# Applications of the Crossing Number

 $\begin{tabular}{ll} \it J\'{a}nos\ Pach^* \\ \it Dept.\ of\ Computer\ Science,\ City\ College-CUNY \\ \it and\ Courant\ Institute,\ NYU \end{tabular}$ 

 $Farhad\ Shahrokhi$  Dept. of Computer Science, University of North Texas

Mario Szegedy
AT&T Bell Laboratories

#### Abstract

Let G be a graph of n vertices that can be drawn in the plane by straight-line segments so that no k+1 of them are pairwise crossing. We show that G has at most  $c_k n \log^{2k-2} n$  edges. This gives a partial answer to a dual version of a well-known problem of Avital-Hanani, Erdős, Kupitz, Perles, and others. We also construct two point sets  $\{p_1, \ldots, p_n\}$ ,  $\{q_1, \ldots, q_n\}$  in the plane such that any piecewise linear one-to-one mapping  $f: \mathbf{R}^2 \to \mathbf{R}^2$  with  $f(p_i) = q_i$   $(1 \le i \le n)$  is composed of at least  $\Omega(n^2)$  linear pieces. It follows from a recent result of Souvaine and Wenger that this bound is asymptotically tight. Both proofs are based on a relation between the crossing number and the bisection width of a graph.

Keywords: Crossing number, geometric graph, bisection width, triangulation.

<sup>\*</sup>Supported by NSF grant CCR-91-22103, PSC-CUNY Research Award 663472 and OTKA-4269. The extended abstract of this paper was presented at the 10th Annual ACM Symposium on Computational Geometry, Stony Brook, NY, 1994.

#### 1 Introduction

A geometric graph is a graph drawn in the plane by (possibly crossing) straight-line segments i.e., it is defined as a pair of (V(G), E(G)), where V(G) is a set of points in the plane in general position and E(G) is a set of closed segments whose endpoints belong to V(G).

The following question was raised by Avital and Hanani [AH], Erdős, Kupitz [K] and Perles: What is the maximum number of edges that a geometric graph of n vertices can have without containing k+1 pairwise disjoint edges? It was proved in [PT] that for any fixed k the answer is linear in n. (The cases when  $k \leq 3$  had been settled earlier by Hopf and Pannwitz [HF], Erdős [E], Alon and Erdős [AE], O'Donnel and Perles [OP], and Goddard, Katchalski and Kleitman [GKK].)

In this paper we shall discuss the dual counterpart of the above problem. We say that two edges of G cross each other if they have an interior point in common. Let  $e_k(n)$  denote the maximum number of edges that a geometric graph of n vertices can have without containing k+1 pairwise crossing edges. If G has no two crossing edges, then it is a planar graph. Thus, it follows from Euler's polyhedral formula that

$$e_1(n) = 3n - 6$$
 for all  $n \ge 3$ .

It was shown in [P] that  $e_2(n) < 13n^{3/2}$  and that, for any fixed k,

$$e_k(n) = O(n^{2-1/25(k+1)^2}).$$

However, we suspect that  $e_k(n) = O(n)$  holds for every fixed k as n tends to infinity. We know that the corresponding statement is true if we restrict our attention to convex geometric graphs, i.e., to geometric graphs whose vertices are in convex position [CP]. Our next theorem brings us fairly close to this bound for arbitrary geometric graphs.

**Theorem 1.1** Let G be a geometric graph of n vertices, containing no k+1 pairwise crossing edges. Then the number of edges of G satisfies

$$|E(G)| \le c_k n \log^{2k-2} n,$$

with a suitable constant  $c_k$  depending only on k.

The proof is based on a general result relating the crossing number of a graph to its bisection width (see Theorem 2.1). A nice feature of our approach is that we do not use the assumption that the edges of G are line segments. Theorem 1.1 remains valid for graphs whose edges are represented by arbitrary Jordan arcs such that any two arcs meet at most once (or at most a bounded number of times).

The same ideas can be used to settle the following problem. Let  $T_1$  and  $T_2$  be triangles in the plane, and let  $\{p_1,\ldots,p_n\}$  and  $\{q_1,\ldots,q_n\}$  be two n-element point sets lying in the interior of  $T_1$  and  $T_2$ , respectively. A homeomorphism f from  $T_1$  onto  $T_2$  is a continuous one-to-one mapping with continuous inverse. f is called piecewise linear if there exists a triangulation of  $T_1$  such that f is linear on each of its triangles. The size of f is defined as the minimum number of triangles in such a triangulation. Recently, Souvaine and Wenger [SW] have shown that one can always find a piecewise linear homeomorphism  $f: T_1 \to T_2$  with  $f(p_i) = q_i$   $(1 \le i \le n)$  such that the size of f is  $O(n^2)$ . Our next result shows that this bound cannot be improved.

**Theorem 1.2** There exist a triangle T and two point sets  $\{p_1, \ldots, p_n\}$ ,  $\{q_1, \ldots, q_n\} \subseteq \text{int } T$  such that the size of any piecewise linear homeomorphism  $f: T \to T$  which maps  $p_i$  to  $q_i$   $(1 \le i \le n)$  is at least  $cn^2$  (for a suitable constant c > 0).

For some closely related problems consult [S] and [ASS].

## 2 Crossing number and bisection width

Let G be a graph of n vertices with no loops and no multiple edges. For any partition of the vertex set V(G) into two disjoint parts  $V_1$  and  $V_2$ , let  $E(V_1, V_2)$  denote the set of edges with one endpoint in  $V_1$  and the other endpoint in  $V_2$ . Define the *bisection width* of G as

$$b(G) = \min_{|V_1|, |V_2| \ge n/3} |E(V_1, V_2)|,$$

where the minimum is taken over all partitions  $V(G) = V_1 \cup V_2$  with  $|V_1|$ ,  $|V_2| \ge n/3$ .

Consider now a drawing of G in the plane, where the vertices are represented by distinct points and the edges are represented by Jordan arcs

connecting them such that (1) no arc passes through a vertex different from its endpoints and (2) no three arcs have an interior point in common. The  $crossing\ number\ c(G)$  of G is defined as the minimum number of crossings in a drawing of G satisfying the above conditions, where a crossing is a common interior point of two arcs. It is easy to show that the minimum number of crossings can always be realized by a drawing such that

(3) no two arcs meet in more than one point (including their endpoints).

We need the following result which is an easy consequence of a weighted version of the Lipton-Tarjan separator theorem for planar graphs [LT].

**Theorem 2.1** Let G be a graph with n vertices of degree  $d_1, \ldots, d_n$ . Then

$$b^{2}(G) \le (1.58)^{2} \left( 16c(G) + \sum_{i=1}^{n} d_{i}^{2} \right),$$

where b(G) and c(G) denote the bisection width and the crossing number of G, respectively.

**Proof:** Let H be a plane graph on the vertex set  $V(H) = \{v_1, \ldots, v_N\}$  such that each vertex has a non-negative weight  $w(v_i)$  and  $\sum_{i=1}^{N} w(v_i) = 1$ . Let  $d(v_i)$  denote the degree of  $v_i$  in H. It was shown by Gazit and Miller [GM] that, by the removal of at most

$$1.58 \left( \sum_{i=1}^{N} d^2(v_i) \right)^{1/2}$$

edges, 
$$H$$
 can be separated into two disjoint subgraphs  $H_1$  and  $H_2$  such that 
$$\sum_{v_i \in V(H_1)} w(v_i) \geq \frac{1}{3} \quad \sum_{v_i \in V(H_2)} w(v_i) \geq \frac{1}{3}.$$

(See also [M] and [DDS].)

Consider now a drawing of G with c(G) crossing pairs of arcs satisfying conditions (1)-(3). Introducing a new vertex at each crossing, we obtain a plane graph H with N = n + c(G) vertices. Assign weight 0 to each new vertex and weights of 1/n to all other vertices. The above result implies that, by the deletion of at most

$$1.58 \left(16c(G) + \sum_{i=1}^{n} d_i^2\right)^{1/2}$$

edges, H can be separated into two parts  $H_1$  and  $H_2$  such that both of the sets  $V_1 = V(H_1) \cap V(G)$  and  $V_2 = V(H_2) \cap V(G)$  have at least n/3 elements. Hence,

$$b(G) \le |E(V_1, V_2)| \le 1.58 \left(16c(G) + \sum_{i=1}^n d_i^2\right)^{1/2},$$

and the result follows.  $\square$ 

In the special case when every vertex of G is of degree at most 4, Theorem 2.1 was established by Leighton [L] and it proved to be an important tool in VLSI design (see [U]).

## 3 Geometric graphs

The aim of this section is to prove the following generalization of Theorem 1.1 for curvilinear graphs.

**Theorem 3.1** Let G be a graph with n vertices that has a drawing with Jordan arcs such that no arc passes through any vertex other than its endpoints, no two arcs meet in more than one point, and there are no k+1 pairwise crossing arcs  $(k \ge 1)$ . Then

$$|E(G)| \le 3n(10\log_2 n)^{2k-2}.$$

**Proof:** By double induction on k and n. The assertion is true for k = 1 and for all n. It is also true for any k > 1 and  $n \le 6 \cdot 10^{2k-2}$ , because for these values the above upper bound exceeds  $\binom{n}{2}$ .

Assume now that we have already proved the theorem for some k and all n, and we want to prove it for k+1. Let  $n \ge 6 \cdot 10^{2k}$ , and suppose that the theorem holds for k+1 and for all graphs having fewer than n vertices.

Let G be a graph of n vertices that can be drawn in the plane so that no two edges meet more than once and there are no k+2 pairwise crossing edges. For the sake of simplicity, this drawing will also be denoted by G = (V(G), E(G)). For any arc  $e \in E(G)$ , let  $G_e$  denote the graph consisting of all arcs that cross e. Clearly,  $G_e$  has no k+1 pairwise crossing arcs. Thus, by the induction hypothesis,

$$c(G) \leq \frac{1}{2} \sum_{e \in E(G)} |E(G_e)|$$

$$\leq \frac{1}{2} \sum_{e \in E(G)} 3n (10 \log_2 n)^{2k-2}$$

$$\leq \frac{3}{2} |E(G)| n (10 \log_2 n)^{2k-2}.$$

Since  $\sum_{i=1}^{n} d_i^2 \leq 2|E(G)|n$  holds for every graph G with degrees  $d_1, \ldots, d_n$ , Theorem 2.1 implies that

$$b(G) \leq 1.58 \left( 16c(G) + \sum_{i=1}^{n} d_i^2 \right)^{1/2}$$
  
$$\leq 9\sqrt{n|E(G)|} \left( 10\log_2 n \right)^{k-1}.$$

Consider a partition of V(G) into two parts  $V_1$  and  $V_2$ , each containing at least n/3 vertices, such that the number of edges connecting them is b(G). Let  $G_1$  and  $G_2$  denote the subgraphs of G induced by  $V_1$  and  $V_2$ , respectively. Since neither of  $G_1$  or  $G_2$  contains k+2 pairwise crossing edges and each of them has fewer than n vertices, we can apply the induction hypothesis to obtain

$$|E(G)| = |E(G_1)| + |E(G_2)| + b(G)$$

$$\leq 3n_1(10\log_2 n_1)^{2k} + 3n_2(10\log_2 n_2)^{2k} + b(G),$$

where  $n_i = |V_i|$  (i = 1, 2). Combining the last two inequalities we get

$$|E(G)| - 9\sqrt{n}(10\log_2 n)^{k-1}\sqrt{|E(G)|}$$

$$\leq 3\frac{n}{3}(10\log_2 \frac{n}{3})^{2k} + 3\frac{2n}{3}(10\log_2 \frac{2n}{3})^{2k}$$

$$\leq 3n(10\log_2 n)^{2k}(1 - \frac{k}{\log_2 n}).$$

If the left hand side of this inequality is negative, then  $|E(G)| \leq 3n(10\log_2 n)^{2k}$  and we are done. Otherwise,

$$f(x) = x - 9\sqrt{n}(10\log_2 n)^{k-1}\sqrt{x}$$

is a monotone increasing function of x when  $x \ge |E(G)|$ . An easy calculation shows that

$$f(3n(10\log_2 n)^{2k}) > 3n(10\log_2 n)^{2k}(1 - \frac{k}{\log_2 n}).$$

Hence,

$$f(|E(G)|) < f(3n(10\log_2 n)^{2k}),$$

which in turn implies that

$$|E(G)| < 3n(10\log_2 n)^{2k},$$

as required.  $\square$ 

#### 4 Avoiding snakes

In [ASS], Aronov, Seidel and Souvaine constructed two polygonal regions P and Q with vertices  $\{p_1, \ldots, p_n\}$  and  $\{q_1, \ldots, q_n\}$  in clockwise order such that the size of any piecewise linear homeomorphism  $f: P \to Q$  with  $f(p_i) = q_i$   $(1 \le i \le n)$  is at least  $cn^2$  (for an absolute constant c > 0). Their ingenious construction heavily relies on some special geometric features of "snakelike" polygons.

Our Theorem 1.2 (stated in the introduction) provides the same lower bound for a modified version of this problem due to J.E. Goodman. The proof given below is purely combinatorial, and avoids the use of "snakes."

**Proof of Theorem 1.2:** Let  $T_1$  and  $T_2$  be two triangles containing two convex n-gons P and Q in their interiors, respectively. Let  $p_{\pi(1)}, \ldots, p_{\pi(n)}$  denote the vertices of P in clockwise order, where  $\pi$  is a permutation of  $\{1,\ldots,n\}$  to be specified later. Furthermore, let  $q_1,\ldots,q_n$  denote the vertices of Q in clockwise order. Let  $f:T_1\to T_2$  be a piecewise linear homeomorphism with  $f(p_i)=q_i$   $(1\leq i\leq n)$ , and fix a triangulation  $\mathcal{T}_1$  of  $T_1$  with  $|\mathcal{T}_1|=\mathtt{size}(f)$  triangles such that f is linear on each of them. By subdividing some members of  $\mathcal{T}_1$  if necessary, we obtain a new triangulation  $\mathcal{T}_1'$  of  $T_1$  such that each  $p_i$  is a vertex of  $\mathcal{T}_1'$  and  $|\mathcal{T}_1'|\leq |\mathcal{T}_1|+3n$ .

Obviously, f will map  $\mathcal{T}'_1$  into an isomorphic triangulation  $\mathcal{T}'_2$  of  $T_2$ . The image of each segment  $p_{\pi_i}p_{\pi(i+1)}$  is a polygonal path connecting  $q_{\pi(i)}$  and  $q_{\pi(i+1)}$ ,  $(1 \leq i \leq n)$ . The collection of these paths together with the segments  $q_i q_{i+1}$  is a drawing of the graph  $G = G_{\pi}$  defined by:

$$V(G) = \{q_1, \dots, q_n\},$$

$$(*)$$

$$E(G) = \{q_i q_{i+1} \mid 1 \le i \le n\} \cup \{q_{\pi(i)} q_{\pi(i+1)} \mid 1 \le i \le n\}.$$

Suppose that this drawing has c crossing pairs of arcs. Notice that each crossing must occur between a path  $q_{\pi(i)}q_{\pi(i+1)}$  and a segment  $q_jq_{j+1}$ . By the convexity of Q, any line can intersect at most two segments  $q_jq_{j+1}$ . Hence the total number of subsegments of the concatenation of the polygons  $f(p_{\pi(i)}p_{\pi(i+1)}), 1 \leq i \leq n$ , is at least c/2. On the other hand, by the convexity of P, each triangle belonging to  $\mathcal{T}'_1$  intersects at most two sides of the form  $p_{\pi(i)}p_{\pi(i+1)}$ . Thus,  $|\mathcal{T}'_1| \geq c/4$ , which yields that

$$\mathtt{size}(f) = |\mathcal{T}_1| \geq |\mathcal{T}_1'| - 3n \geq \frac{c(G)}{4} - 3n,$$

where c(G) stands for the crossing number of G. Applying Theorem 2.1, we obtain that

$$c(G) > \frac{b^2(G)}{40} - 1.$$

Therefore,

$$\mathrm{size}(f) \geq \frac{b^2(G)}{160} - 3n - \frac{1}{4}.$$

To complete the proof of Theorem 1.2, it is sufficient to show that for a suitable permutation  $\pi$  the bisection width of the graph  $G = G_{\pi}$  defined by (\*) is at least constant times n. We use a counting argument (cf. [AS]). The family of graphs  $G_{\pi}$  has size n!. We bound from above the number of those members of this family whose bisection width is at most k. We will see that for  $k \leq n/20$  this number is less than n!.

Let  $b(G_{\pi}) \leq k$ . Let  $(V_1, V_2)$  be a partition of  $V(G_{\pi})$  with  $|V_1|, |V_2| \geq n/3$  and  $E(V_1, V_2) \leq k$ . Define

$$E_1(V_1, V_2) = \{q_i q_{i+1} \mid 1 \le i < n\} \cap E(V_1, V_2),$$
  

$$E_2(V_1, V_2) = \{q_{\pi(i)} q_{\pi(i+1)} \mid 1 \le i < n\} \cap E(V_1, V_2).$$

Since  $|E_1(V_1, V_2)| \leq k$ , the partition  $(V_1, V_2)$  should be of a special form. If we delete all elements of  $E_1(V_1, V_2)$  from the path  $q_1 \ldots q_n$ , it splits into at

most k+1 paths (or points) lying alternately in  $V_1$  and in  $V_2$ . This yields a  $2(k+1)\binom{n}{k}$  upper bound on the number of partitions in question.

The order in which the elements of  $V_i$  (i=1,2) occur in the sequence  $q_{\pi(1)} \dots q_{\pi(n)}$  can be represented by a function  $\sigma_i : \{1, \dots, |V_i|\} \to V_i$  (i=1,2). For a fixed partition  $(V_1, V_2)$ , there are at most  $|V_1|$ ! choices for  $\sigma_1$  and  $|V_2|$ ! choices for  $\sigma_2$ . If  $\sigma_1$  and  $\sigma_2$  are also fixed, then the number of possible permutations is bounded again by  $2(k+1)\binom{n}{k}$ . Thus the total number of permutations  $\pi$  for which  $b(G_{\pi}) \leq k$  cannot exceed

$$\sum_{(V_1, V_2)} |V_1|! |V_2|! 2(k+1) \binom{n}{k} \leq \sum_{(V_1, V_2)} n! \binom{n}{n/3}^{-1} 2(k+1) \binom{n}{k}$$

$$\leq 4(k+1)^2 \binom{n}{k}^2 \binom{n}{n/3}^{-1} n!,$$

which is less than n! if  $k \leq n/20$ , and n is sufficiently large.  $\square$ 

#### References

- [AE] N. Alon and P. Erdős, Disjoint edges in geometric graphs, Discrete Comput. Geom. 4 (1989), 287-290.
- [AS] N. Alon and J. Spencer, The Probabilistic Method, J. Wiley, New York, 1992.
- [ASS] B. Aronov, R. Seidel and D. Souvaine, On compatible triangulations of simple polygons, *Computational Geometry: Theory and Applications* 3 (1993), 27-36.
- [AH] S. Avital and H. Hanani, Graphs, Gilyonot Lematematika 3 (1966), 2-8 (in Hebrew).
- [CP] V. Capoyleas and J. Pach, A Turán-type theorem on chords of a convex polygon, J. Combinat. Theory B 56 (1992), 9-15.
- [DDS] K. Diks, H. N. Djidjev, O. Sykora and I. Vřto, Edge separators for planar graphs and their applications, *Proc.* 13th Symp. Mathematical Foundations of Computer Science (M.P. Chytil, L. Janiga, V. Koubek,

- eds.), Lecture Notes in Computer Science 324, Springer-Verlag, 1988, 280-290.
- [E] P. Erdős On sets of distances of n points, Amer. Math. Monthly 53 (1946), 248-250.
- [GM] H. Gazit and G.L. Miller, Planar separators and the Euclidean norm, Algorithms, Proc. International Symp. SIGAL'90 (T. Asano et al., eds.), Lecture Notes in Computer Science 450, Springer-Verlag, 1990, 338-347.
- [GKK] W. Goddard, M. Katchalski and D.J. Kleitman, Forcing disjoint segments in the plane, European J. Combinatorics, to appear.
- [HP] H. Hopf and E. Pannwitz, Aufgabe No. 167, Jber. Deutsch. Math. Verein. 43 (1934), 114.
- [K] Y.S. Kupitz, Extremal Problems in Combinatorial Geometry, Aarhaus University Lecture Note Series, no. 53, Aarhaus University, Denmark, 1979.
- [L] F. T. Leighton, Complexity Issues in VLSI, Foundations of Computing Series, MIT Press, Cambridge, Mass., 1983.
- [LT] R.J. Lipton and R.E. Tarjan, A separator theorem for planar graphs, SIAM Journal of Applied Math. 36 (1979), 177-189.
- [M] G.L. Miller, Finding small simple cycle separators for 2-connected planar graphs, J. Computer and System Sciences 32 (1986), 265-279.
- [OP] P. O'Donnel and M. Perles, Every geometric graph with n vertices and 3.6n-3.4 edges contains three pairwise disjoint edges, manuscript, Rutgers University, New Brunswick, 1991.
- [P] J. Pach, Notes on geometric graph theory, in: Discrete and Computational Geometry: Papers from DIMACS Special Year (J. Goodman et al., eds.), DIMACS Series, Vol. 6, American Mathematical Society, Providence, R.I., 1991, 273-285.
- [PT] J. Pach and J. Törőcsik, Some geometric applications of Dilworth's theorem, Discrete and Computational Geometry 12 (1994), 1-7.

- [S] A. Saalfeld, Joint triangulations and triangulation maps, *Proc. 3rd Annual ACM Symposium on Computational Geometry*, 1987, 195-204.
- [SW] D. Souvaine and R. Wenger, Constructing piecewise linear homeomorphisms, Computational Geometry: Theory and Applications, to appear.
- [U] J.P. Ullman, Computational Aspects of VLSI, Comp. Sci. Press, Rockville, Maryland, 1984.