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Epsilon Nets and
Tlansversals of Hypergraphs

For historical reasons, a finite set-system is often called a hypergraph. More
prccisely, ^ htperqraph H consists of a finite set y(il) of terticer (points) and
a family E(fl) of subsets of y(H). The elements of E(fl) are usually called
hyperedges (or, ft short, edgex). If the hyperedges of I' are r-element sets, then
l, is said to be an /-rnrlorm hlperyraph. Using this terminology, a graph is a
two-uniform hypergraph. In Chapter l0 we have extended some graph-theoretic
results to r-uniform hypergraphs (cf. Theorems l0.ll and 10.12).

The concept of hypergraphs is a very general one, so it is not surprising
that hypergraph theory has a large scale of applications in various lields of
mathematics, including geometry. Civ€n a hypergraph l', a subset I g y(fl) is
called a tra s|e$al of H if ?n E is nonempty for every edge E € E(H). Many
extremal problems from combinatorics and geometry can be reformulated as
queslions of the following type: What is the size of a smallesl lransversal in a
given hypergraph H? This problem, in general, is known to be computationally
intractable (cf. Carey and Johnson, 1979). However, under certain specific
conditions on ll, one can guarantee the existence of a relatively small
transversal. The present chapter fbcuses on resulh of this kind. In particular,
we shall see how a powerful probabilistic idea of Vapnik and chervonenkis
can be applied to obtain a number of interesting geometric and algorithmic
results,

TRANSVERSALS AND FRACTIONAL TRANSVERSALS

t€t fl be a hypergraph with vercx set y(It) and edge set,.(H). Let r(1{) denote
the size of a smallest transversal of fl, that is, the smallest number 7 such that
one can choose 

" 
vertices with the propeny that any edge ofli contains at least

one ofthem. 7(I1) is usually called the rrdnrlendl number (ot the wrlet-cover
umber) of H.

The packing number (ot matchinq number\ of ahypergraph l/ is defined as
the largest number / = /(li) such that fl has , pairwise disjoint hyperedges.
Obviously, /(l1) < r(a) for any hypergraph H. Typically, 7(li) is strictly larger
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Epsilon Neti and TllNversrls of Hyperyraphs

than /(fl). In fact, 7(H) cannot even be bounded by any function of I,(H) (see
Exercise 15.3).

Let lll" denote the set ofall nonnegative real numbers. l-et us call a function
l: y(A) -+ lR' a fractioaal transyersal of H if

) (.r) > | lbr everv hvperedse f € E(H).

The minimum of >€v(fl) l(r) over all fractional transversals of ft is called thr
tactional transyersal number of H , and is denoted by r* (fl). One can associate
with each transversal ? of ll a function t.: y(H) -+ ll{+ defined as

",',- {l l[ili:
Since this function satisnes (15.1) and L. v(ol7(,r) = lll, we have thar
t- (H\ <r(H).

Similarly, a fractional pactrnS of Il is a nonnegative function p: E(H) -+ llt'
such that
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The maximum of >.e.(fi )p(E) over all fractional packings of 11 is called the
fuactiokol packing nunber of 11, and is denoted by /"(H). As before, we hale
v'(H) > v(H ).

It is easy to deduce directly from the definition that /'(fl) < i'(H) (see
Exercise l5.l). In fact, these two numbers are always equal to each other.
Moreover, the following is true.

Th€orem 15.1. For e,rery htpergraph H,

v(H) < Y'(H, = r' (H) < 'r(H),

and the value of r'(H\ = r'(H) can be determined by linear pmgrammiftg

Proof, Let,ri (1 < i < r,) and tJ (1 <j < ,.) be the vertices and rhe edges
of 11, respectively. Let A = (aij\ be the incidence mattix of H, i.e.,

p@\<l for every vertex r c Y(i1).

|  1 i f  r ieEj,
",i 

= 
lo r ,,erj.

Let A7 denote the transpose of A, and let 1,, denote the matrix consisiing of one
column of length r, all of whose entries are 1's. civen a function r: y(H) ) li
(^nd p: E(H, + lli), let I (rcsp. p) denote a matrix consisting of one column
whose ith entry is r(ri) (resp. p(E-)).
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and T.amvebrls of flJp€rgnphs

by any function of /(fl) (see

rmbers. Let us call a function

I}msv€ruols and lrrctiond T.lDsveBlls

Observe that t is a fractional transversal of 1{ if and only if

A7 l>1 , ,  and  !>0 .

Similarly, p is a fracrional packing of 11 if and only if

Ap <1,, ^nd p>O,

Thus,

r'(I1) = min {llllArl > 1,,, ! > 0},

v'@)=n x {rIp_lAp < thp>O}.

These two linear programming problems are dual to each other, so it follows
immediately from the duality theorem of linear prograrnming that their
solutions, r'(f4 and r'(tl), are equal (see, e.9., Papadimitriou and Steiglitz,
1982; Chvital, 1983; and Crijtschel et al., 1987). n

In general, r'(l/) can be much smaller than 7(fl) (see Exercise 15.3). The
following theorem of Lov6sz (1975) shows lhat lhis is ooi the case when every
point of lJ belongs to relatively few hyperedg€s,

Theorem 15,2 (InvAsz), kt H be a hypergraph whose erery ve ex is
conlained in at fiost D edges. Then

7'(lt) < r(H) < (ln D+ I)r'(fl).

Proof. We have to prove only the second inequality. Let t: y(fl) + R+ be
a fractional transversal of fl with L€vrr) (.r) = r'(fi).

We arc going to select a set of venices.rt,xz,... by a greedy algoithm.
Let xr b€ any ve(ex of H whose degree (i.e., the number of edges containing
it) is maximal, Let Dt denote the degree ofxr in lt. Set llr = FI .rt, thal
is, the hypergraph obtained from H by deleting th€ vertex.rt and all €dges
containing.rt. I f-r1,.. . , i i  e y(A) have alr€ady been selected, then let I lr  =
H xt - t2 - ... - ri. lf Hi has no edges, we stop. Otherwis€, let ri*r be a
vertex of l/i whose degree Dr*t is maximal, and so on. Clearly,
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By the properties of ,,

lE(H )l  - lE(H i.  t) l= Di.t . (15.2\
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Ee ElHt) Ee gHl

=I<'rI
r<Y lH l  Ee E(Hl

E t r

< ) (')D,-'

3 Di+tt'(Hr.

Assume now that our proccdure terminaies in s steps; i.e., t , is empty. Then.
of course, r(H) < r. Put II0 = H. By (15.2), we h.ve

,= l, = S lE(t/)l- lE(I1ar)l
- / L / n

_ tE#r) l  , \ - , . , - , , r  r  _r \= ___F_ + ).p\nt1l lot ' !u'  ' \  D*r Dt l '

Hence, using the inequality lE(A)l < Di+ri"(fl) (0 < j < s) and the fact D" > l.
we obtain

" <"1a1*! a,-,"'{r,(E;i - 
;)

=, '1sy11 *  !  D,  a* '  1' \a+D,J

.r,u,('-;-=t., +)
=",r"r(r._j,f;
< r'(H) (l + ln Dr).

lE(ri)l= > r< >
I

Thus,

as desired.

7(f l )  <s <7'(g)( l  + ln Dr),
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Vapnil-Che.voneDl* DimeBlon

VAPNIK-CIIERVONENKTS DIMENSION
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inates in r stepsi i.e., iI* is empty. Then,
i .2),  we have

,, ) l lE(H,+r)l
D*t

,  I  I \' '  \  o*,='  a)

.r7 (H) (0 < i < s) and the fact Dr > I,

.  I  t \
; rn t \  

^  
,  

g )

, ,  D,+r \
DI

tlr
t \
r )

Suppose that for a public opinion polt we want to selecl a small number of
individuals representing all major sections of the society. First, we have to
choose cerlain categories of fEople and then decide which of these groups
arc considered "importaot." According to our democratic principles, we sh;lt
measure the "importance" of a group by its size (in the percentage of the
population). Then the important groups will define a hypergraph fl with the
propeny that lEl > €ly(fl)l for every edg€ E € E(li), where € is some flxed
conslant (0 < € < l). The smallest number of people representing all important
groups is r(fl).

Clearly, th€ function t(xt = l/(elv(H)l'r, for att, € y(H), is a fractional
traNversal of F/ with >.vott(x) = l/e. Hence, r'(fl) < l/e, and Theorcm
15,2 imDlies that

r1a;<11tna+11,

where, is the maximum degree of the vertices of It. This bound is extremely
poor if D is larye.

In their seminal paper, Vapnik and Chervonenkis (1971) pointed out that if
It satisnes certain oatural conditions, the above upper bound can be replaced
by a function depending only on €. To specify these conditions, we need_ some
pfepamtron.

Defnitiarn 15.3. Let H = (V(H),E(H, denote a hyp€rgraph. A subset
4 E y(tf) is caffed shattererl if for every B C ,4 there exists an E € E(Il)
such that En A = 8. Th. Vapnik-Chenonenkis dintension (or VC dime sion\
of H is the cadinalhy of rhe largesr shattered subser of V(H). Il will be denorcd
by vc-dim(Ii).

'The following theorcm was proved independently by Shelah (19?2), Sauer
(1972), and Vapnik and Ch€rvonenkis 0971).

Theorem 15.4. Let H be a hyperqtupll with n yertice! and Vc-dimension d.
The

l r tsr ls  /  1\  + i /1\  +, , r ,  , , ,  * (a l

and this bound ca not be improved.

First Proof, The assertion is tdvial ifd = 0 or', < d. Assume that we have
akeady proved il for every hypergraph F wilh Vc-dim (H-r < d. and lbr every
hypergraph H wirh vC-a;mrlir -la anO lytntl< z.

Given a hypergraph H with ', vertices and Vc-dimension d, let us define two

(r s.3)

) ( l + l n D r ) ,
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other hyperSraphs, llr and H2, as fbllows. Let V(H t) = V(H) = V(H) Irl
for some nxed .r e Y(Ii), and set

E(Ht)= lE UllE e E(H\\,
E (H)=  lE  e  E (H) l r  d  E  and  EU h le  E (H) ) .

Obviously, Vc-dim(Hr)<d and Vc-dim(dz) <l l .
On the olher hand. by rhe Induct,on hyporhesis.

I;psilon Nc(g and Tta.sv€rsals ol Hypelgraphi

i f f , r x .
i f  E, b x,.

> Z;=.1;l  lhen lhe rowr or A .,r. '
thus there existx a nonzero funclio:

for every Xr.

lE(H)l = | E(H t) l  + lE(H r)

st/" . ' \* ! /" . ' \
! , r \ t t 4 \ t l

=t/'r\
The tighlness of tni* mun,t follows from the lrcr that il ,(H)

{U c Y I lUl < /}, then vc-dim (rr) = /.

We also include a slightly more complicaled proof due to Frankl and P!!h
(1983), becNsc it is a good illustration of the so-c led line$ altehru netht\;
(see, e.9., Bab.i And Frankl, 1988).

Second Proof. Let E(fl) = {E,l I < i <,r}, and let Xr. | < j < >11,,(1 t. b"

a list of all subsets of y(lt) of size ar most d. Define an ,, x >'/.{, ('jJ marn\
6 = (a,) b]

I l, r=10

Suppose, for contradiction, that ,i
Iinearly dependent over the reals;
/: E(fl) ) .ll such that

) rtar=o

LEt A e V(H) be a ,ninirncl subset for which

l . / ta, t="+0.

(Sets A with nonzero sums cenainly exist, for we get a nonzero sum fbr xnl
ma\imal element A of the family {A e 6(A)l/(4) I 0}.) Obviously, lAl > /+ l
Given any B g A, let
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r and Transvereds of Hyperyraphs

v (H)=v(H)=V(H) - I ' )

we get a nonzero sum for any
l)  /  0).)  Obviously,  lAl  > d+ 1.

vlpnik-CheNonenkis Dimosion

F(B) = t /(8,).L / "
E i a A - B

Thus, F(A) = d, and setting I = A - {r} lor any fi xed d e A,

r , p \ -  S  r i r . ,  S  r , r \

Ei2B E iaA

=0 -a= -a

In general, if I is any (lAl- t)-element subs€t of A (0 <,t < lA ), rhen

F (B )= ( - t ) t d+0 .

This yields, in particular, that there exists at least one hypercdge Ei with EinA =
B. Thus, A is shatter€d, contradicting our assumption lhat Vc-dim(fl) = d. O

Vapnik and Chervonenkis (1971) discovered an ingenious probabilistic
(counting) argument based on the above r€sult, which leads to a substantial
improvement of the bound (15.3), They showed (in a somewhat different
setting) that there exists a function /(d,€) such that the transversal number
of every hypergmph 11 of Vc-dimension d, all of whose edges have at least
€ly(I/)l €lements, is at most /(d, e) (see Exercise 15.6), The ideas of Vapnik
and Chervonenkis have been adapted by Haussler and Welzl (1987) and Blumer
et al, (1989) to obtain various upper bounds od /(d,€). These results were
sharpened and gen€ralized by Koml6s, Pach, and Woeginger (1992), as follows.
Civen a finite s€t y, a function p: V + ll{+ is c lled a probability measure if

t  at.r) = l .
L . - - '

The measure of any subset X g y is defined by p(X) = >€ x t(i)

Theorem 15.5 (Komf6s et al.). Iet H be a hypergraph of Vc-dime siond,
let . > 0, and let p be a probabilil! measure on V(H) such that p(E) > E for
every E e E(H). Then r(H) < t(d,.r, wherc t(d,e) denotes the smallest positive
integer t satislti g

z!/ lr ir  1) ' ' -" ' .r_.J \ i t \ .  . r t

for some integer T > t. Conseque tly, for atry E < i, we have

(cf. Exercise 15.9).

,v t t t ! (n l+zrnrn 1*  o\
€ \  €  e  /
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Proof. Let us select with possibl€ repetition r mndom points of y(H),
where the selections are done with resp€ct to the probability measure r. We
get a rundom sample

te  l v (H)1 |  =v(H,x  xv(H) .

we say that r is a traflrveEol ot H if ewry edge E € E(l/) contains at least
one point of r, Let /(8,.r) denote the number of components of r that belonS
to E, counting with multiplicity. Thcn

Prtr is not a [ansversal of fl] = Pr[3E € E(Hrt I(E,x)=01.

Having picked the string r of length l, let us choose randomly another T I
efements from V(H\. Lgt , I IV(H\lr1 denote this new stdng, and let .
.r) e [V(,/)lr stand for the full sequence. Furth€rmore, let (z) = (ry) denote thc
multiret ofall elements occurring in z (i.e., they arc counted with multiplicilicr
but their order is irrelevant).

For any E € E(It), l(E,t) is a random variable having binomial distdbul;on.
Let mE be the median of I(E,t ,

PrII(E,9 > '/l.|l < + <tulI(E,y, > nd.

The following inequality is an immediate cons€quence of the independencc
of .t and ,.

Pr [3 E € E(r4 r 1(E, i) = 0]

Pr lf E € E(It) : /(8,.t) = 0 and /(E,)) > t'tEl

Emind) 
h [/(8,]) > l,rEl

< 2PII]E e E(Hr: I(E,,

0 and I(E, )) > |'lE1.
*t

For a fixed t € E(H), the conditional probability for given (z) = (xy)
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)ssible repetition / random points of y(I1),
lh rcspect to the probability measurc p. We

=  V ( H ) x  , , . x  V ( H ) .--_/-

f/ if every edge E e t(I/) conlains at least
lhe number of cohponents ofr that belong

' f  r/ l= Prlf E€ E(H): r(E,x)=Ol.

:rh /, let us choose randomly another I _ t
atll '_denote this new string, and let z =
uence. r.urlhermore, Iet (z) = (.x)) denot€ the
n : (r.e., mey arc count€d with muhiplicities

ndom variable having binomial distribution.

< I < Pr[/(8,]) > rrrl.

rmediate consequence of the independence

0 j

/r  E, r)  = 0 and,t tE. y) > rr !  I

FiiEy)),.t-

v.pn|t{tenondlir DiDeBioD

Pr t 1(E r) = 0 and /(t' )) > 'rE l(z)l
(!: ' \

= xlt\E,z) > nElYgL" l  r  \
\r(E,z) I

<x t1(8,.) >.ut (r - +)""'

<xu<r,zt>nd(t - 
l)'' '.

(Here x [A] is the characteristic function ofA, that is, x [A] = I ifA is true, and
0 otherwise.) J-,r

By Theorem I5.4. a 6xed mult iset (z) has at most ).{ . I  dif ferent
intersections wirh rh€ €dges o[ 'y'. Thus, 

-\ I I

Prl lE e E(H\t I(E,r)= 0 and 1(8,)) > n,I (.) l

'ritf' +r-'
where ,n = minE€ r(r) mr, Using the known fact that the median of a binomial
distribution is within I of the mean,

n > (T- t)smind)p(E)- I > (7- 0€- L

Hence, we obtain

tl

pr t f  E€ E(H) : r (E. r )  =  01 < z1 f  f  r ) t / r  '  1  1 '7  
' t '  t .

' : l  r  J /  \ '  1 /

If the last expression is less than l, then t is a transversal of ly', with positive
probability. This proves the first statement of the theorem. Choosing

1=l  4f6 1*  2tn6 116)  l ,
L € \  e  e  / - )

" - l  
€ ; l

'  L . i . l '

we get after some calculations that

'i11;1' - 1;'' '. '. ',
tr

4- l

I pn,bability for given (2) = (ry)
provided that e< j.
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The abov€ theorem is valid for any probability measure p dcfined on rhe
vertex set of A. In particular. one can choose p to be constanr; that ir, p(_r) =
l/lv(H)l fot evety:r € y(tt). We can deduce anorher inrere$ring Lesult from
Theor€m 15.5 by applying ir to the measure p,(x) = tlxr/;,@), wherc
t y(11) ) llt" is I fiactional kansversal ofH wittr l,.",,r,r1xj _ r-1f;.
Observe that in this case

? _ -  s r  ,p \ r t =  
Z t t  t ^ l

=s ( - t )  >  I
A' r'(H) - r"(H'

h:' l , i )  r:r e"v:iy [ € E{Hr. Thur. choo}ing c t/ ,  {H) i  Thrt,rem t5.5. \rc
oDri l ,n thc l (J l lowtng.

Corollafy 15.6 (Komf6s er ̂ 1.). kt H be a y hlperynph ofVc-dn,k,tsiot d.

(i, If ewtl ctlsc of H hat at tcast .lv(Htl etentcnts ft)t rionc E s \, thtn

^h  <  ! (h
€ \

i i ,  Ar'@)>2. n ,l

1*zrnrnl*g.

r(H) < dr ' lH)(tn r ' (H) + 2 tn ln 7'(H) + 6).

. 
Next we show rhat lbr./ > 2, the bound given in Theorem 15.5 is chse to

Derng opttmal.

Theorem l5.T r  Kumlcj \  et  l i . t .  Cive nry Mtnr.  t  t t t ,erJZ2n , t t ryrL,t !
1< 2/U + 2L rh.rc ct(i\ts .t ' ottsh u t.t t > 0 u irh rhe l,,lk\ ins U4,L.r!\,

- 
rrl n,,\ € s c,l r. nr,., ( ttl coutrur! d hrp, rqmt,tt H il Vc-lruk u:kat ,t, tl

t ' l  [ th, . \c .Juc\ lh^e nt k.N r lvtHt l  p, , i  ts.  nn,t

. tH)> ( . t  -  2+"i+h

Pmof. A8rin, we use the probabilislic rnerhod. L€l.y, be a lixed consranl.
1 , . <  1  <  2 / t J  + 2 t .  C i v e n  a  s u f f i c i e n l l y  s m a l l  c .  t e t , l  t K l a j l n { t / r r .  w h e r . .
x r \ : r  conshnt dependinS only on d. l .  and ),  {bur not on aJ, which wrl l  h.
specified larer. Funhermore. ler

t = (d  2+ . i Lh
( ; ) '

We assume that ,1. r, I are integers, disregarding all roundol-f eooa.
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' fiy probability measure p defined on the
can chooAe p to be constan( that is, r.(J) :
can deduce anotber interesting resuh frorn
tie measure p'(tt = t(x)/r.(H), wherc

rsversal of  H with >.€ vU|r{x,  = ,+{ l / ) .

, u'lx)

. r ( r )> l
' l  t ' tHt - 

f  (H)

hoosing € = lh'(fl) in Theorem 15.5, we

et H be any lrypergmph of Vc-dimension d ,

I EIV(H)I elements fo\one e< !, then

I l- + 2 l n l n  - + 6 ) .

'(H) 
+ 2hln r'(H) + 6).

bound given in Theorem I5.5 is close to

?n any natural number d 2 2 and any real
.,1}.>0 tvith the folbwing prcpen ., 
;.il::,:ffu 

, 'f ,r.dimension d. a,

: *1 ;11n  l .
€€

listic method. Let 7, be a fixed constant.
l \  small €. ter ,  = ((/€)tn(t/€r, where
t. and ?' fbut nor on €), which will he

t= (d -2+ . y t ! h ! .' €  a

,regardlng all roLudoff errors.

V.Dnik-Chenondlh Dine$loD

t-et y be a fixed n-element set. Construct a hypergraph I{ on the vertex set
y by randomly sel€cting some r-element subsets of y, where each r-tuple is
chosen independently with probability p. we arc going to show that with high
probability

(t) vc-din (It) s d, and

(ii) '(it) > t.

PrIVC-dim(H) > dl

< (, 1, ) prla nrea ta + l)-element subset,4 c y is shattered by l / l
\ d + l /

=f  ,1 , )  fJ  pr t3Ee E(H)tE.rA=B]
AcA

= (,1 , ) II fr - (r -Pfrrlsl))

J +  | , ' . , - , '  .  .  )= ( d 
- 

, ) I I ( ' - ( ' - p)' . - ' ' ) 
'

' j = o

=(,1' ) f i f  '  (r -p)(. '" ' ' l ' ))( '11")

' i ' )
=f ' ' ' )  r I ( t - ( r  Py'" ] ;1 ' l ' ) ) r

\ ( + r /  r r \

. t  ,  \ I i t , r l r -d  r  \ { i l ' )- \d+ l /  r+ \ ' \ r -d  l+ i /

t  n  \  t  n  -  d  -  l  \  t  ,  n  -  d  -  l  ,  r '  l

[ a *  r jP f '  d - t ) \P \  ,  d  )

< , J+  r , / , I  1  r  1 t ' t 1 , 1n1  1  r  l J i r - '- '  ' \ r ) \ n l  \ ' \ ' / \ l r /  /

?  l \ J + l ^  . ,  ^  ,
=  ( r (  I n : J  e !  ( t+ .n ,

which tends to 0 as t ) 0. This prov€s (i).
Next we show that (ii) also holds with high probability.
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P, h(It) < ' l  = (n ) 
(r - pl"; ')

'(l)*'[-(",.')]
.(#)'*o[ ,(:)(' ;j- )']

F r o m  t h i s ,  u s i n g  t h e  i n e q u a l i t y  I  . r l . r > " t " f o r b > 6 , 0 < r < l / a .  l / h ,
we obtain the upper bound

(+)=
which tends to 0 if

*o [-r(',1) " 
^"''- '']

j f  ) ' . , ,n r  e ' |  r  ) "^ i ' : ' , r / r^

-  t l  -  1 '+  K (d  2+ . i / lK  d )< -1 ,

The condition r/ > 2 in Theorem 15.7 is not merely a technical assumption.
In frct, it is not hard lo oharacterize allfnite hypergraphs H with VC-dimension
I,  and one can check that.r(H) <f l /e1 I ,  provided rhar cvery edge ofH ht ls
nt lerst eLv(/t)l points fbr some 0 < € < I (see Exercise 15.8).

The lollowing simple asse(ion will help us in deciding whether a given
hypergraph hos low VC-dimension.

L€mma 15.8, Llt H be a hfpcrefttph oJ Vcaln ensio d, d d k!
p(Et, . . . ,Er) be a sct- thcorct ic funnla dk rat i thles (uxinl  U.n, ) .  t fcre^.
ulge E of a hjpergnrylt H' can Irc ettprcrsed as

E' = p(Et, . . ., Er') for suitabb Et e E(H),

then

Vc-dim(fl') < 2./klog (2./l).

Prool Let A be a d'-element subset of V(H') = V(H), which is shatrered
in A'. By Theore'n 15.4,

r{EnArEer,",rr. i(1')

Using the a\.umpron on H'.  lh i \  y ields
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2'1' = t{E: n At E ea",rrr. 1 i(11 )-

Comparing the two sides of this inequality, w€ obiBjn that d < 2dkloEQdk),
as requircd. tr

Ding, Seymour, and winkler (1994) have introduced anolher paometer of
a hypergraph, closely rclated to its Vc-dimension. fiey defin€d I(H) as the
largest integer I such lhat one can choose t edges Et,82,..., Er € E(It) with
th€ prop€rty that for any I < i <j < I, lhere is a vertex it e E; O E; that
does not belong !o any other E* (s I ij), tt is ersy to se€ that Vc-dim(fl) <

( ""', ) for every nypergraph H. Combining Corollary 15.6 with Ramsey s

lheor€m (Th€orem 9.13), one can establish the following result.

Thmrem 15,9 (Ding et al.,1994), Fot anf hyperyraph H,

'(n) < 6r1n)(r(rr) + v(r))/ \(d.).11(1t) \'.\  x( f i )  ) '

At the beginning ofthis chapter we pointed out thal in g€neral it is impossible
to bound r from above by any function of ',. Gyidis and Lehel (1983, 1985)
ioitiated the investigation of certain classes of hypergraphs for which such
functions exist. Theorem 15.9 provides a sufficient condition for a family of
hyp€rgraphs to have this property. Il implies that if there exists a constant K
such that \(E) < ,< for all memb€rs of a family, then t can be bolrnded from
above by a polynomial of /. For various geometric cons€quences of this fact,
see Pach ( 1995).

RANGE SPACES AND e"NETS

Haussler and Welzl (1987) werc the 6rct to recognize the relevance of the
above machinery to g€ometric problems, and in fact they fomulated and proved
the first version of Theorem l5.5, too. It seems to capture the essence of the
so-c lled random (or probabilistic) method in a large variety of geometnc
applications. This ready-to-use kit will save us a lot of time (and space)
in situations wherc otherwise we would go through lengthy but foutine
calculations. However, the main significance of these ideas is that they shed
some light on the general transvenal probl€m. The transversal number is a
glabal para''x.etet of a set system. The results in the preceding section show
that in any mcasure space of total measure l, any system of large measurable
sets admits a relativcly small trunsversal, provided that ils rocdl behavior is nice
(i.e., its Vc-dimension is bounded).

' \,'l
t + l  )  J

>  a ,o  <x  <  l / o -  l / b ,

<  I ,

tr

/ a technical assumption.
rhs H with vc-dimension
that every edge of I/ has
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eciding whether a given

'-dimension d, and lel
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Y(H), which is shattered


