REGULARITY CONDITIONS AND INTERSECTING HYPERGRAPHS

PETER FRANKL

Abstract

Let ($\mathscr{F}, \boldsymbol{X}$) be a hypergraph with a transitive group of automorphisms. Suppose further that any four edges of \mathscr{F} intersect nontrivially. Denoting $|X|$ by n we prove $|\mathscr{F}|=O\left(2^{n}\right)$. We show as well that it is not sufficient to suppose regularity instead of the transitivity of Aut(F).

1. Introduction. Let (\mathscr{F}, X) be a hypergraph, i.e. \mathscr{F} is a family of nonempty subsets of X. Let $|X|=n$.

We say \mathscr{F} is \boldsymbol{k}-intersecting if any \boldsymbol{k} edges of \mathscr{F} have a nonempty intersection. Obviously a k-intersecting hypergraph is \boldsymbol{k}^{\prime}-intersecting for every $\boldsymbol{k}^{\prime}<\boldsymbol{k}$.

Erdös, Ko and Rado [2] observed that a 2-intersecting hypergraph has at most 2^{n-1} edges, moreover if it is 3 -intersecting, then $|\mathscr{F}|=2^{n-1}$ is possible only if \mathscr{F} consists of all the subsets of X containing a fixed element of X.

Brace and Daykin [1] refined this result by proving that if there is no element of X which is contained in every edge of the k-intersecting hypergraph \mathscr{F}, then

$$
\begin{equation*}
|\mathscr{F}|<(k+2) 2^{n-k-1} . \tag{1}
\end{equation*}
$$

To obtain equality in (1) we have to take all the subsets of X which contain at least k elements of a fixed $(k+1)$-subset of X.

For $k=2$, (1) gives 2^{n-1}. If n is odd then the family of subsets of X with cardinality exceeding $n / 2$ gives a 2 -intersecting hypergraph with transitive group of automorphisms and cardinality 2^{n-1}. For n even the family still has cardinality $2^{n-1}(1+o(1))$.

In §2 we prove the following
Theorem 1. Suppose $\operatorname{Aut}(\mathscr{F})$ is transitive on X, and \mathscr{F} is 4-intersecting. Then

$$
\begin{equation*}
|\mathscr{F}|=o\left(2^{n}\right) . \tag{2}
\end{equation*}
$$

For the proof we need the following result of [3]:
Theorem 2. Suppose any three edges of (\mathscr{F}, X) have at least telements in common. Let us set $b=(\sqrt{5}-1) / 2$. Then we have

$$
\begin{equation*}
|\mathscr{F}|<b^{t} 2^{n} \tag{3}
\end{equation*}
$$

We say (\mathscr{F}, X) is regular if every element of X is contained in the same number of edges. In $\S 3$ we construct k-intersecting regular hypergraphs with

$$
|\mathscr{F}|=2^{n-\left(2^{k+1}-k-2\right)}
$$

Received by the editors November 6, 1979 and, in revised form, May 28, 1980. AMS. (MOS) subject classifications (1970). Primary 05A05.

The construction uses the k-dimensional projective space over $G F(2)$.
2. The proof of Theorem 1. Let us set

$$
t=\min \left\{\left|F_{1} \cap F_{2} \cap F_{3}\right|: F_{1}, F_{2}, F_{3} \in \mathscr{F}\right\}
$$

We consider two cases.
Case (a). $t \geqslant \log n-3 \log \log n .\left(\log\right.$ means $\log _{2}$.) By Theorem 2,

$$
\begin{equation*}
|\mathscr{F}| \leq b^{(\log n-3 \log \log n)} 2^{n} . \tag{4}
\end{equation*}
$$

Now (2) follows from (4). For $n>n_{0}$, (4) implies that $|\mathscr{F}|<2^{n} / \sqrt{n}$.
Case (b).

$$
\begin{equation*}
t<\log n-3 \log \log n \tag{5}
\end{equation*}
$$

Let F, G, H be members of \mathscr{F} satisfying $|F \cap G \cap H|=t$. Let us set

$$
\mathscr{D}=\{a(F) \cap a(G) \cap a(H) \mid a \in \operatorname{Aut}(\mathscr{F})\} .
$$

(By $a(F)$ we denote the elementwise image of F by the automorphism a.) By the definition of \mathscr{D} we have $\operatorname{Aut}(\mathscr{F}) \subseteq \operatorname{Aut}(\mathscr{D})$, in particular every element of X is contained in the same number, say d, of members of \mathscr{D}. By an elementary count

$$
\begin{equation*}
d=t|\mathscr{D}| / n . \tag{6}
\end{equation*}
$$

Let us choose pairwise disjoint members D_{1}, \ldots, D_{m} of \mathscr{D} such that for every member D_{m+1} of \mathscr{D} at least one of the intersections $D_{i} \cap D_{m+1}(i=1, \ldots, m)$ is nonempty. As $S=D_{1} \cup \cdots \cup D_{m}$ has cardinality $m t$ and has a nonempty intersection with every member of \mathscr{D}, some vertex of S is contained in at least $|\mathscr{D}| / m t$ members of \mathscr{D}. Taking (6) into account we obtain

$$
\begin{equation*}
m>n / t^{2} \tag{7}
\end{equation*}
$$

We assert that for $i=1, \ldots$, and any $F \in \mathscr{F}$ we have $D_{i} \cap F \neq \varnothing$. Indeed by the definition of \mathscr{D} we can find F_{1}, F_{2}, F_{3} such that $D_{i}=F_{1} \cap F_{2} \cap F_{3}$, and using the 4 -intersection property of \mathscr{F} we deduce

$$
D_{i} \cap F=F_{1} \cap F_{2} \cap F_{3} \cap F \neq \varnothing
$$

Now the number of subsets of X which have a nonempty intersection with every $D_{i}, i=1, \ldots, m$, gives an upper bound for $|\mathscr{F}|$, that is

$$
\begin{equation*}
|\mathscr{F}|<2^{n-m t}\left(2^{t}-1\right)^{m} . \tag{8}
\end{equation*}
$$

From (8) using (5) and (7) we deduce

$$
\begin{equation*}
|\mathscr{F}| \leqslant 2^{n}\left(1-\frac{1}{2^{t}}\right)^{n / t^{2}}<2^{n} \exp \left(-\log _{2} n\right)<2^{n} / n \tag{9}
\end{equation*}
$$

Now the statement of the theorem follows from (9). Let us close this paragraph with a conjecture.

Conjecture 1. If in Theorem 1 we replace " 4 -intersecting" by " 3 -intersecting", then (2) remains valid.
3. Construction of k-intersecting regular hypergraphs. Let (\mathcal{P}, Y) be the hypergraph consisting of the $(k-1)$-dimensional subspaces of the k-dimensional projective space over $G F(2)$. Then $|Y|=2^{k+1}-1,|\mathscr{P}|=|Y|$, and every element of Y is contained in exactly $2^{k}-1$ of the members of \mathscr{P}, which all have cardinality
$2^{k}-1$. Let y be an arbitrary element of Y, and let us define $Z=Y-\{y\}$, $\Re=\{P \in \mathscr{P} \mid y \notin P\}$. Then for the hypergraph (\Re, Z) we have

$$
\begin{gathered}
|Z|=2^{k+1}-2, \quad|\Re|=\left(2^{k+1}-1\right)-\left(2^{k}-1\right)=2^{k} \\
|R|=2^{k}-1 \quad \text { for every } R \in \Re .
\end{gathered}
$$

Moreover, as the group of automorphisms of (\mathcal{P}, Y) is doubly transitive on Y, $\operatorname{Aut}(\Re)$ is transitive on Z. Hence the hypergraph (\Re, Y) is regular. Consequently every point of Z is contained in $|\Re||R| /|Z|=\frac{1}{2}|\Re|=2^{k-1}$ members of \mathscr{R}. For our purposes the most important property of \mathscr{P}, and so of \Re, is that any k members of it have a nonempty intersection.

Let X be an n-element set containing Z, and let us define

$$
\mathscr{F}=\{F \subset X \mid(F \cap Z) \in \mathscr{R}\}
$$

As \mathscr{R} is k-intersecting, \mathscr{F} is k-intersecting as well. Using the definition of \mathscr{F} we obtain

$$
\begin{gathered}
|\mathscr{F}|=|\mathscr{R}| 2^{n-|Z|}=2^{k} 2^{n-\left(2^{k+1}-2\right)}=2^{n-\left(2^{k+1}-k-2\right)} ; \\
|\{F \in \mathscr{F} \mid z \in F\}|=\left(\frac{1}{2}|\Re|\right)\left(2^{n-|Z|}\right)=\frac{1}{2}|\mathscr{F}| \quad(z \in Z) ; \\
|\{F \in \mathscr{F} \mid x \in F\}|=(|\Re|)\left(\frac{1}{2} 2^{n-|Z|}\right)=\frac{1}{2}|\mathscr{F}| \quad(x \in(X-Z)) .
\end{gathered}
$$

So we have constructed a regular, k-intersecting hypergraph on n vertices with $2^{n-\left(2^{k+1}-k-2\right)}$ edges. Could we have done better?

Conjecture 2. A regular, k-intersecting hypergraph on n vertices has at most $2^{n-\left(2^{k+1}-k-2\right)}$ edges when $k \geqslant 3$.

The best upper bound we can prove for the moment is $2^{n} b^{2^{k-3}}$.

References

1. A. Brace and D. E. Daykin, Sperner type theorems for finite sets, Bull. Austral. Math. Soc. 5 (1971), 197-202.
2. P. Erdös, C. Ko and R. Rado, Intersection theorems for finite sets, Quart. J. Math. Oxford Ser. (2) 12 (1961), 313-320.
3. P. Frankl, Families of finite sets satisfying an intersection condition, Bull. Austral. Math. Soc. 15 (1976), 73-79.

Centre National de la Recherche Scientifique, 15 Quai Anatole France, 75007 Paris, France

