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Abstract

Applying some well known results in additive number theory,
we partially answer two geometric questions due to V. Balint et
al. and F. Hurtado. (1) Let m(n) be the largest integer m with
the property that from every set of n points in the plane one can
select m elements so that none of them is the midpoint of two
others. Tt is shown that n!=¢/Viegn < m(n) < n/log® n. (2) Let
p(n) be the smallest number of distinct midpoints of all segments
induced by n points in the plane, no 3 of which are collinear. It
is proved that lim, o pu(n)/n = oo and that u(n) < net'Viogn
Here ¢, ¢/, and ¢’ denote suitable positive constants.

1 Introduction

Many extremal problems in discrete geometry lead to questions in addi-
tive number theory [12]. This is partly due to the fact that their solutions
are known or conjectured to be lattice-like, i.e., affinely equivalent to the
integer lattice. Here we present two planar examples.

Balint et al. [1] (see also [10], p. 27.) investigated the following
question. A set of points in the plane is said to be midpoint-free if it has
no pair of elements whose midpoint also belongs to the set. Let m(n)
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denote the largest number m such that every set of n points in the plane
has a midpoint-free subset of size m. It was proved in [1] that

—14++/8n+1

[ < m(w),

and it was conjectured that the order of magnitude of this bound cannot
be improved, i.e., we have m(n) = O(y/n). However, it follows from
the existence of relatively dense sets of integers containing no 3-term
arithmetic progression that this conjecture is wrong.

Theorem 1. There are positive constants ¢, ¢’ such that

n'=eV1osm < n(n) < n/log® n.

F. Hurtado raised the following problem. For any point set P, let

M (P) denote the set of midpoints of all the (g) segments spanned by

point pairs in P. Determine y(n) = min p, |M(P)|, where the mini-
mum is taken over all sets of n points in the plane, no 3 of which are
collinear.

Hurtado and Urrutia showed that u(n) = O(n'°823) ~ O(n!5%), but
no superlinear lower bound was known. Using an idea of Behrend and
Freiman’s theory of set addition, we prove

Theorem 2. There is a positive constant ¢ such that

p(n) < nevien

Furthermore, we have lim,_,« pu(n)/n = oc.

In the next two sections, we establish Theorems 1 and 2, resp., while
in the last section some related questions are discussed.

2 Proof of Theorem 1

Consider a set, P of n points in the plane with no midpoint-free subset of
size larger than m(n). First, choose (e.g., randomly) a straight line ¢ so
that the orthogonal projection ¢ : P — / takes P into an n-element set
P’ satisfying the following condition: for any p;, p;, px € P, the midpoint
of the segment p;p; is p; if and only if ¢(p;), ¢(p;), and ¢(py) (in this
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order) form an arithmetic progression of length 3. Using simultaneous
approximation [8], for any positive integer ¢, we can replace each point
é(p;) by a rational number r;/q, such that r; = r;(¢) is an integer and

T 1
[p(pi) — E‘ < W

holds for all 1 <7 <mn.

There exists a sufficiently large ¢ satisfying the following condition:
each triple (¢(p;), ¢(p;), ¢(px)) forms an arithmetic progression (in this
order) if and only if (74, r;, ) does. Indeed, we have

(@) + d(pr) — 20(pj))g — (ri+ 1 — 2r5)] <

lqp(pi) — 7| + |qo(pr) — 6| + 2|qd(p;) — 1] < q%

n

Assuming that ¢ > 4", if ¢(p;) + ¢ (pk) — 2¢(p;) = 0 holds for some triple,
we obtain that |r;+7; —2r;| < 1 so that r;4+r;—2r; = 0 must also be true.
In the reverse direction, assume indirectly that ¢(p;) + ¢(px) — 2¢6(p;) is
not equal to zero, but r;(q) +ri(¢q) — 2r;(¢) = 0 holds for infinitely many
values of ¢. For these values, we have

4
[9(pi) + d(pr) — 26(p;)| < prEsyos

which leads to a contradiction, as ¢ tends to infinity.

Thus, we have reduced the problem to the following: determine the
largest positive integer mj4(n) such that every set of n integers has a
subset of size m4(n) which contains no arithmetic progression of length
3.

Let mg(n) denote the largest number of elements that can be chosen
from the first n positive integers without containing a 3-term arithmetic
progression. Clearly, we have mj(n) < mg(n) for every n. It was proved
by Komlds, Sulyok, and Szemerédi [11] in a more general setting that
there exists a constant ¢ > 0 such that mj(n) > e¢mg(n). Thus, Theo-
rem 2 immediately follows from well known estimates on mgs(n), due to
Behrend [2], Heath-Brown [9], and Szemerédi [14].

Note that the same argument can be applied in higher dimensions.



3 Proof of Theorem 2

First we establish the upper bound, by adapting the arguments in [5].

9d(d—2)

Assume, for the sake of simplicity, that n = [*——| for some natural
number d > 4. Consider the set L of all lattice points (z1,...,2z4) € R4
with integer coordinates 0 < ; < 2¢. The number of distinct distances
determined by L is at most d(2%)2?, because there are at most that many
numbers of the form (X0, (z; — 2$)?)Y/2, where 0 < z;,2) < 29 In
particular, there is a sphere around the origin which contains at least

‘L‘ (Qd)d 2d(d—2)
= > |
d(24)2 — d(24)? d

| =n

elements of L. Let P denote the set of these points.

Let M(P) denote the set of midpoints of all segments determined by
P. Clearly, we have |M(P)| = |P+ P|, where P+P = {pi+ps | p1,p2 €
P}. Observe that every element of P + P is a vector (z,...,14) € R4
with integer coordinates 0 < z; < 29*!, hence

IM(P)| = |P + P| < (2¢+")? < n28Viesn

Fix a 2-dimensional plane IT in RY, and for any p € P let p’ denote
the orthogonal projection of p into Il. Evidently, we can choose II so
as to meet the following two conditions: (i) the projections of no two
elements of P coincide, (ii) no 3 elements of P' are collinear. In view
of the fact that p; + ps = ps3 + ps implies |p} + p,| = |ps + p}y|, we have
that the number of distinct midpoints of all segments determined by P’
satisfies

M(P")| = |P'+ P'| < |P+ P| < n2®Vloen |

as required. This argument easily extends to the general case when n
can take any positive integer value.

We prove the second part of Theorem 2 by contradiction. Assume
that for infinitely many values of n there are n-element point sets P,, with
no 3 collinear points in the plane such that the the number of midpoints
of all segments spanned by P, satisfies |M(P,)| = |P, + P,| < Cn, for
an absolute constant C'.

We need the following well known result of Freiman [6]: For any
integer C', there exists C' with the property that any n-element set P,



in the plane with |P, + P,| < Cn can be covered by the projection of a
lattice of dimension C' and size C'n. That is,

P, C{vg+mvy+---+meve |1 <m; <n; },

for suitable vectors v; € R? and natural numbers n; satisfying Hf’;l n; <
C'n. (See Ruzsa [13] for a simple proof.)

Without loss of generality assume that n; > n'/¢. Obviously, we can
fix some values mso, ..., m¢ so that

Vo + Mqvy + Mavs + - - - + meve € P,

for at least
n n nt/¢
> >

noNg---ne  C' — ('
different integers m;. However, the corresponding points of P, are all on
a line, contradicting our assumption.

4 Related problems

4.1. Tt was noticed by Cockayne and Hedetniemi [3] that the problem
of placing queens on the diagonal of an n X n chessboard so as to cover
all squares is equivalent to the problem of finding a midpoint-free set of
integers up to n/2, i.e., one containing no 3-term arithmetic progression.

4.2. FErdos raised the following problem related to Theorem 1. De-
termine the largest integer a(n) such that every set of n points in the
plane, no four on a line, has an «(n)-element subset with no collinear
triples. The best known bounds, due to Fiiredi [7], leave plenty of room

for improvement:
Q(y/nlogn) < a(n) <o(n).

4.3. Erdés, Fishburn, and Firedi [4] studied the following question,
strongly related to Theorem 2. Given a set P of n points in convex
position in the plane, let M(P) denote the set of midpoints of its (;)
sides and diagonals. How small can the cardinality p.(n) of M be for

fixed n? One might guess that the answer is (0.5 — o(1))n?. However, it



was shown in [4] that this minimum is somewhere between 0.40 n? and
0.45n2%. In fact, we have

(;’) G 1)(41 — eil/Q)J < pre(n) < (

n n? —2n + 12
)L—J,
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for all n > 3. The upper bound follows from the fact that the number of
multiple midpoints can be as large as |(n? — 2n + 12)/20].

Woodall [15] solved a similar problem of R. Hall, concerning the min-
imum number of midpoints induced by an n-element subset of the vertex
set of a d-dimensional cube (n < 29).
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