
How many ways an one draw a graph??J�anos Pah1 and G�eza T�oth1R�enyi Institute, Hungarian Aademy of Sienes, Budapest, HungaryDediated to Mikl�os Simonovits on his sixtieth birthdayAbstrat. Using results from extremal graph theory, we determine theasymptoti number of string graphs with n verties, i.e., graphs that anbe obtained as the intersetion graph of a system of ontinuous ars inthe plane. The number beomes muh smaller, for any �xed d, if werestrit our attention to systems of ars, any two of whih ross at mostd times. As an appliation, we estimate the number of di�erent drawingsof the omplete graph Kn with n verties under various side onditions.1 IntrodutionGiven a simple graph G, is it possible to represent its verties by simply on-neted regions in the plane so that two regions overlap if and only if the or-responding two verties are adjaent? In other words, is G isomorphi to theintersetion graph of a set of simply onneted regions in the plane? This de-eptively simple extension of propositional logi and its generalizations are of-ten referred to in the literature as topologial inferene problems [CGP98a℄,[CGP98b℄,[CHK99℄. They have proved to be relevant in the area of geographiinformation systems [E93℄, [EF91℄ and in graph drawing [DETT99℄. In spite ofmany e�orts [K91a℄, [K98℄ (and false laims [SP92℄, [ES93℄), until very reentlyno algorithm was known for their solution. Two years ago, we showed [PT02℄that the problem is deidable. Shortly after a more elegant proof was found byShaefer and Stefankovi� [SS01a℄, who went on proving that the question is inNP [SS01b℄.Sine eah element of a �nite system of regions in the plane an be replaedby a simple ontinuous ar (\string") lying in its interior so that the intersetionpattern of these ars is the same as that of the original regions, it is enoughto restrit our attention to string graphs, i.e., to intersetion graphs of planarurves. As far as we know, these graphs were �rst studied in 1959 by S. Benzer[B59℄, who investigated the topology of geneti strutures. Somewhat later theywere also onsidered by F. W. Sinden [S66℄ in Bell Labs, who was interested ineletrial networks realizable by printed iruits. Sinden ollaborated with R. L.Graham, who popularized the notion among ombinatorists at a onferene inKeszthely (Hungary), in 1976 [G78℄. Soon after G. Ehrlih, S. Even, and R. E.? J�anos Pah has been supported by NSF grant CR-00-98246, PSC-CUNY ResearhAward 62450-0031 and OTKA-T-032452. G�eza T�oth has been supported by OTKA-T-032452 and OTKA-T-038397.



Tarjan [EET76℄ studied string graphs (see also [K83℄ and [EPL72℄ for a speialase). The aim of this paper is to estimate the number of di�erent string graphson n verties.To formulate our main result preisely, we have to agree on the terminology.Let G be a simple graph with vertex set V (G) and edge set E(G). A stringrepresentation of G is an assignment of simple ontinuous ars to the elements ofV (G) suh that two ars ross eah other if and only if the orresponding vertiesof G are adjaent. Graph G is a string graph if it has a string representation.We assume that any two ars share only �nitely many points and that at eahommon point the ars properly ross, i.e., one ar passes from one side of theother ar to the other side. An intersetion point of two ars is alled a rossing.For any d > 0, graph G is a string graph of rank d if it has a string represen-tation with the property that any two strings have at most d rossings.A lass P of labeled graphs, whih is losed under isomorphism, is said tobe a property. A property P is alled hereditary if every indued subgraph ofevery member of P belongs to P . Let Pn denote the set of all (labeled) graphson the vertex set f1; 2; : : : ; ng that belong to P . In the ombinatoris literature,the funtion jPnj � 2(n2) is often alled the speed of property P , and there areseveral well known estimates on its growth rate as n inreases.Let S and Sd denote the lasses of all string graphs and all string graphsof rank d, respetively. Clearly, these are hereditary properties and we haveS1 � S2 � � � � � S. Our �rst goal is to estimate their speeds.Theorem 1. For the number jSnj of all string graphs on n labeled verties, wehave 2 34 (n2) � jSnj � 2( 34+o(1))(n2):Theorem 2. For any d > 0, the number jSnd j of all string graphs of rank dsatis�es jSnd j � 2o(n2).We do not have any better lower bound on jSnd j than 2
(n logn), whih followsfrom the fat that the vertex set has this many di�erent permutations.A drawing of a graph is a mapping f whih assigns to eah vertex of G adistint point in the plane and to eah edge uv a ontinuous ar between f(u)and f(v), not passing through the image of any other vertex. For simpliity, thepoint assigned to a vertex is also alled a vertex and an ar assigned to an edgeis also alled an edge of the drawing, and, if this leads to no onfusion, it is alsodenoted by uv. We assume that (a) two edges have only �nitely many points inommon, and (b) if two edges share an interior point p, then they properly rossat p. Two drawings of G are said to be essentially equivalent the set of rossingpairs of edges is the same in the two drawings. Otherwise, they are essentiallydi�erent.Let �(n) and ��(n) denote the number of essentially di�erent drawings andessentially di�erent straight-line drawings, resp., of the omplete graph Kn withn verties. For any d > 0, let �d(n) denote the number of drawings with the



property that any two edges have at most d points in ommon. Clearly, we have��(n) � �1(n) � �2(n) � �3(n) � : : : � �(n);for every n.In Setions 2 and 3, we review the extremal graph theoreti tools used in thispaper and establish Theorem 1, respetively. In Setion 4 we prove Theorem 2in the speial ase d = 1. The proof in the general ase is based on the sameideas, but it is tehnially more ompliated, and it is omitted in this extendedabstrat. In Setion 5, we dedue the following estimates.Theorem 3. For the number of essentially di�erent drawings of Kn under var-ious restritions, we have(i) 2
(n logn) � ��(n) � 2O(n logn);(ii) 2
(n2) � �1(n) � 2O(n2 logn);(iii) 2
(n2 log n) � �d(n) � 2o(n4); for any �xed d � 2;(iv) 2
(n4) � �(n) � 2O(n4):2 Tools from extremal graph theoryOne of the entral questions in extremal graph theory [B78℄ is the following.Given a graph H , what is the maximum number of edges that a graph of n ver-ties an have if it does not ontain H as a (not neessarily indued) subgraph?This quantity is usually denoted by ex(n;H).Obviously, the property that a graph is H-free, is hereditary. Let Forb(n;H)denote the speed of this property, i.e., the number of graphs on n labeled vertiesthat do not ontain H as a subgraph. It turns out that the growth rate of thesefuntions ruially depends on the hromati number �(H) of H .Theorem 2.1. (Erd}os-Stone [ES46℄, Erd}os-Simonovits [ES66℄) For any graphH, we have ex(n;H) = �1� 1�(H)� 1� n22 + o(n2):Theorem 2.2. (Erd}os-Frankl-R�odl [EFR86℄) For any graph H, we haveForb(n;H) = 2(1+o(1))ex(n;H):If we want to establish analogous results for graphs ontaining no induedsubgraph isomorphi to H , then the �rst diÆulty we have to fae is the follow-ing: unless H is a omplete graph, the maximum number of edges that a graphof n verties an have without ontaining an indued opy of H is �n2�. Thus,Theorem 2.1 does not have a diret analogue. Nevertheless, setex�(n;H) := �1� 1�(H) � 1� n22 + o(n2);



where the relevant quantity, �(H), taking the plae of the hromati number isde�ned as follows.We say that H is (r; s)-olorable for some 0 � s � r if there is an r-oloringof the vertex set V (H), in whih the �rst s olor lasses are liques (i.e., indueomplete subgraphs) and the remaining r � s olor lasses are independent sets(i.e., indue empty subgraphs). Let C(r; s) denote the lass of all (r; s)-olorablegraphs, i.e., C(r; s) = fH : H is (r; s){olorableg :Let �(H) be the minimum integer r suh that H is (r; s)-olorable for all 0 �s � r. Clearly, we have �(H) � �(H); for every H .Let Forb�(n;H) stand for the number of graphs on n labeled verties whihdoes ontain H as an indued subgraph.Theorem 2.3. (Pr�omel-Steger [PS92℄) For any graph H, we haveForb�(n;H) = 2(1+o(1))ex�(n;H):Using Szemer�edi's Regularity Lemma, Bollob�as and Thomason [BT97℄ gen-eralized this result to any nonempty hereditary graph property P . De�ne theoloring number r(P) of P as the largest integer r for whih there is an s suhthat all (r; s)-olorable graphs have property P . That is,r(P) = maxfr : there exists 0 � s � r suh that P � C(r; s)g:Consequently, for any 0 � s � r(P) + 1, there exists an (r(P) + 1; s)-olorablegraph that does not have property P .In the speial ase when P is the property that the graph does not ontainany indued subgraph isomorphi to H , we have r(P) = �(H)� 1.Theorem 2.4. (Bollob�as-Thomason [BT97℄) Let P be a nontrivial hereditaryproperty of graphs, and let Pn denote the set of all graphs in P on the vertex setf1; 2; : : : ng. Then the speed of property P satis�esjPnj = 2�1� 1r(P)+o(1)�(n2);where r(P) is the oloring number of P.3 String graphs { Proof of Theorem 1We start with the lower bound. Consider four pairwise tangent non-overlappingdisks Di; 1 � i � 4; in the plane (see Fig. 1). Assume for simpliity that n isdivisible by 4. The proof for other values of n is analogous. Replae the boundaryof eah Di by n=4 slightly smaller onentri irles Cik ; 1 � k � n=4; runningvery lose to it. Fix a pair (i; j), 1 � i < j � 4. By loal deformation of everyCik in a small neighborhood of the point of tangeny of Di and Dj , we anahieve that every Cik has a point lying outside every other Cih; h 6= k. Forevery 1 � l � n=4 and for any predetermined set of indies Kl � f1; 2; : : : ; n=4g;



we an now slightly modify Cjl so that it would interset a urve Cik if andonly if k 2 Kl. In other words, we an arbitrarily speify the bipartite rossingpattern between the urves Cik and Cjl; 1 � k; l � n=4. Repeating the sameproedure for every pair (i; j), we an obtain any 4-partite rossing patternbetween the 4 lasses, eah ontaining n=4 urves. Note that every Cik is alosed urve, but deleting any point of it whih does not belong to another urveit beomes a string. Thus, the number of essentially di�erent string graphs is atleast 2 6n216 > 2 34 (n2):

Figure 1.Lower bound onstrution for the number of string graphs.Next, we establish the upper bound. For any r � 2, let Gr be a graph withvertex set V (Gr) = fvij : 1 � i; j � rgand edge set E(Gr) = fvijvik : 1 � i; j; k � r; j 6= kg ;where vij = vji, for every i and j. In other words, the verties of Gr repre-sent the verties and the edges of the omplete graph Kr, two verties of Grbeing onneted if the orresponding two edges of Kr share an endpoint or theorresponding edge and vertex of Kr are inident.Lemma 3.1. We have �(Gr) = r.Proof. The verties v1j ; 1 � j � r form a lique of size r. Therefore, we have�(Gr) � �(Gr) � r.Now we show by indution on r that �(Gr) = r. This is true for r = 2. Letr > 2 be �xed and assume �(Gr�1) = r � 1: We have to show that, for any0 � s � r; the verties of Gr an be olored by r olors so that s olor lassesindue liques and the remaining r � s olor lasses are independent sets.For s = 0, the following oloring will satisfy the requirements. For any 1 �k � r, olor a vertex vij with olor k if and only if i+ j � k mod r. Clearly, eahvertex of Gr reeives a olor and eah olor lass is an independent set.If s > 0, olor eah vertex of the lique fv1j : 1 � j � rg with olor 1. Theunolored verties indue a subgraph isomorphi to Gr�1, for whih we have



�(Gr�1) = r � 1, by the indution hypothesis. So the remaining verties an beolored by r � 1 olors so that s � 1 olor lasses indue liques and the otherr � s are independent sets. 2Lemma 3.2. G5 is not a string graph.Proof. Suppose that G5 has a string representation. Continuously ontrat eahof string (ar) representing vii (1 � i � 5) to a point pi, without hanging therossing pattern. For every pair i 6= j; onsider the portion of the ar representingvij between the points pi and pj . These ars de�ne a drawing of K5, in whihno two independent edges ross eah other. However, K5 is not a planar graph,hene, by a well known theorem of Hanani and Tutte [Ch34℄, [T70℄, no suhdrawing exists. 2Now we an omplete the proof of Theorem 1. By Lemma 3.2, a string graphannot have an indued subgraph isomorphi to G5. Thus, in view of Lemma3.1, Theorem 1 diretly follows from Theorem 2.3:jSnj � Forb�n(G5) = 2( 34+o(1))(n2):4 String graphs of a �xed rank { Proof of Theorem 2In order to show that there are 2o(n2) string graphs of rank d, in view of Theorem2.4, it is enough to exhibit a (2; 0)-olorable, a (2; 1)-olorable, and a (2; 2)-olorable graph suh that none of them is a string graph of rank d.Here we present the argument only in the speial ase d = 1.Let H3;3 denote a graph with verties ui, vj , and wij , 1 � i; j � 3 andedges uiwij ; wijvj , for every i and j. In other words, H3;3 is the graph obtainedfrom K3;3, the omplete bipartite graph with three verties in its lasses, bysubdividing eah of its edges by an extra vertex.For any k, let Tk denote a graph with verties vi; (1 � i � k) and uI ; forevery I � f1; 2; : : : ; kg. Let vi and vj be onneted by an edge of Tk, for any1 � i < j � k, and let vi be onneted to uI if and only if i 2 I . Let T 0k denotethe graph obtained from Tk by adding the edges uIuJ , for every I 6= J .Clearly, H3;3 is (2; 0)-olorable (bipartite), Tk is (2; 1)-olorable, and T 0k is(2; 2)-olorable, for every k. Therefore, if P = P(H3;3; Tk; T 0k) denotes the prop-erty that a graph does not ontain H3;3, Tk, or T 0k as an indued subgraph, thenP is a hereditary property with oloring number r(P) =1. Hene, by Theorem2.4, for the number of graphs on n labeled verties, satisfying property P , wehave jPnj = 2o(n2).It remains to prove the following statement, whih implies that Sn1 � Pn ifk is large enough.Lemma 4.1. A string graph of order 1 annot ontain H3;3, Tk, or T 0k as anindued subgraph, provided that k is suÆiently large.Proof. It is well known that a string graph annot ontain H3;3 as an induedsubgraph (see e.g. [EET76℄,



Using the notation in the de�nition of Tk (and T 0k), let vi, 1 � i � k and uI ,I � f1; 2; : : : ; kg stand for the verties of Tk (and T 0k, resp.), and suppose thatTk (and T 0k, resp.) has a string representation in whih any two strings ross atmost one. For simpliity, we use the same notation for the strings as for theorresponding verties.Fix arbitrarily an orientation of eah string. For any triple (x; y; z), 1 � x <y < z � k, let fxyz = 1 if along vy the rossing with vx follows the rossing withvz . Otherwise, set fxyz = 0.By Ramsey's theorem, there exists a \homogeneous" subset J � f1; 2; : : : ; kg,jJ j � log log k, suh that fxyz is onstant over all triples (x; y; z), 1 � x <y < z � k, x; y; z 2 J . We an assume without loss of generality that J =f1; 2; : : : ;mg, where m � log log k.For any 1 � i � m, the string vi rosses all other vj , 1 � j � m, i 6= jexatly one. Sine fxiz is onstant over all triples (x; i; z), 1 � x < i < z � k,one an �nd a non-rossing point on vi that divides vi into two parts, v<i andv>i , ontaining all rossings between vi and vx with x < i and between vi and vzwith z > i, respetively. The ars v<i and v>i are alled the lower part and theupper part of vi, respetively.Construt two 42-uniform hypergraphs, H< and H>, both on the vertex setf1; 2; : : : ;mg, as follows. For any 1 � x1 < x2 < � � � < x83 � m, there existsa string u = ufx1;x2;:::;x83g that rosses vx1 ; vx2 ; : : : ; vx83 , but no other vj . Thestring u rosses either the lower or the upper part of eah vxi , so for at least 42indies 1 � i � 83 it will ross, say, the lower (resp., upper) part. Suppose, forexample, that u rosses the lower (resp., upper) parts of vx1 ; vx2 ; : : : ; vx42 . Thenadd the hyperedge fx1; x2; : : : ; x42g to H< (resp., to H>).Repeating the above proedure for every 83-tuple 1 � x1 < x2 < � � � <x83 � m, the total number of hyperedges in H< and H> with repetitions is �m83�.However, the multipliity of eah hyperedge is at most �m�4241 �. Thus, the totalnumber of distint hyperedges in H< and H> is 
(m42) (i.e., at least onstanttimes m42). Suppose without loss of generality that H< has 
(m42) distinthyperedges.We an now apply a well known result of Erd}os [E65℄ (see also [B78℄ and[PA95℄, p. 151) to onlude that, for any �xed l and suÆiently large m, our hy-pergraph H< ontains a omplete 42-partite, 42-uniform subhypergraph K42l;:::;lwith l elements in eah of its lasses. (That is, K42l;:::;l has 42l verties, dividedinto 42 lasses of size l, and it onsists of all 42-tuples that ontain one vertexfrom eah lass.)For simpliity, denote by sji , 1 � i � 42, 1 � j � l the lower parts v<xk ofthe strings vxk orresponding to the verties of K42l;:::;l. By the onstrution, foreah 42-tuple (j1; : : : ; j42), 1 � j1; : : : ; j42 � l, there exists a string uj1;:::;j42 thatrosses sj11 ; : : : ; sj4242 , but no other string sji .
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s 42 ss 4242 Figure 2.Some of the strings representing a K423;:::;3.Color the 42-tuples (j1; : : : ; j42) with 42! olors, aording to order in whihthe rossings with sj11 ; : : : ; sj4242 our along uj1;:::;j42 . Thus, we an �nd at least
(l42) 42-tuples of the same olor (say, white). Suppose without loss of generalitythat, for eah suh 42-tuple (j1; : : : ; j42), the string uj1;:::;j42 �rst rosses sj11 , thensj22 ,..., and �nally sj4242 . Applying Erd}os's result again, if l is suÆiently large, wean �nd a subhypergraph K423;:::;3 � K42l;:::;l, all of whose 42-tuples are white.Again, we an assume without loss of generality that the strings orrespondingto the verties of K423;:::;3 are sji , 1 � i � 42, 1 � j � 3. Reall that eah sji isthe lower part of an original string vx, therefore, no two sji an ross eah other.(Indeed, the intersetion of vx and vy, x < y, must belong to the upper part ofvx and at to the lower part of vy.)Summarizing: we have 3 � 42 = 126 strings sji , 1 � i � 42, 1 � j � 3, no twoof whih interset. Moreover, for eah 42-tuple (j1; : : : ; j42), 1 � j1; : : : ; j42 � 3,there is a string uj1;:::;j42 that intersets the strings sj11 ; : : : ; sj4242 in this order,and does not interset any other sji . (See Fig. 2.) We would like to show thatthere are two di�erent strings of the type uj1;:::;j42 that ross more than one.First, we give a lower bound for the number of rossings r(u; u) between stringsof type uj1;:::;j42 .Let 1 � x � 41 be �xed. For any pair y; z, 1 � y; z � 3, onsider all stringsuj1;:::;j42 with jx = y and jx+1 = z, and let �y;z denote the set of their portionsbetween their intersetions with syx and szx+1. Clearly, we have j�y;zj = 340:Pik one element from eah �y;z, 1 � y; z � 3, and notie that at least onepair among these 9 ars must be rossing, otherwise, together with the stringss1x; s2x; s3x; s1x+1; s2x+1; s3x+1; they would give a string representation of H3;3, whihis impossible (see the �rst paragraph of this proof). Thus, for a �xed x, the totalnumber of rossings between the elements of �y;z and �y0;z0 over all y; z; y0; z0,



1 � y; z; y0; z0 � 3, (y; z) 6= (y0; z0) is at leastQ1�y;z�3 j�y;zj37�40 = 39�4037�40 = 380:Here the denominator, 37�40, is the number of 9-tuples of ars, one from eahset �y;z, 1 � y; z � 3, in whih a rossing pair of ars is �xed. Repeating thisount for every x, 1 � x � 41 and notiing that every time we ount di�erentrossings, we obtain that r(u; u) � 41 � 380:On the other hand, the number of strings of type uj1;:::;j42 is 342. If any twoof them ross at most one, than r(u; u) < 384=2, whih is a ontradits theabove inequality. This ompletes the proof of the lemma. 25 Drawings of omplete graphs { Proof of Theorem 3(i) It is easy to see that the order type on the verties of Kn (i.e., the orientationof its triples) determines the set of rossing pairs of edges, So the upper boundfollows from a result of Goodman and Pollak [GP86℄, that there are at most n6ndi�erent order types on n points. On the other hand, we an plae the vertiesof Kn on a irle, in (n � 1)! di�erent yli order, and eah plaement gives adi�erent list of rossing pairs of edges. It is also easy to ome up with a list ofn
(n) drawings suh that by relabelling the verties of any one of them, we donot obtain a drawing essentially the same as another.(ii) Suppose n is divisible by 4, and let vi = (�1; i); uj = (1; j); and wk =(0; k=2), for any 1 � i; j � n=4 and 1 � k � n=2. For every 1 � k < n=2,onnet wk and wk+1 by a straight-line segment. Furthermore, onnet everyvi to every uj by a line segment so that eah suh segment passes throughsome point wk . By slightly bending eah edge viuj , but keeping its endpoints�xed, we an ahieve that it passes either slightly above or slightly below wi+j .At eah edge viuj , we have two hoies, so there are 2n2=16 possibilities. Ineah drawing, any two edges ross at most one, and di�erent hoies give riseto di�erent rossing patterns. (Indeed, viuj passes above wi+j if and only ifit rosses the edge wi+jwi+j+1.) Finally, one an slightly perturb the vertiesso that no three of them would be ollinear, and onnet the missing pairs bystraight-line segments without reating more than one rossing between any pairof edges. Therefore, the number of di�erent rossing patterns is at least 2n2=16.



v1 v1

v3

v4 v3

v4 v2v2

v2

v4v3

v1 v1 v2

vv

v1

v2

v

v3v2

v1v3

v

v1

v

v3

v4

v

v

v1

v3

4

4 2 2

34

4

Figure 3.The eight ombinatorially di�erent drawings of K4.As for the upper bound, for a �xed drawing, for eah vertex vi, list the edgesinident to vi in lokwise order around vi. For every vertex, we have (n � 2)!possibilities, so there are ((n � 2)!)n < 2n2 logn di�erent sets of lists. We laimthat this set of lists uniquely determines the rossing pattern. To see this take twoedges, v1v2 and v3v4, and onsider the drawing of K4 indued by these verties,as a drawing on the sphere. Two spherial drawings of K4 are ombinatoriallyequivalent if the orresponding maps are isomorphi. There are 8 ombinatoriallydi�erent drawings of K4, with the property that any two edges have at most onepoint in ommon (see Fig. 3), and these drawings an be distinguished by lookingat the yli orders of edges inident to a vertex. Hene, the yli order of edgesat the verties determines whether v1v2 and v3v4 ross eah other.(iii) Suppose n is divisible by 3. For i = 1; 2; : : : ; n=3, let vi = (�1; i), wi = (0; i),and ui = (1; i). Connet every vi to every uj , as follows. Choose a number k,0 � k < n=3, and onnet both vi and uj to (0; k+") by a segment. Also onnetany two onseutive wi's by a segment. In the resulting drawing, any two have atmost two ommon points, and a di�erent hoie for any viuj results a di�erentrossing pattern. Therefore, the number of di�erent rossing patterns is n=3n2=9.Clearly, eah of these drawings an be extended to a drawing of the ompletegraph suh that still any two have at most two ommon points. For instane,slightly perturb the points together with the existing edges, so that the pointsare in general position, and add the missing edges as segments.
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