cup R_{2} \cup R_{3}\right)$. By a similar argument to that used on (9) we cannot have

$$
n-k \leqslant\left|R_{1} \cup R_{2} \cup R_{3} \cup R_{4}\right|,
$$

and hence there is an $R_{5} \in \mathscr{R}_{5}$ with a point in $X \backslash\left(B_{z} \cup R_{1} \cup \ldots \cup R_{4}\right)$. We repeat the argument till we have $R_{i} \in \mathscr{R}_{i}$ for $1 \leqslant i \leqslant b$. Then

$$
\begin{aligned}
n-k+b-1 & \geqslant\left|\left(R_{1} \cup\left\{a_{1}\right\}\right) \cup \ldots \cup\left(R_{b} \cup\left\{a_{b}\right\}\right)\right|=b+\left|R_{1} \cup \ldots \cup R_{b}\right| \\
& \geqslant b+(b-3)+\left|R_{1} \cup R_{2} \cup R_{\mathbf{3}}\right| \geqslant 2 b+n-2 k+2 m-1,
\end{aligned}
$$

where the first inequality holds because \mathscr{F} has no k-cover, and the last inequality is (8). However the result contradicts (6), so this case is impossible.

Case. Inequality (8) is false for all $R_{1} \in \mathscr{R}_{1}, R_{2} \in \mathscr{R}_{2}, R_{3} \in \mathscr{R}_{3}$. Hence we apply to $\mathscr{R}_{1}, \mathscr{R}_{2}, \mathscr{R}_{3}$ the case $k=3$ of Theorem 2 which has $\alpha=\frac{1}{2}(-1+\sqrt{ } 5)$. We recall that $\mathscr{R}_{1}, \mathscr{R}_{2}, \mathscr{R}_{3}$ are sets of subsets of $X \backslash B_{z}$ which has cardinality $n-b \leqslant n-k+2 m-2$ by (6). Hence

$$
\operatorname{val}(\mathscr{F}) \leqslant \min \left\{\left|\mathscr{R}_{1}\right|,\left|\mathscr{R}_{2}\right|,\left|\mathscr{R}_{3}\right|\right\} \leqslant 2^{n-k+2 m-2}\left(\frac{1}{2}(-1+\sqrt{ } 5)\right)^{k-3},
$$

and this last expression is $\leqslant 2^{n-k-1}$ by choice of m. This completes the proof of Case 2 of Conjecture 5.

Proof of Theorem 6. Firstly we can add sets till $\mathscr{\mathscr { F }}$ is a down-set and $\mathscr{\mathscr { F }}$ will still have no 2 -cover. Further we can assume that for each $U \subset X$ either U or its complement is in \mathscr{F}. Let f_{i} be the number of sets in \mathscr{F} of cardinality i. Then

$$
m f_{m}=\frac{m}{2}\binom{2 m}{m}=\frac{n}{2}\binom{n-1}{\frac{1}{2} n}, \quad \text { if } n=2 m \text { is even }
$$

The Erdös-Ko-Rado Theorem [5] says that

$$
f_{n-i} \leqslant\binom{ n-1}{i-1} \quad \text { for } \frac{1}{2} n<n-i
$$

Hence for $\frac{1}{2} n<n-i$ we have

$$
\begin{aligned}
i f_{i}+(n-i) f_{n-i} & =i\left\{\binom{n}{i}-f_{n-i}\right\}+(n-i) f_{n-i} \\
& =i\binom{n}{i}+(n-2 i) f_{n-i} \leqslant i\binom{n}{i}+(n-2 i)\binom{n-1}{n-i} \\
& =i\binom{n-1}{i}+(n-i)\binom{n-1}{n-i} .
\end{aligned}
$$

Finally

$$
\begin{aligned}
\sum_{1 \leqslant j \leqslant n} \operatorname{degree}(j) & =\sum_{0 \leqslant i \leqslant n} i f_{i} \\
& =m f_{m}+\sum_{\frac{1}{2} n<n-i}\left\{i f_{i}+(n-i) f_{n-i}\right\} \\
& \leqslant m f_{m}+\sum_{\frac{1}{2} n<n-i}\left\{i\binom{n-1}{i}+(n-i)\binom{n-1}{n-i}\right\} \\
& =\sum_{0 \leqslant i \leqslant n} i\binom{n-1}{i}=(n-1) 2^{n-2}
\end{aligned}
$$

and so $\operatorname{val}(\mathscr{F}) \leqslant 2^{n-2}\left(1-n^{-1}\right)$.

Remark. Actually the proof shows that in a set without a 2 -cover the average degree cannot exceed $2^{n-2}\left(1-n^{-1}\right)$. This is best possible because one can take \mathscr{F} to be all the 2^{n-1} sets missing a given $i \in X$.

Finally we must construct the example for Theorem 6. Let us say that \mathscr{F} is good if it is a vertex-transitive up-set on X containing $2^{|X|-1}$ members no two of which have an empty intersection. This implies that, if $\mathscr{F}^{\mathrm{c}}=\{X \backslash F: F \in \mathscr{F}\}$, then \mathscr{F}^{c} is a vertex-transitive down-set with no 2 -cover and

$$
\left|\mathscr{F}^{c}\right|=|\mathscr{F}|=2^{|X|-1}=\operatorname{val}(\mathscr{F})+\operatorname{val}\left(\mathscr{F}^{s}\right)
$$

Our example will be an $\mathscr{F}^{\text {c }}$ but it is more convenient to work with \mathscr{F}. For $p=1,2, \ldots$ we shall define a good family \mathscr{F}_{v} on $X_{p}=\left\{1, \ldots, 7^{p}\right\}$.

Let S be the Steiner triple system on X_{1}. Then \mathscr{F}_{1} is the up-set generated by S so $\mathscr{F}_{1}=\left\{F ; \exists G \in S\right.$ with $\left.G \subset F \subset X_{1}\right\}$. A calculation shows that \mathscr{F}_{1} is good with $\operatorname{val}\left(\mathscr{F}_{1}\right)=41$ so $\operatorname{val}\left(\mathscr{F}_{1}^{\mathrm{c}}\right)=23$. We inductively define \mathscr{F}_{p+1} in terms of \mathscr{F}_{p} and \mathscr{F}_{1}. For $1 \leqslant i \leqslant 7$ let $X_{p, i}=(i-1) 7^{p}+X_{p}$ and let $\mathscr{F}_{p, i}=(i-1) 7^{p}+\mathscr{F}_{p}$ so $\mathscr{F}_{p, i}$ is a copy of \mathscr{F}_{p}. Notice that X_{p+1} is the disjoint union $X_{p, 1} \cup \ldots \cup X_{p, 7}$. For $F \subset X_{p+1}$ put

$$
\pi(F)=\left\{i ; 1 \leqslant i \leqslant 7, F \cap X_{p, i} \in \mathscr{F}_{p, i}\right\}
$$

and let $\mathscr{F}_{p+1}=\left\{F ; F \subset X_{p+1}, \pi(F) \in \mathscr{F}_{1}\right\}$.

It is not hard to show that \mathscr{F}_{p+1} is good with

$$
\operatorname{val}\left(\mathscr{F}_{p+1}\right)=\left(41 \operatorname{val}\left(\mathscr{F}_{p}\right)+23 \text { val }\left(\mathscr{F}_{p}^{5}\right)\right)\left(\frac{1}{2} \theta_{p}\right)^{6} \text { where } \theta_{p}=2^{7 p} .
$$

If we make the substitution $1+\delta_{p}=4 \operatorname{val}\left(\mathscr{F}_{p}\right) / \theta_{p}$ this equation reduces to $\delta_{p+1}=(9 / 32) \delta_{p}$ and $\delta_{1}=9 / 32$ so $\delta_{p}=(9 / 32)^{p}$ for all p. We conclude that

$$
\operatorname{val}\left(\mathscr{F}_{p}^{c}\right)=\left(1-(9 / 32)^{p}\right) \theta_{p} / 4 .
$$

If $(9 / 32)^{p}=\left(7^{p}\right)^{\beta}$, then $\beta=-0.651$ and this completes the proof of Theorem 6. We conjecture that this example is best possible.

References

1. A. Brace and D. E. Daykin. Cover theorems for finite sets, I, II, III. Bull. Austral. Math. Soc., 5 (1971), 197-202 and 6 (1972), 19-24 and 6 (1972), 417-433.
2. A. Brace and D. E. Daykin. A finite set covering theorem IV. Coll. Math. Soc. Jänos Bolyai, Keszthey, (1973), 199-203.
3. A. Brace and D. E. Daykin. Sperner type theorems for finite sets. In Combinatorics Proc. Conf. Oxford 1972 (Inst. of Mathematics and its Applications, 1972), 18-37.
4. D. E. Daykin. Minimum subcover of a finite set. Amer. Math. Monthly, 85 (1978), 766.
5. P. Erdbs, C. Ko and R. Rado. Intersection theorems for systems of finite sets. Quart. J. Math. Oxford. II, 12 (1961), 313-320.
6. P. Frankl. Families of finite sets satisfying an intersection condition. Bull. Austral. Math. Soc., 15 (1976), 73-79.
7. P. Frankl. Families of finite sets satisfying a union condition. Discrete Math., 26 (1979), 111-118.
8. G. Katona. Intersection theorems for finite sets. Acta. Math. Acad. Sci. Hungar., 15 (1964), 329-337.
9. W. Feller. An introduction to probability theory and its applications, Vol II (John Wiley, New York, 1966; second edition 1971).

Dr. D. E. Daykin,
University of Reading,
Reading. RG6 2AX
Dr. P. Frankl,
C.N.R.S.,

Paris, France.

05A05: COMBINATORICS; Classical combinatorial problems; Combinatorial choice problems (subsets, representatives, permutations).

Received on the 6th of April, 1981.

[^0]: \dagger This problem was discussed by Daykin at the Oxford Conference of 1972. There Paul Erd6s offered a $£ 5.00$ prize for the best example. This prize was won by Daykin for the example given here. However he made mistakes when writing up [3] and these unfortunately make it appear that Erdos gave the prize for nothing.

