
Large Bd-free and union-free subfamilies
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Abstract

For a property Γ and a family of sets F , let f(F , Γ) be the size of the largest
subfamily of F having property Γ. For a positive integer m, let f(m, Γ) be the
minimum of f(F , Γ) over all families of size m. A family F is said to be Bd-free
if it has no subfamily F ′ = {FI : I ⊆ [d]} of 2d distinct sets such that for every
I, J ⊆ [d], both FI ∪ FJ = FI∪J and FI ∩ FJ = FI∩J hold. A family F is
a-union free if F1 ∪ . . . Fa 6= Fa+1 whenever F1, . . . , Fa+1 are distinct sets in F .
We verify a conjecture of Erdős and Shelah that f(m, B2-free) = Θ(m2/3). We
also obtain lower and upper bounds for f(m, Bd-free) and f(m, a-union free).

1 Introduction, results

Moser proposed the following problem: Let A1, A2 . . . , Am be a collection of m sets. A
subfamily Ai1 , Ai2 . . . , Air is union-free if Aij1

∪Aij2
6= Aij3

for every triple of distinct
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sets Aj1 , Aj2 , Aj3 with 1 ≤ j1 ≤ r, 1 ≤ j2 ≤ r, and 1 ≤ j3 ≤ r. Erdős and Komlós [1]
considered the following problem of Moser: what is the size of the largest union-free
subfamily Ai1 , . . . , Air?

Put f(m) = min r, where the minimum is taken over all families of m distinct sets.
As mentioned in [1], Riddel pointed out that f(m) > c

√
m. Erdős and Komlós [1]

showed
√

m ≤ f(m) ≤ 2
√

2
√

m. Kleitman proved
√

2m − 1 < f(m); Erdős and
Shelah [2] obtained

f(m) < 2
√

m + 1. (1)

The latter two conjectured f(m) = (2 + o(1))
√

m.
We define f(F , Γ) as the size of the largest subfamily of F having property Γ,

f(F , Γ) := max{|F ′| : F ′ ⊆ F , F ′ has property Γ}.

In this context, f(E(Kn
r ),H-free) is the Turán number exr(n,H). Let f(m, Γ) =

min{f(F , Γ) : |F| = m}. Generalizing the union-free property, a family F is a-union

free if there are no distinct sets F1, F2 . . . , Fa+1 satisfying F1 ∪ F2 ∪ · · · ∪ Fa = Fa+1.
Erdős and Shelah [2] also considered Γ to be the property that no four distinct

sets satisfy F1 ∪ F2 = F3 and F1 ∩ F2 = F4. Such families are called B2-free. Erdős
and Shelah [2] gave an example showing f(m,B2-free) ≤ (3/2)m2/3 and they also
conjectured f(m,B2-free) > c2m

2/3.
A family B of 2d distinct sets is forming a Boolean algebra of dimension d if the

sets can be indexed with the subsets of [d] = {1, 2, . . . , d} so that BI ∩BJ = BI∩J and
BI ∪BJ = BI∪J hold for any I, J ⊆ [d]. If F does not contain any subfamily forming
a Boolean algebra of dimension d, then it is called Bd-free, or we say that F avoids

any Boolean algebra of dimension d. A result by Gunderson, Rödl, and Sidorenko [4]
states that f(2[n], Bd-free) = Θ(2n/n2−d

). In Section 2, we prove the aforementioned
conjecture by Erdős and Shelah in the following more general form.

Theorem 1.1. For any integer d, d ≥ 2, there exist constants cd, c
′
d > 0, and expo-

nents

ed :=
2d − ⌈log2(d + 2)⌉

2d − 1
, e′d :=

2d − 2

2d − 1

such that

cdm
ed ≤ f(m,Bd-free) ≤ c′dm

e′
d .

In particular,

(3 · 2−7/3 + o(1))m2/3 ≤ f(m,B2-free) ≤
3

2
m2/3. (2)

In Section 4 we consider a-union free families. We generalize the construction
giving (1) and prove the following
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Theorem 1.2. For any integer a, a ≥ 2,

√
2m − 1

2
≤ f(m, a-union free) ≤ 4a + 4a1/4

√
m. (3)

Since the first version of this manuscript, Fox, Lee, and Sudakov [3] verified the
present authors’ conjecture (see later as Problem 5) and proved a matching lower
bound showing that f(m, a-union free) ≥ max{a, 1

3
4
√

a
√

m)}.

2 Subfamilies avoiding Boolean algebras of dimen-

sion d

In this section we prove the lower bounds in Theorem 1.1 by a probabilistic argument
applying the first moment method.

Suppose that B = {BI : I ⊆ [d]} is forming a Boolean algebra of dimension d.
Thus we have nonempty, pairwise disjoint sets, A0, A1, . . . , Ad, called atoms, such that
BI = A0∪{Ai : i ∈ I}. A subfamily C ⊆ B determines the Boolean algebra B if every
member of B can be obtained as a Boolean expression (using unions, intersections,
differences, but not complements) of some sets of C. Obviously, the d sets of the form
{A0 ∪ Ai : i ∈ [d]} determine B. Much more is true.

Lemma 2.1. Suppose that the sets of B are forming a Boolean algebra of dimension

d. Then there exists a subfamily C ⊆ B of size ⌈log2(d + 2)⌉ and determining B.

Moreover, there is no subfamily of smaller size with the same property.

Proof. Let k := ⌈log2(d + 2)⌉. We define an appropriate C of size k by considering
a standard construction used for non-adaptive binary search. Namely, write each
integer i ∈ [d] in base 2, i =

∑

1≤j≤k εi,j2
j−1 and define Cj = A0 ∪ {Ai : εi,j = 1},

j = 1, 2, . . . , k.
On the other hand, any C determines at most 2|C|− 1 nonempty atoms, we obtain

2|C| − 1 ≥ d + 1.

Corollary 2.2. Given any family F = {F1, F2, . . . , Fm} of m sets, F contains at

most
(

m
⌈log(d+2)⌉

)

subfamilies forming a Boolean algebra of dimension d.

Lemma 2.1 gives the right order of magnitude on the number of possible subfam-
ilies forming a Boolean algebra of dimension d contained in a family of m sets, as
shown by the family F = 2[n], where m = 2n.

Proof of the lower bound in Theorem 1.1. Let F = {F1, F2, . . . , Fm} be any family
of m sets. Let us consider a random subfamily F ′, that is, we select every set in F
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independently with probability p. Let X be the random variable denoting the number
of sets in F ′, and let Y be the random variable denoting the number of subfamilies
in F ′ forming a Boolean algebra of dimension d. By Corollary 2.2,

E(X − Y ) ≥ mp − p2d

(

m

⌈log2(d + 2)⌉

)

.

If we remove a set from each subfamily in F ′ forming a Boolean algebra of dimension
d, then we obtain a Bd-free subfamily F ′′ of size at least X−Y . Substituting p = med

where ed = ⌈log(d+2)⌉−1
2d−1

yields the lower bound. To get a better constant in the case

d = 2, put p = 2−1/3m−1/3.

One might try to improve the constant of the lower bound by improving Lemma 2.1
for families without large chains and antichains. However, the construction of Erdős
and Shelah shows, one cannot hope for anything better than (1

2
+ o(1))

(

m
2

)

, which
would improve the constant of the lower bound in (2) only to 3/4.

3 Upper bound using Turán theory

In this section we prove the upper bounds in Theorem 1.1 by generalizing the ideas
of Erdős and Shelah [2].

Let K(a1, . . . , ad) denote the complete, d-partite hypergraph with parts of sizes
a1, . . . , ad, i.e., V (K) := X1∪· · ·∪Xd where X1, . . . , Xd are pairwise disjoint sets with
|Xi| = ai, and E(K) := {E : |E| = d, |Xi ∩ E| = 1 for all i ∈ [d]}. For short we use

K(k)
d for K(k, k2, . . . , k2d−1

) and Kd∗2 for K(2, . . . , 2). The (generalized) Turán number

of the d-uniform hypergraph H with respect to the other hypergraph G, denoted by
ex(G,H), is the size of the largest H-free subhypergraph of G.

Theorem 3.1. For k, d ≥ 2, ex(K(k)
d , Kd∗2) <

(

2 − 1
2d−1

)

k2d−2.

Proof. We proceed by induction on d. Let d = 2, and let H be a K2,2-free subgraph of
Kk,k2 . Let v1, v2, . . . , vk2 be the vertices of the larger part of Kk,k2 , and di := degH(vi).
Each pair of vertices in the smaller part of Kk,k2 has at most one common neighbor
in H. Therefore,

∑
(

di

2

)

≤
(

k
2

)

. It yields

|E(H)| =
k2

∑

i=1

di ≤
k2

∑

i=1

((

di

2

)

+ 1

)

≤
(

k

2

)

+ k2.

Fix d, d > 2, and a Kd∗2-free subhypergraph H of K(k)
d . Let vi 1 ≤ i ≤ k2d−1

be the

vertices of the largest part of K(k)
d , and di := degH(vi). Let Hi be the (d− 1)-uniform
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(d − 1)-partite hypergraph, which we get by taking the set of edges of H containing
vi and deleting vi from all of them. We have |Hi| = di. The hypergraph Hi contains

at least di − ex(K(k)
d−1, K(d−1)∗2) copies of K(d−1)∗2. Since H is Kd∗2-free, each copy of

K(d−1)∗2 belongs to no more than one of the hypergraphs H1,H2, . . . ,Hk2d−1 . This
implies

k2
d−1

∑

i=1

[

di −
(

2 − 1

2d−2

)

k2d−1−2

]

≤
(

k

2

)(

k2

2

)

. . .

(

k2d−2

2

)

<
k2(2d−1−1)

2d−1
,

and the claim follows by rearranging the inequality.

Proof of the upper bound in Theorem 1.1. For m = k2d−1 we define a family F of
size m such that every subfamily F ′ avoiding Bd has size at most 2k2d−2. Then
f(m,Bd-free) ≤ O(me′

d) follows for all m by the monotonicity of f .
Let F be a product of d chains, the ith of which has size k2i−1

, i.e., for 1 ≤ i ≤
d, 1 ≤ j ≤ k2i−1

, let Si
j be sets satisfying

• |Si
j| = j, Si

j1
⊂ Si

j2
if j1 ≤ j2,

• Si
k2i−1 ∩ Sj

k2j−1 = ∅ if i 6= j, and

• F := {S1
j1
∪ S2

j2
∪ · · · ∪ Sd

jd
: 1 ≤ i ≤ d, 1 ≤ ji ≤ k2i−1}.

Each set in F corresponds to a hyperedge in K(k)
d , and each copy of Bd in F

corresponds to a copy of Kd∗2 in K(k)
d . The Bd-free subfamilies of F correspond to

Kd∗2-free subhypergraphs of K(k)
d . The bound in Theorem 3.1 on the size of a Kd∗2-free

subfamily completes the proof.

4 Union-free subfamilies

Proof of Theorem 1.2. The proof of our lower bound is based on Kleitman [6], the
proof by Erdős and Shelah [2] does not work in the general a-union free setting.

Let F be an arbitrary family of size m and let ℓ be the size of a longest chain in
it. Split F according the rank of the sets, F = ∪1≤k≤ℓFk. Each Fk together with a
chain of size k with a top member from Fk form an a-union free subfamily implying
f(F , a-union free) ≥ |Fk| + k − 1 for all k. Adding up we have ℓ × f ≥ m +

(

ℓ
2

)

implying f(F , a-union free) ≥ |F|/ℓ + (ℓ − 1)/2. Since the lower bound by Fox, Lee,
and Sudakov [3] supersedes ours, we omit the details.

For the proof of the upper bound (3), first we consider the family FES(k) of size k2,
what Erdős and Shelah [2] used to obtain the upper bound (1) on f(k2, 2-union free).
The family FES is a product of two vertex disjoint chains of lengths k, that is, given
the chains ∅ 6= A1 ⊂ A2 ⊂ · · · ⊂ Ak and ∅ 6= B1 ⊂ B2 ⊂ · · · ⊂ Bk with Ak ∩ Bk = ∅
we define FES(k) := {Ai ∪ Bj : 1 ≤ i, j ≤ k}. We have |FES| = k2.
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Lemma 4.1. If G is an a-union free subfamily of FES(k), then

|G| ≤ 2(⌈
√

a + 1⌉ − 1)k.

Proof. Associate a point set P of the 2-dimensional grid to the family G as P :=
{(i, j) : when Ai ∪ Bj ∈ G}. The rectangle R(i, j) is defined as R(i, j) := {(x, y) :
1 ≤ x ≤ i and 1 ≤ y ≤ j}. The set Ai ∪ Bj is a union of a distinct members of G
if and only if the rectangle R = R(i, j) contains at least a distinct points apart from
(i, j) and at least one of these lies on the top boundary of R, i.e., on the segment
[(1, j), (i, j)] and at least one on the rightmost column [(i, 1), (i, j)].

Construct P ′ ⊆ P by deleting the bottom ⌈
√

a + 1⌉ − 1 elements of P in each
column of the grid. Suppose that P ′ has a row with at least ⌈

√
a + 1⌉ elements, and

let (i, j) be the rightmost point. Then P has at least ⌈
√

a + 1⌉2 ≥ a + 1 points in
the rectangle R(i, j), also points on the top and the right most sides, a contradiction.
Therefore, P has at most 2(⌈

√
a + 1⌉ − 1)k elements.

Now we are ready to define a family F of size qk2, such that

f(F , a-union free) < a − 2 + 2k(⌈
√

a + 1⌉ − 1) + (2k − 1)(q − 1). (4)

The family F consists of q levels, each of them isomorphic to FES(k). For all 1 ≤ ℓ ≤
q, let ∅ 6= Aℓ

1 ⊂ Aℓ
2 ⊂ · · · ⊂ Aℓ

k and ∅ 6= Bℓ
1 ⊂ Bℓ

2 ⊂ · · · ⊂ Bℓ
k be chains of length k

such that the 2q top sets Aℓ
k and Bℓ′

k are pairwise disjoint. Let us define

Fℓ =

{

ℓ−1
⋃

s=1

(As
k ∪ Bs

k) ∪ Aℓ
i ∪ Bℓ

j : 1 ≤ i, j ≤ k

}

and F :=

q
⋃

ℓ=1

Fℓ.

Observe that |F| = m = qk2 and indeed each Fℓ is isomorphic to FES. Note that
if ℓ < ℓ′ and F ∈ Fℓ, F

′ ∈ Fℓ′ then F ⊂ F ′. Let G be an a-union free subfamily of F
and let us write Gℓ = G ∩Fℓ. Let t be the smallest integer with

∑t
ℓ=1 |Gℓ| ≥ a− 2. If

there exists no such t, then |G| < a − 2, and we are done. We have:
• ∑t−1

ℓ=1 |Gℓ| < a − 2, by the definition of t,
• |Gt| ≤ 2(⌈

√
a + 1⌉ − 1)k by Lemma 4.1 since Ft is isomorphic to FES,

• the family Gℓ is 2-union free for each ℓ with t < ℓ ≤ k.
To see the latest statement, suppose, on the contrary, that G′ ∪ G′′ = G for

some G,G′, G′′ ∈ Gℓ. Pick any a − 2 sets G1, G2, . . . , Ga−2 from ∪t
s=1Gs, and we have

G = G′ ∪ G′′ ∪ G1 ∪ · · · ∪ Ga−2, contradicting G being a-union free. Therefore |Gℓ| ≤
2k − 1 by a slight strenghtening of the result of Erdős and Shelah (see [3]). Putting
these observations together, using |G| =

∑ |Gℓ| and t ≥ 1, we obtain (4). Finally,
substituting q = ⌈

√
a + 1⌉ and k = ⌈

√

m/q⌉ into (4) we have f(m, a-union free) ≤
a + (4k − 1)(2q − 1). A little calculation yields (3).
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5 Problems, concluding remarks

Conjecture 5.1. If m = 2n, then the family consisting of m sets that contains the

highest number of subfamilies forming a Boolean algebra of dimension d is 2[n].

In Theorem 3.1 we have considered d-partite hypergraphs with very uneven part
sizes. There is a number of results of this type, see, e.g., Győri [5]. Also the sizes
grow exponentially, one can easily generalize it for other sequences.

Concerning a-union free families we had the modest conjecture

lim
a→∞

(

lim inf
m→∞

f(m, a-union free)√
m

)

→ ∞ (5)

Knowing the results of Fox, Lee, and Sudakov [3] it is natural to ask

Problem 5.2. Given a, what is the limit

lim
m→∞

f(m, a-union free)

a1/4
√

m
?

If it exists, it is between 1/3 and 4.
One can improve the coefficient 4 of the factor a1/4 in Theorem 1.2 if in Section 4

we use different sizes. Namely we construct F by using Fℓ = FES(kℓ) where kℓ =

k
(

b−1
b−2

)2(ℓ−1)
with b = ⌈

√
a + 1⌉. If q/b tends to infinity, we obtain

f(m, a-union free) ≤
√

8a1/4
√

m + O(a).

A family F is (a, b)-union free if there are no distinct sets F1, F2 . . . , Fa+b satisfying
F1∪F2∪· · ·∪Fa = Fa+1∪· · ·∪Fa+b. This is another frequently investigated property.
However f(m, (a, b)-free) = a+b−1 if a, b ≥ 2, as it is shown by the family consisting
of all (m − 1)-subsets of an m-set.

Many more problems remained open.
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2010, Gyöngyöstarján, Hungary, where most of the research presented in this paper
was done as a group work.

7



References
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