
On the diameter of separated point sets with manynearly equal distanes�J�anos Pahy Rado�s Radoi�i�z Jan Vondr�akxApril 8, 2005
AbstratA point set is separated if the minimum distane between its elements isone. We all two real numbers nearly equal if they di�er by at most one. Weprove that for any dimension d � 2 and any  > 0, if P is a separated setof n points in Rd suh that at least n2 pairs in �P2� determine nearly equaldistanes, then the diameter of P is at least C(d; )n2=(d�1) for some onstantC(d; ) > 0. In the ase of d = 3, this result on�rms a onjeture of Erd}os.The order of magnitude of the above bound annot be improved for any d.1 IntrodutionErd}os asked and partially answered numerous questions on the distribution of dis-tanes among n points in a Eulidean spae [E73℄, [PA95℄, [ST01℄, [MPS02℄, [KT04℄,[BMP05℄. Perhaps the best known question of this type is the so-alled \unit distaneproblem" he raised in 1946 [E46℄: Given n points in the plane (or, more generally, inRd), at most how many of the �n2� interpoint distanes an oinide? It is onjeturedthat in the plane this maximum is n1+ onstlog log n , whih is asymptotially sharp, for ex-ample for a pn�pn piee of the integer lattie. The best known upper estimate isonly O(n4=3) [SST84℄, [S97℄. In 3-spae, the urrently best upper bound is n3=2�(n),where �(n) is an extremely slowly inreasing funtion related to the inverse Aker-mann funtion [CEG+90℄. However, the true order of magnitude of this funtion is�J�anos Pah has been supported by NSF Grant CCR-00-98246, by a PSC-CUNY Researh Award,and by grants from OTKA, NSA, BSFyCity College, CUNY and Courant Institute of Mathematial Sienes, New York University,New York, NY, USA; pah�ims.nyu.eduzDepartment of Mathematis, Rutgers University, New Brunswik, NJ, USA;rados�math.rutgers.eduxDepartment of Mathematis, Massahusetts Institute of Tehnology, Cambridge, MA, USA;vondrak�math.mit.edu 1



probably loser to n4=3. In higher dimensions, the asymptotially tight answers are(see, e.g., [PA95℄): n2 �12 � 1d� +O(n) if d � 4 is even,n2�12 � 1d� 1� +O(n4=3) if d � 5 is odd.These questions are intimately related to problems onerning inidenes betweenpoints and urves, surfaes, et. (See [AS02℄, [PS04℄.)Erd}os observed that the answer to the unit distane problem does not remainthe same if one ounts the number of distanes that are nearly equal, where severaldistanes are said to be nearly equal if they di�er by at most 1, i.e. they all liein an interval [t; t + 1℄ for some t > 0. To exlude trivial examples, we onsideronly separated point sets, i.e., point sets in whih the minimum distane between twopoints is at least 1. Erd}os et al. [EMPS91℄ proved that for any t > 0, d � 2, and forany separated set P of n points (vetors) inRd, the number of point pairs fu;vg � Pwith jju� vjj 2 [t; t+ 1℄ is at most T (d; n) = n22 (1� 1d + o(1)), as n tends to in�nity.Here, T (d; n) denotes the number of edges in a balaned d-partite omplete graph onn verties [B78℄, i.e., in a graph whose verties are divided into d lasses, eah havingbnd  or dnd e elements, and two verties are onneted by an edge if and only if theybelong to di�erent lasses. This is known to be the maximum number of edges thata Kd+1-free graph of n verties an have.The above lower bound on the number of point pairs fu;vg � P with jju� vjj 2[t; t+1℄ an be attained for every t � t(d; n), as shown by the following onstrution.Let w1; w2; : : : ; wd be the verties of a regular (d � 1)-dimensional simplex of edgelength t, lying in the hyperplane xd = 0. At eah wi, draw a line perpendiular to thehyperplane xd = 0, and on eah of these lines pik bn=d or dn=de distint points whosexd-oordinates are integers between 0 and n=d, so that the total number of points isn (see Figure 1 for d = 3). If t is suÆiently large depending on d and n (roughly12d2n2), the distane between any pair of points seleted on di�erent perpendiularlines belongs to the interval [t; t + 1℄.
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Figure 1: n points in R3 an determine 13n2 nearly equal distanes.The question arises, what is the minimal diameter of a separated set of n points2



in Rd with 
(n2) nearly equal distanes? In the plane the answer is �(n2), by thePythagorean theorem. The problem beomes more interesting in higher dimensions.Notie that the diameter of the 3-dimensional on�guration depited in Figure 1 is
(n2). However, it is easy to �nd a set of n points in R3 with n24 nearly equaldistanes, whose diameter is O(n): Take two pn2 �pn2 integer grids in two parallelplanes at distane n2 from eah other (see Figure 2). Erd}os onjetured that thereexists no suh example with diameter o(n).
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Figure 2: An n-point separated set inR3 whih determines 14n2 nearly equal distanesand has diameter O(n).We prove Erd}os's onjeture in the following more general form:Theorem 1.1. Let d � 2 and  > 0 be �xed. Let P be a separated set of n points inRd suh that at least n2 pairs of points in P determine nearly equal distanes. ThenP has diameter at least C(d; )n2=(d�1) for some C(d; ) > 0.The onstrution depited on Figure 2 an be easily generalized to higher dimen-sions, showing that the bound in Theorem 1.1 is tight. Our proof of Theorem 1.1 isbased on Szemer�edi's regularity lemma for dense graphs [KS96℄, and on a Ramsey-type result for dot produts of vetors, derived in [APPRS05℄. In Setion 2, we reduethe problem to the \omplete bipartite" ase. That is, we show that it is suÆient toprove Theorem 1.1 for point sets P that an be obtained as the union of two sets Qand R suh that all distanes jju� vjj (u 2 Q;v 2 R) are nearly equal. At the endof Setion 2, we outline the proof in this speial ase. The argument is divided intothree steps, presented in full detail in Setions 3, 4, and 5.2 Redution to the omplete bipartite aseThe following result shows that it is suÆient to establish Theorem 1.1 in the \om-plete bipartite ase."
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Theorem 2.1. Let  > 0; t > 0; and let P be a set of n points in Rd with at leastn2 pairs fu;vg � P , suh that jju� vjj 2 [t; t + 1℄.Then there exist two subsets Q;R � P suh that jQj = jRj � n and jju� vjj 2[t; t+1℄ for all u 2 Q, v 2 R. (Here  := (d; ) is a positive onstant depending onlyon d and .)Proof. Let G = (V (G); E(G)) be the graph on the vertex set V (G) := P in whihtwo verties u;v 2 V (G) are onneted by an edge if and only if jju� vjj 2 [t; t+ 1℄.By the assumptions, we have e(G) = jE(G)j � n2.For any subsets X; Y � V (G), let e(X; Y ) denote the number of edges of G withone endpoint in X and the other in Y . For any v 2 V (G), let deg(v) stand for thedegree of v in G.In order to use Szemer�edi's regularity lemma in the onvenient and eÆient formproposed by Koml�os [KS96℄ (see also [H97℄), we have to introdue the notion ofsuper-regularity.De�nition 2.2. Let " > 0 and Æ > 0. Given a graph G = (V;E) and two disjointsubsets A;B � V , we say that the pair fA;Bg is ("; Æ)-super-regular if the followingtwo onditions are satis�ed:(i) e(X; Y ) > ÆjXj � jY j for every X � A; Y � B with jXj � "jAj; jY j � "jBj;(ii) deg(a) � ÆjBj for all a 2 A, and deg(b) � ÆjAj for all b 2 B.Lemma 2.3. (Koml�os) There exists a onstant "0 suh that if " � "0, t = (3=") log (1="),and G is a graph with n verties and n2 edges, then G ontains an ("; Æ)-super-regularpair (A;B) with jAj = jBj � (2)tbn2  and Æ � .Consider the graph G and set " = minf 14d+3 ; "0g. Using Lemma 2.3, we obtainan ("; Æ)-super-regular pair (A;B) with jAj = jBj � (2)tbn2 , Æ � , and t =(3=") log (1="). De�ne two maps !1, !2 : A [ B 7! Rd+2 as follows. For all u =(u1; u2; : : : ; ud) 2 A, v = (v1; v2; : : : ; vd) 2 B, let!1(u) = (u1; u2; : : : ; ud; jjujj2 � t2; 1);!2(u) = (u1; u2; : : : ; ud; jjujj2 � (t + 1)2; 1);!1(v) = (�2v1;�2v2; : : : ;�2vd; 1; jjvjj2);!2(v) = (2v1; 2v2; : : : ; 2vd;�1;�jjvjj2);Then, for all u 2 A, v 2 B, the edge fu;vg is in E(G), that is, jju� vjj 2 [t; t+1℄ ifand only if !1(u) � !1(v) � 0 and !2(u) � !2(v) � 0.We need the following lemma of Alon et al. [APPRS05℄ that an be establishedusing a onsequene of the Borsuk{Ulam theorem disovered by Yao and Yao [YY85℄.
4



�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

A B

A’ B’

A’’ B’’

Figure 3: Finding a omplete bipartite subgraph in G.Lemma 2.4. (Alon et al.) Let U and V be �nite sets of vetors in Rk. Then thereexist subsets U 0 � U; V 0 � V with jU 0j � 12k+1 jU j, jV 0j � 12k+1 jV j suh that eitheru � v � 0 holds for all u 2 U 0, v 2 V 0, or u � v < 0 holds for all u 2 U 0, v 2 V 0.Applying this lemma with k = d + 2 to the sets U := !1(A); V := !1(B), weobtain two subsets A0 � A; B0 � B suh that jA0j � 12d+3 jAj, jB0j � 12d+3 jBj, andeither !1(u) �!1(v) � 0 holds for all u 2 A0, v 2 B0, or !1(u) �!1(v) < 0 holds for allu 2 A0, v 2 B0. Observe that this orresponds to jju� vjj � t or jju� vjj < t.Applying the same one again to U 0 = !2(A0) and V 0 = !2(B0), we obtain subsetsA00 � A0; B00 � B0 of size jA00j � 12d+3 jA0j; jB00j � 12d+3 jB0j suh that either !2(u) �!2(v) � 0 holds for all u 2 A00, v 2 B00, or !2(u) � !2(v) < 0 holds for all u 2 A00,v 2 B00. Consequently the pairwise distanes jju� vjj for u 2 A00, v 2 B00 are eitherall in [0; t), all in [t; t+ 1℄ or all in (t + 1;1).We laim that the pairwise distanes between A00 and B00 must be all in [t; t+ 1℄.If this were not the ase, they would be all outside of [t; t + 1℄ and we would havee(A00; B00) = 0. However, by the ("; Æ)-super-regularity of the pair (A;B), we obtaine(A00; B00) > ÆjA00j � jB00j > 0, sine " = minf 14d+3 ; "0g and jA00j � 12d+3 jA0j � 14d+3 jAj �"jAj, jB00j � 12d+3 jB0j � 14d+3 jBj � "jBj.Thus, we onlude that jju� vjj 2 [t; t+ 1℄ for all u 2 A00, v 2 B00. Furthermore,both A00 and B00 are of size at least "jAj = "jBj � "(2)tbn2 , where " = minf 14d+3 ; "0gand t = (3=") log (1=") = O(d4d). Consequently, the sets Q := A00 and R := B00 meetthe requirements of Theorem 2.1. The onstant fator (d; ) is roughly O(d4d).It remains to establish Theorem 1.1 for separated point sets that an be partitionedinto two parts Q and R of size m suh that all pairs belonging to Q � R determinenearly equal distanes. The argument is divided into three steps.1. In the �rst step, desribed in Setion 3, we selet a set T � R of at most 2dpoints, spanning a \fat rosspolytope" with near-orthogonal axes. The \fatness"of T is measured by a ertain determinant D(T ) (whih orresponds to the5



volume of the rosspolytope assuming it is onvex). We show that there is a setT � R with D(T ) = 
(jRj) = 
(m). The existene of T relies heavily on theassumption that R is a separated point set.2. In the seond step (Setion 4), we bound the volume of the lous of points whosedistane from eah vertex of T belongs to the interval [t; t + 1℄. Note that thisregion an be obtained as the intersetion of jT j spherial annuli entered atthe verties of T . We show that this intersetion has volume O(td�1=D(T )).3. In Setion 5, we omplete the proof of Theorem 1.1 by observing that Q isontained in the region disussed in Setion 4, whose volume is O(td�1=D(T )) =O(td�1=m). Sine Q is a separated set of size m, the volume of this region mustbe 
(m). This implies t = 
(m2=(d�1)).3 Finding a fat rosspolytopeFirst, we onsider only one part of the bipartite subgraph, R, and we �nd a smallsubset T � R whih spans a suÆiently \fat" rosspolytope. In this setion, we arenot using the ondition of nearly equal distanes, only the fat that R is a separatedset. The following is our measure of \fatness".De�nition 3.1. Given a set T = fp1;q1; : : : ;pr;qrg, onsisting of r pairs of points,let D(T ) = [q1 � p1; : : : ;qr � pr; er+1; : : : ; ed℄where er+1; : : : ; ed are mutually orthogonal and also orthogonal to q1�p1; : : : ;qr�pr.For T = ;, we set D(T ) = 1.Note that 1r!D(T ) is the r-dimensional volume of the onvex hull of T , providedthat the points fp1;q1; : : : ;pr;qrg are in a onvex position. However, in the sequelthis fat will not be used.Now we an formalize the �rst step of the proof outlined at the end of the lastsetion. First, we need an elementary lemma bounding the size of a separated set ina given volume.Lemma 3.2. Let X � Rd be a separated set of points, and let B1=2(x) denote a ballof radius 1=2 entered at x. If B1=2(x) � Z for every x 2 X, thenjXj < dd=2 V ol(Z):Proof. The balls B1=2(x) are disjoint for all x 2 X. Their union is ontained in Z,therefore V ol(Z) �Xx2X V ol(B1=2(x)) = �d=22d�(1 + d=2) jXj > 1dd=2 jXj:6



The main result of this setion is the following.Lemma 3.3. Let R � Rd be a separated set of m points, of diameter �. Let Æ > 1and � = 1=(kpd) for some k 2 Z+. Then there is an orthonormal basis fe1; : : : ; edgand points fp1;q1; : : : ;pr;qrg = T � R (for some 0 � r � d; T possibly empty) suhthat1. For all k � r we have qk � pk = hkek +Pk�1j=1 �jkej, where hk � Æ; j�jkj � 1.2. D(T ) � � �d(Æ+3)�dm.3. The diameter of T is at most ��.Proof. First, we \redue" the diameter of R, whih must be ontained in a hyperubeH of side length �. We partition H into sububes of diameter ��. This an beaomplished, for example, by hoosing a = pd=� = kd and subdividingH uniformlyinto ad sububes of side length �=a = ��=pd. (Note that we are using very roughestimates; we make no attempt to optimize multipliative fators depending only ond.) By the pigeonhole priniple, there is a subset R1 � R suh that1. jR1j = n1 � m=ad,2. diam(R1) � ��.Let fp1;q1g be a pair of points at maximal distane in R1 and let h1 = jjq1 � p1jj.If h1 < Æ then we stop, set T = ; and hoose an arbitrary orthonormal basisfe1; : : : edg. In this ase, R1 is ontained in a hyperube of side length Æ, whihmeans (by Lemma 3.2) that n1 < dd=2(Æ + 1)d and m � adn1 < (d(Æ + 1)=�)d, so thestatement of the lemma is true.Otherwise, let e1 = (q1 � p1)=h1. Note that for any point x 2 R1, we havex � e1 2 [p1 � e1;q1 � e1℄, whih is an interval of size h1. We assume, for simpliity,that h1 is an integer, and subdivide the interval [p1 � e1;q1 � e1℄ into h1 unit intervals.By the pigeonhole priniple, there is a subset R2 � R1 suh that1. n2 = jR2j � n1=h1, and2. there exists b1 suh that for all x 2 R2 we have x � e1 2 [b1; b1 + 1℄.We ontinue this proedure, restriting our attention to the subspae orthogonalto the previously onstruted pairs of points. For k > 1, assume that we haveonstruted vetors e1; : : : ; ek�1 and subsets R1; : : : ; Rk. Denote by Sk�1 the subspaegenerated by fe1; : : : ; ek�1g and by S?k�1 its orthogonal omplement. Assume thatthe diameter of Rk projeted on S?k�1 is hk � Æ. Namely, there is a unit vetor ekorthogonal to e1; : : : ; ek�1, and there are extreme points pk;qk 2 Rk suh thatqk � pk = hkek + k�1Xj=1 �jkej (1)7
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Figure 4: The �rst two steps of onstruting the fat polytope (projetion onto S2).R3 will be the set of points onsidered in the next stage.for some j�jkj � 1. In addition, for every x 2 Rk, we have x � ek 2 [pk � ek;qk � ek℄.Again, there must be a subset Rk+1 � Rk suh that1. nk+1 = jRk+1j � nk=hk, and2. there exists bk suh that for all x 2 Rk+1 we have x � ek 2 [bk; bk + 1℄.Iterate this proedure as long as hk � Æ. Let r be the minimum index suh thathr+1 < Æ. If h1; h2; : : : ; hd � Æ, we set hd+1 = 0 and r = d. If r < d, hoose d � radditional unit vetors so that we have an orthonormal basis fe1; e2; : : : ; edg.We set T = fp1;q1; : : : ;pr;qrg. It remains to estimate the determinant D(T ).Note that due to (1), we haveD(T ) = [q1 � p1; : : : ;qr � pr; er+1; : : : ; ed℄ = h1h2 : : : hr: (2)Sine hr+1 < Æ, Rr+1 must be ontained in a hyperube of side length Æ and volume(Æ+ 1)d. By Lemma 3.2, we obtain nr+1 = jRr+1j < dd=2(Æ+ 1)d. On the other hand,we have nr+1 � nrhr � nr�1hr�1hr � : : : � n1h1h2 : : : hr � madh1 : : : hr :We assumed that eah hk is an integer; in general, we should onsider dhke andpartition eah interval [bk; bk+1℄ into dhke � hk(1+ 1=Æ) subintervals. This does notmake any signi�ant di�erene; in general, we have nr+1 � m=(ad(1+ 1=Æ)dh1 : : : hr).Finally using (2), we obtainD(T ) = h1h2 : : : hr � maddd=2(1 + 1=Æ)d(Æ + 1)d � � �d(Æ + 3)�dm: (3)8



4 Interseting the annuliIn the seond step of the proof outlined at the end of Setion 2, we use the rosspoly-tope T onstruted in Setion 3 to restrit the region of possible loations for thepoints in Q. These points must be at distane between t and t+ 1 from eah vertexof T ; this de�nes an annulus ontaining Q, for eah vertex of T . In fat, we onsideran interval of distanes [t � 12 ; t + 32 ℄, in order to ontain not only Q but also a ballof radius 1=2 around eah point in Q. First, we analyze the intersetion of two suhannuli.Lemma 4.1. Let jjp� qjj = h. De�ne an annulusAn(y) = �x 2 Rd : jjx� yjj 2 �t� 12 ; t + 32�� :Then the intersetion of An(p)\An(q) is ontained in a \slab" of thikness (4t+2)=hde�ned byL(p;q) = �x 2 Rd : �x� p+ q2 � � (q� p) 2 [�2t� 1; 2t+ 1℄� :Proof. Assume jjx� pjj; jjx� qjj 2 [t� 12 ; t+ 32 ℄. We have�x� p+q2 � � (q� p) = 12 jjx� pjj2 � 12 jjx� qjj2� 12 �t+ 32�2 � 12 �t� 12�2 = 2t + 1:Similarly, �x� p+q2 � � (q� p) � �2t� 1.With the help of this lemma, we are now able to bound the intersetion of theannuli entered at eah point of T .Lemma 4.2. Suppose that T = fp1;q1; : : : ;pr;qrg is a set of points as guaranteedby Lemma 3.3, for � = 2(t+ 1), � = 1=(16pd), Æ = maxf2d; 16pdg and t � 3. Forany y 2 T , de�ne the annulus An(y) entered at y as in Lemma 4.1. Then we haveV ol r\i=1(An(pi) \ An(qi))! � 100(4t+ 2)d�1D(T ) :Proof. Instead of diretly analyzing the intersetion of the above annuli, we applyLemma 4.1. Consider the regionR = L(p1;q1) \ L(p2;q2) \ : : : \ L(pr;qr):By Lemma 4.1,R = �x 2 Rd : �x� pi + qi2 � � (qi � pi) 2 [�2t� 1; 2t+ 1℄ for all i = 1; : : : ; r� :9
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Figure 5: The intersetion prism R = L(p1;q1) \ L(p2;q2) (projetion onto S2,r = 2). The prism extends inde�nitely in the dimensions orthogonal to S2.Sine the vetors q1�p1; : : : ;qr�pr are in the subspae Sr generated by fe1; : : : ; erg,we an regard R as a prism with an r-dimensional base Rr � Sr, extending inde�-nitely in the orthogonal subspae S?r generated by fer+1; : : : ; edg.Next, we alulate the r-dimensional volume of the base Rr. This is the same asthe volume of R on�ned to a unit hyperube in S?r :�R = fx 2 Rd : �x� pi + qi2 � � (qi � pi) 2 [�2t� 1; 2t+ 1℄ for all i = 1; 2; : : : ; rand x � ei 2 [0; 1℄ for all i = r + 1; : : : ; dg:�R is a set that maps to a hyperube of volume (4t+ 2)r via an aÆne transformationwhose Jaobian is D(T ). ThereforeV olr(Rr) = V ol( �R) = (4t+ 2)r=D(T ): (4)Finally, we interset R one again with an annulus entered at a point of T , forexample, with An(p1). In order to bound the volume of R \ An(p1), we need toargue that R is loated relatively lose to p1. For any point x 2 R and for anyk = 1; 2; : : : ; r, we havej(x� p1) � (qk � pk)j (5)� �����x� pk + qk2 � � (qk � pk)����+ �����pk + qk2 � p1� � (qk � pk)���� (6)� (2t+ 1) + ��������pk + qk2 � p1��������hk � 2(t+ 1)(1 + �hk); (7)using the de�nition of R and the fat that the diameter of T is bounded by �� =10



2�(t+ 1). We laim that for any k � rj(x� p1) � ekj � 4(t+ 1)� 1hk + �� (8)holds. Consider the index k maximizing j(x� p1) � ekj, and assume on the ontrarythat j(x� p1) � ekj > 4(t+1)(1=hk+�). Reall (1). In the basis fe1; : : : edg, we anwrite qk � pk = hkek +Pj<k �jkej, where hk � Æ and j�jkj � 1. We obtainj(x� p1) � (qk � pk)j = j(x� p1) � (hkek + k�1Xj=1 �jkej)j� jhk(x� p1) � ekj � k�1Xj=1 j(x� p1) � ejj � (hk � (k � 1)) j(x� p1) � ekj;using the maximality of j(x � p1) � ekj. Finally, taking into aount that hk � Æ �2(k � 1), we havej(x� p1) � (qk � pk)j > hk2 j(x� p1) � ekj > 2(t+ 1)(1 + �hk)whih ontradits (5)-(7). This proves (8). We assume hk � Æ � 16pd and we hoose� = 1=(16pd), whih implies thatj(x� p1) � ekj � t+ 12pd for all x 2 R and for all k � r: (9)Without loss of generality, assume that the base Rr is translated along the prism Rso that its r-dimensional aÆne hull ontains p1. Then every point x 2 Rr satis�es(x� p1) =Prj=1 ((x� p1) � ej)ej, andjjx� p1jj2 = rXj=1 ((x� p1) � ej)2 � r(t+ 1)24d � (t+ 1)24 :Thus, every point of Rr is at distane at most (t+ 1)=2 from p1.Now we are ready to estimate the volume ofR\An(p1). WriteR = Sx2Rr (x+ S?r ),where (x+ S?r ) denotes an aÆne subspae through x, orthogonal to Sr. Notie thatAn(p1)\ (x+S?r ) is a (d�r)-dimensional annulus, or the region between (d�r�1)-dimensional spheres of radii r1 =p(t� 1=2)2 � �2 and r2 =p(t+ 3=2)2 � �2, where� = jjx� p1jj � (t+1)=2. Let S(d�r�1) denote a (d� r� 1)-dimensional unit sphere.We getV old�r(An(p1) \ (x + S?r )) = Z r2r1 zd�r�1V old�r�1(S(d�r�1))dz� (r2 � r1)rd�r�12 V old�r�1(S(d�r�1)):11



We have � � (t+ 1)=2 andr2 � r1 �p(t+ 3=2)2 � (t + 1)2=4�p(t� 1=2)2 � (t + 1)2=4;whih an be veri�ed to be bounded from above by 3 for t � 3. The volume ofS(d�r�1) is bounded by 33 in any dimension. We obtain the volume of R \ An(p1)by integrating over all x 2 Rr:V ol(R \ An(p1)) = ZRr V old�r(An(p1) \ (x+ S?r ))dx< 100 ZRr rd�r�12 dx � 100(t+ 3=2)d�r�1 (4t+ 2)rD(T ) � 100(4t+ 2)d�1D(T ) ;using the volume of Rr from (4).5 Proof of Theorem 1.1 and onluding remarksNow we an omplete the proof of Theorem 1.1 in the omplete bipartite ase.Theorem 5.1. Let Q [R � Rd be a separated set of points suh that jQj = jRj = mand all distanes between x 2 Q and y 2 R are between t and t + 1. Then there is aonstant Cd > 0 suh that t > (Cd � o(1)) m2=(d�1):Proof. We an assume that t � 3. (For t < 3, there is only a onstant number ofpoints in Q that an �t within distane t + 1 from any y 2 R.) Note also that thediameter of R is at most � = 2(t+1), due to the ondition of nearly equal distanesbetween Q and R. Then the balls of radius 1=2 entered at eah point of Q aredisjoint and, by Lemma 4.2, must be ontained in a region of volume V � 100(4t +2)d�1=D(T ). Lemma 3.3 with � = 1=(16pd) implies that D(T ) � m=(16d3=2(Æ+3))d.By Lemma 3.2, we obtainm = jQj < dd=2 � 100(4t+ 2)d�1 (16d3=2(Æ + 3))dm ;(4t+ 2)d�1 > m2100(16d2(Æ + 3))d ;where Æ = maxf2d; 16pdg. Asymptotially (for d �xed and m!1), we havet > (Cd � o(1)) m2=(d�1):For large d, the multipliative onstant Cd is roughly 1=(128d3).12



Together with Theorem 2.1, this proves the main result, Theorem 1.1.Sine Theorem 2.1 provides only m � (d; )n where (d; ) � O(d4d), the loss offator O(d3) in Theorem 5.1 is insigni�ant. The onstant fator that we obtain forTheorem 1.1 is C(; d) � O(4d), i.e. doubly exponentially small in d. We did not tryto optimize this onstant.We ould have used Szemer�edi's original regularity lemma in plae of Lemma 2.3.However, this would have given a muh smaller regular pair (A;B) of density roughly: its size would have been only about n=tower(1=) (a tower funtion of 1=). Itwas shown in [APPRS05℄ that the 12k+1 -fator in Lemma 2.4 annot be substantiallyimproved.In [APPRS05℄, Lemma 2.4 was used to establish the existene of a positive on-stant � suh that every family F of n semi-algebrai sets inRd of onstant desriptionomplexity has two subfamilies F1;F2 � F , eah ontaining at least �n members,with the property that every member of F1 intersets all members of F2 or no memberof F1 intersets any member of F2. For other geometri onsequenes of Lemma 2.4,onsult [APPRS05℄. We believe that Lemma 2.4, in ombination with other ideas,suh as the regularity lemma, may be a useful tool for various other problems indisrete geometry and Ramsey theory.Finally, we mention a related open problem of Erd}os. Let P be a set of n pointsin Rd. We all P admissible if the unit distane is the minimum distane determinedby P and any two di�erent distanes determined by P di�er by at least 1. Erd}osasked for the minimum diameter of an n-element admissible set in Rd. For large n,it is known that the minimum is at least d � n1=(d�1). On the other hand, there existadmissible sets with diameter at most Cd � n2=(d�1) [B90℄.Referenes[APPRS05℄ N. Alon, J. Pah, R. Pinhasi, R. Radoi�i�, M. Sharir: Crossing patternsof semi-algebrai sets, J. Combinatorial Theory., Ser. A, to appear.[AS02℄ B. Aronov, M. Sharir: Cutting irles into pseudo-segments and improvedbounds for inidenes, Disrete Comput. Geom. 28 (2002), 475{490.[B78℄ B. Bollob�as: Extremal Graph Theory, London Mathematial Soiety Mono-graphs 11, Aademi Press, London, 1978.[B90℄ G. Baron: On point sets with di�erenes of distanes not less than the min-imum distane, Number-theoreti analysis (Vienna, 1988{89), 1{5, Leture Notesin Math. 1452, Springer, Berlin, 1990.[BMP05℄ P. Brass, W. Moser, J. Pah: Researh Problems in Disrete Geometry,Springer-Verlag, New York, 2005, to appear.13
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