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Abstract

Let G be a graph of n vertices that can be drawn in the plane by
straight-line segments so that no & + 1 of them are pairwise crossing.
We show that G has at most cznlog?* "2 n edges. This gives a partial
answer to a dual version of a well-known problem of Avital-Hanani,
Erdés, Kupitz, Perles, and others. We also construct two point sets
{p1,-- P}, {q1,--.,¢,} in the plane such that any piecewise linear
one-to-one mapping f : R? — R? with f(p;) = ¢ (1 < ¢ < n) is
composed of at least (n?) linear pieces. It follows from a recent
result of Souvaine and Wenger that this bound is asymptotically tight.
Both proofs are based on a relation between the crossing number and
the bisection width of a graph.
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1 Introduction

A geometric graph is a graph drawn in the plane by (possibly crossing)
straight-line segments i.e., it is defined as a pair of (V(G), E(G)), where
V(@) is a set of points in the plane in general position and E((G) is a set of
closed segments whose endpoints belong to V (G).

The following question was raised by Avital and Hanani [AH], Erdds,
Kupitz [K] and Perles: What is the maximum number of edges that a geo-
metric graph of n vertices can have without containing k£ + 1 pairwise disjoint
edges? It was proved in [PT] that for any fixed k the answer is linear in n.
(The cases when k& < 3 had been settled earlier by Hopf and Pannwitz [HF],
Erdés [E], Alon and Erdés [AE], O'Donnel and Perles [OP], and Goddard,
Katchalski and Kleitman [GKK].)

In this paper we shall discuss the dual counterpart of the above problem.
We say that two edges of G cross each other if they have an interior point in
common. Let ex(n) denote the maximum number of edges that a geometric
graph of n vertices can have without containing £+ 1 pairwise crossing edges.
If G has no two crossing edges, then it is a planar graph. Thus, it follows
from Euler’s polyhedral formula that

e1(n) =3n—6 foralln > 3.
It was shown in [P] that ey(n) < 13n%? and that, for any fixed k,

ek(n) _ O(n2_1/25(k+1)2).

However, we suspect that ex(n) = O(n) holds for every fixed k as n tends to
infinity. We know that the corresponding statement is true if we restrict our
attention to conver geometric graphs, i.e., to geometric graphs whose vertices
are in convex position [CP]. Our next theorem brings us fairly close to this
bound for arbitrary geometric graphs.

Theorem 1.1 Let GG be a geometric graph of n vertices, containing no k+ 1
pairwise crossing edges. Then the number of edges of G salisfies

|E(G)] < cxnlog® 2 n,

with a suitable constant cj, depending only on k.



The proof is based on a general result relating the crossing number of a graph
to its bisection width (see Theorem 2.1). A nice feature of our approach is that
we do not use the assumption that the edges of G are line segments. Theorem
1.1 remains valid for graphs whose edges are represented by arbitrary Jordan
arcs such that any two arcs meet at most once (or at most a bounded number
of times).

The same ideas can be used to settle the following problem. Let 77 and
Ty be triangles in the plane, and let {p;,...,p,} and {q1,...,9,} be two
n-element point sets lying in the interior of 7} and T5, respectively. A home-
omorphism f from T} onto T, is a continuous one-to-one mapping with con-
tinuous inverse. [ is called piecewise linear if there exists a triangulation of
Ty such that f is linear on each of its triangles. The size of f is defined as
the minimum number of triangles in such a triangulation. Recently, Souvaine
and Wenger [SW] have shown that one can always find a piecewise linear
homeomorphism f : Ty — Ty with f(p;) = ¢; (1 <1 < n) such that the size
of fis O(n*). Our next result shows that this bound cannot be improved.

Theorem 1.2 There exist a triangle T and two point sels {p1,...,pn},
{q1,---,q,} C int T such that the size of any piecewise linear homeomor-
phism [ : T — T which maps p; to q; (1 <1 < n) is at least cn* (for a
suitable constant ¢ > 0).

For some closely related problems consult [S] and [ASS].

2 Crossing number and bisection width

Let GG be a graph of n vertices with no loops and no multiple edges. For any
partition of the vertex set V((7) into two disjoint parts V; and V3, let F(V;, V3)
denote the set of edges with one endpoint in V] and the other endpoint in V5.
Define the bisection width of GG as

b(G) =

= min
[Vil,|Va|>n/3

[E(Vi, V),

where the minimum is taken over all partitions V(G) = Vi U V, with |Vi],
V2| > n/3.

Consider now a drawing of G in the plane, where the vertices are rep-
resented by distinct points and the edges are represented by Jordan arcs



connecting them such that (1) no arc passes through a vertex different from
its endpoints and (2) no three arcs have an interior point in common. The
crossing number ¢(G) of G is defined as the minimum number of crossings in
a drawing of (& satisfying the above conditions, where a ¢rossing is a common
interior point of two arcs. It is easy to show that the minimum number of
crossings can always be realized by a drawing such that

(3) no two arcs meet in more than one point (including their endpoints).

We need the following result which is an easy consequence of a weighted
version of the Lipton-Tarjan separator theorem for planar graphs [LT].

Theorem 2.1 Let G be a graph with n vertices of degree dy,...,d,. Then

b*(G) < (1.58)% (16c(G) + Xn: df) ,

where b(G) and ¢(G) denote the bisection width and the crossing number of
G, respectively.

Proof: Let H be a plane graph on the vertex set V(H) = {vy,...,on}
such that each vertex has a non-negative weight w(v;) and 3V w(v) = 1
=1 i) — 1.

Let d(v;) denote the degree of v; in H. It was shown by Gazit and Miller
[GM] that, by the removal of at most

1.58 (i d%i)) -

i=1
edges, H can be separated into two disjoint subgraphs H; and H; such that
1 Z w(v;) > l
S w(v) >3 =3

'UlEV(HQ)
Ulev(Hl)

(See also [M] and [DDS].)

Consider now a drawing of GG with ¢(G) crossing pairs of arcs satisfying
conditions (1)—(3). Introducing a new vertex at each crossing, we obtain a
plane graph H with N = n + ¢(G) vertices. Assign weight 0 to each new
vertex and weights of 1/n to all other vertices. The above result implies that,
by the deletion of at most

n 1/2
1.58 (16c(G) +>° df)
=1
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edges, H can be separated into two parts H; and H; such that both of the
sets Vi = V(H)NV(G) and Va3 = V(Hy) N V(G) have at least n/3 elements.

Hence,
n 1/2
M) < BV )| < 158 (16e(6) + o)
=1

and the result follows. O
In the special case when every vertex of (& is of degree at most 4, Theorem

2.1 was established by Leighton [L] and it proved to be an important tool in
VLSI design (see [U]).

3 Geometric graphs

The aim of this section is to prove the following generalization of Theorem
1.1 for curvilinear graphs.

Theorem 3.1 Let GG be a graph with n vertices that has a drawing with Jor-
dan arcs such that no arc passes through any vertex other than its endpoints,
no two arcs meet in more than one point, and there are no k 4+ 1 pairwise
crossing arcs (k> 1). Then

|E(G)| < 3n(101og, n)?*=2.

Proof: By double induction on & and n. The assertion is true for £ = 1
and for all n. It is also true for any & > 1 and n < 6 - 10**72, because for
these values the above upper bound exceeds (g)

Assume now that we have already proved the theorem for some k& and all
n, and we want to prove it for k + 1. Let n > 6 - 10%*, and suppose that the
theorem holds for k£ + 1 and for all graphs having fewer than n vertices.

Let G be a graph of n vertices that can be drawn in the plane so that no two
edges meet more than once and there are no k+2 pairwise crossing edges. For
the sake of simplicity, this drawing will also be denoted by G = (V (), E(G)).
For any arc e € E(G), let GG, denote the graph consisting of all arcs that cross
e. Clearly, GG, has no k + 1 pairwise crossing arcs. Thus, by the induction
hypothesis,



1
(@) < 1Y G
e€E(G)
1
< = Y 3n(10log,n)*~?
2eEE(G)
< g|E(G)|n(1()log2n)2k_2.

Since 3" | d? < 2|E(G)|n holds for every graph G with degrees dy, ..., d,,
Theorem 2.1 implies that

b(G) < 1.58 (16c(G)+§df)l/2

< 9y/n|E(G)|(101og, n)*'.

Consider a partition of V(&) into two parts V] and V3, each containing
at least n/3 vertices, such that the number of edges connecting them is b(().
Let GG; and (5 denote the subgraphs of G induced by V; and V4, respectively.
Since neither of GGy or (3 contains k + 2 pairwise crossing edges and each
of them has fewer than n vertices, we can apply the induction hypothesis to
obtain

|E(G)| = [E(G1)] + [E(G2)] 4+ b(G)
< 3ni(10log, nl)yC + 3n4(101og, 712)2k + b((),

where n; = |V;| (1 = 1,2). Combining the last two inequalities we get

[B(G)] = 9v/n(101og, n)*~'y/| E(G)]

n n 2n 2n
< 3§(1010g2 §)2k + 3?(1010g2 ?)%
k
< 101 k(] — .
< 3n(10logym)™ (1 - ()

If the left hand side of this inequality is negative, then | E(G)| < 3n(101log, n)?*
and we are done. Otherwise,

J(2) = 2 — 9v/n(10log, n)* v/
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is a monotone increasing function of # when = > |E(G)|. An easy calculation
shows that

k

logyn”

F(3n(101log, n)*) > 3n(10log, n)* (1 —

Hence,
JUE(G)]) < f(3n(1010g, n)*),

which in turn implies that
|E(G)| < 3n(101og, n)**,

as required. O

4 Avoiding snakes

In [ASS], Aronov, Seidel and Souvaine constructed two polygonal regions P
and Q with vertices {pi1,...,p,} and {q1,...,q,} in clockwise order such that
the size of any piecewise linear homeomorphism f: P — @Q with f(p;) = ¢
(1 <4 < n)is at least cn? (for an absolute constant ¢ > 0). Their ingenious
construction heavily relies on some special geometric features of “snakelike”
polygons.

Our Theorem 1.2 (stated in the introduction) provides the same lower
bound for a modified version of this problem due to J.E. Goodman. The
proof given below is purely combinatorial, and avoids the use of “snakes.”

Proof of Theorem 1.2: Let 7} and T, be two triangles containing two
convex n-gons P and @ in their interiors, respectively. Let pr), ..., Pr(n)
denote the vertices of P in clockwise order, where 7 is a permutation of
{1,...,n} to be specified later. Furthermore, let ¢, ..., ¢, denote the vertices
of @ in clockwise order. Let f : T} — T, be a piecewise linear homeomor-
phism with f(p;) = ¢ (1 < ¢ < n), and fix a triangulation 7; of T} with
|7T1| = size (f) triangles such that f is linear on each of them. By subdivid-
ing some members of 7; if necessary, we obtain a new triangulation 7, of T}
such that each p; is a vertex of 7 and |T{| < |T1| + 3n.

Obviously, f will map 7, into an isomorphic triangulation 73 of T;. The
image of each segment pr priit1) is a polygonal path connecting ¢; and
In(i+1), (1 <4 < n). The collection of these paths together with the segments
GiGi+1 1s a drawing of the graph G = (G, defined by:
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V(G) ={q1,. . G},
(*)

E(G) ={q:qi+1 | 1 <1 <nf U{qr(iyGrisn |1 <7 <0}

Suppose that this drawing has ¢ crossing pairs of arcs. Notice that each
crossing must occur between a path gr()gr(i+1) and a segment g;q;41. By
the convexity of (), any line can intersect at most two segments ¢;q;41.
Hence the total number of subsegments of the concatenation of the polygons
F(pr(iyPrii+1)), 1 <1 < m,is at least ¢/2. On the other hand, by the convexity
of P, each triangle belonging to 7/ intersects at most two sides of the form
Pr(iyPr(i+1)- Thus, |T/| > ¢/4, which yields that

size(f)=|Ti| > |T{| —3n > C(ZL—G)—Sn,

where ¢(() stands for the crossing number of . Applying Theorem 2.1, we
obtain that

b*(G)
A& > =5 -
Therefore,
b*(G) 1
. > gy L
size(f) > 160 3n 1

To complete the proof of Theorem 1.2, it is sufficient to show that for a
suitable permutation 7 the bisection width of the graph G = G defined by
(%) is at least constant times n. We use a counting argument (cf. [AS]). The
family of graphs G has size n!. We bound from above the number of those
members of this family whose bisection width is at most k. We will see that
for k& < n/20 this number is less than n!.

Let b(G,) < k. Let (V4,V2) be a partition of V(G,) with |Vi|,|Va2| > n/3
and £(V1,V,) < k. Define

Ex(Vi,Va) = {qqini |1 <i<npn BV, V),
Ex(Vi,V2) = Ae(iyn(ien) | 1 < i <n} 0 E(V2, V2).

Since |E1(Vi, V3)| < Kk, the partition (V1, V2) should be of a special form.
If we delete all elements of F1(V], V2) from the path ¢; ... g, it splits into at



most k + 1 paths (or points) lying alternately in V7 and in V5. This yields a
2(k+1) (Z) upper bound on the number of partitions in question.

The order in which the elements of V; (i = 1,2) occur in the sequence
(1) - - - Gr(n) can be represented by a function o; : {1,...,|Vi|} = Vi (i =
1,2). For a fixed partition (V;, V4), there are at most |V;|! choices for oy and
|V2|! choices for oy. If o7 and o, are also fixed, then the number of possible

permutations is bounded again by 2(k + 1)(2) Thus the total number of

permutations 7 for which b(G;) < k cannot exceed

g mmeof) = B al) e

(V1,V2) (V1,V

() ()

which is less than n! if £ < n/20, and n is sufficiently large. O
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