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AbstratLet L be a olletion of n pairwise disjoint segments in general positionin the plane. We show that one an �nd a subolletion of 
(n1=3) segmentsthat an be ompleted to a nonrossing simple path by adding retilinear edgesbetween endpoints of pairs of segments. On the other hand, there is a set L ofn segments for whih no subset of size 2n1=2 or more an be ompleted to suha path.1 IntrodutionSine the publiation of the seminal paper of Erd}os and Szekeres [3℄, many similarresults have been disovered, establishing the existene of various regular subon�gu-rations in large geometri arrangements. The lassial tool for proving suh theoremsis Ramsey theory [2℄. However, the size of the regular substrutures guaranteed byRamsey's theorem are usually very small (at most logarithmi) in terms of the size nof the underlying arrangement. In most ases, the results are far from optimal. Onean obtain better bounds (n" for some " > 0) by introduing some linear orders onthe elements of the arrangement and applying some Dilworth-type theorems [1℄ forpartially ordered sets [9℄, [5℄, [8℄. A simple one-dimensional prototype of suh a state-ment is the Erd}os-Szekeres lemma: any sequene of n real numbers has a monotoneinreasing or monotone dereasing subsequene of length dpne. In this note, we givea new appliation of this idea.�Researh has been supported by NSF Grant CCR-00-98246. J�anos Pah has also been supportedby a PSC-CUNY Researh Award and by a grant from the Hungarian Researh Foundation OTKA.yCity College, CUNY and Courant Institute of Mathematial Sienes, New York University,New York, NY 10012, USA; pah�ims.nyu.eduzDepartment of Mathematis, Tehnion { Israel Institute of Tehnology, Haifa 32000, ISRAEL;room�math.tehnion.a.il 1



Figure 1: An arrangement of segments showing that f(n) � 2p2nA olletion L of segments in the plane is in general position if no two elements ofL are parallel, all of their endpoints are distint, and no three endpoints are ollinear.A polygonal path P = p1p2 : : : pn is alled simple if no pair of its verties oinide,i.e., pi 6= pj whenever i 6= j. It is alled nonrossing if no two edges share an interiorpoint. A polygonal path P is alled alternating with respet to L if every other edgeof P belongs to L.We onsider the following old problem of unknown origin: what is the maximumlength f(n) of an alternating path that an be found in any olletion of n pairwisedisjoint segments in the plane in general position? This question was inluded in a listof \Open problems in omputational geometry" olleted and annotated by Urrutia[11℄. The easy onstrution desribed there an be slightly improved to show thatf(n) � 2p2pn for n = 2k2. Consider a 2k-gon insribed in a irle C and replaeeah of its edges e with k pairwise disjoint hords of C, almost parallel to e, that arefarther away from the enter of C than e is. (See Figure 1.) It seems likely that theorder of magnitude of this bound is not far from optimal. For some similar problems,see [4℄, [6℄, [7℄, [10℄.First we onsider the speial ase when all segments ross the same line.Theorem 1. Let L be a olletion of n pairwise disjoint segments in general positionin the plane, all of whose members ross a given line. Then one an selet 
(n1=2)segments from L that an be ompleted to a nonrossing simple alternating path.The following result is an easy orollary of Theorem 1.Theorem 2. The maximum length f(n) of an alternating path that an be found inany olletion of n pairwise disjoint segments in the plane satis�es f(n) = 
(n1=3).To see that the latter result follows from Theorem 1, observe that (e.g., by theDilworth theorem) any olletion L of n pairwise disjoint segments has a subolletionL1 onsisting of least n1=3 segments whose projetions to the x-axis are pairwise2



disjoint, or a subolletion L2 onsisting of at least n2=3 segments, all of whih anbe rossed by a line parallel to the y-axis. In the �rst ase, the elements of L1 an beonneted to form an alternating path. In the seond ase, we an apply Theorem 1.2 Proof of Theorem 1Assume without loss of generality that all segments ross the y-axis, no two of themare parallel, and all 2n oordinates of their endpoints are distint. The above-belowrelation between the rossings of the segments with the y-axis indues a natural linearorder on the elements of L. We apply the Erd}os-Szekeres lemma to �nd a subsequeneof L onsisting of dpne segments with inreasing or dereasing slopes with respetto this order. Sine we an always ip the plane about the y-axis, we may assumethat the slopes of the elements of this subsequene are monotone inreasing. In whatfollows, for onveniene we assume that pn and all other numbers that appear inthe argument (exept the oordinates of the endpoints) are integers satisfying theneessary divisibility onditions so that we do not have to use \oor" and \eiling"operations. This will not e�et the asymptoti results obtained in this paper.To be more preise, we �nd a sequene of at least pn segments s1; : : : ; sm (m =pn) of L suh that if i < j, then si is above sj and the slope of si is smaller thanthat of sj (see Figure 2).Partition s1; : : : ; sm into k = m=5 groups, eah onsisting of 5 onseutive seg-ments. That is, let Gi = fs5(i�1)+1; : : : ; s5(i�1)+5g for every 1 � i � k. For eah Gi,apply again the Erd}os-Szekeres lemma and �nd a subsequene of 3 segments suhthat the x-oordinates of their right endpoints form an inreasing or a dereasingsequene. By ipping the plane about the x-axis, if neessary, we an also assumethat for at least half of the Gis, these sequenes are dereasing. From now on, wedisregard all other segments. Summarizing: we now have k=2 groups L1; : : : ; Lk=2,eah onsisting of 3 elements of L. For eah 1 � i � k=2, let Li = f`i1; `i2; `i3g, where`ab is above `a0b0 and its slope is smaller, whenever a < a0, or if a = a0 and b < b0.Moreover, for a �xed a and any b < b0, the x-oordinate of the right endpoint of `ab islarger than that of `ab0 . Let S := L1 [ : : : [ Lk=2.Denote by pab and qab the left endpoint and the right endpoint of `ab , respetively.For any two points r; s, let [r; s℄ stand for the segment onneting r and s.De�ne a set of auxiliary segments as follows. For 1 � a � k=2 and b = 1; 2, letzab = [qab ; qab+1℄. We say that zab is bad, if there is a segment in S that meets the interiorof zab . For any segment `tj 2 S meeting the interior of zab , we have t > a, beause allelements of [t<aLt lie stritly above zab , otherwise they would ross `ab . De�ne thewitness index of a bad segment zab as the smallest index t > a with the property thatthere exists an `tj meeting the interior of zab .Lemma 2.1. If the witness index of a bad segment zab is t, then `t1 meets zab . Moreover,qt1 must belong to the interior of the region enlosed by the y-axis, `ab , `ab+1, and zab .3
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Figure 2: The segments li1; li2; li3Proof. We know that t > a and that for some j the segment `tj rosses zab . Assumethat j > 1. Let W denote the region bounded by the y-axis, `ab+1, zab , and `tj. Thesegment `t1 lies above `tj, and the x-oordinate of its right endpoint qt1 is larger thanthe x-oordinate of qtj. Clearly, the intersetion point r of `tj and zab is the rightmostorner of the boundary of W . There is a point on `t1 whose x-oordinate is the sameas that of r. This point must lie above r and outside the region W . Sine `t1 rossesthe y-axis above `tj and below `ab+1, at a boundary point of R, and it has a pointoutside W , it must have another rossing with the boundary of W . Using the fatthat the elements of S are pairwise disjoint, this seond rossing must belong to zab .As for the seond part of the lemma, let R denote the region bounded by they-axis, `ab , `ab+1, and zab . We have seen that `t1 meets the boundary of R (at a pointof zab ). Sine `t1 is disjoint from both `ab and `ab+1, and it intersets the y-axis below`ab+1, it follows that `t1 annot ross the boundary of R a seond time. Therefore, qt1must belong to the interior of R.Lemma 2.2. No two di�erent bad segments an have the same witness index.Proof. Assume to the ontrary that t is the witness index of two bad segments, zaband za0b0 . Suppose without loss of generality that `ab lies above `a0b0 . We know that bothof them lie above `t1. As in the proof of Lemma 2.1, let R denote the region boundedby the y-axis, `ab , `ab+1, and zab . Similarly, let R0 denote the region bounded by they-axis, `a0b0 , `a0b0+1, and za0b0 . R and R0 do not overlap. Indeed, sine the elements of4



S are pairwise disjoint, R and R0 ould overlap only if `a0b0 rossed zab . However, thiswould ontradit the minimality of t.On the other hand, by Lemma 2.1, `t1 must interset both zab and za0b0 , and its rightendpoint qt1 must belong to the interiors of both R and R0. We thus obtained thedesired ontradition.Now we are in a position to prove Theorem 1.By Lemma 2.2, the number of bad segments is at most k=2. We say that an indexi (1 � i � k=2) is good if at least one of the segments zi1; zi2 is not bad. Obviously, atleast k=2 � k=22 = k=4 indies between 1 and k=2 are good. Assume without loss ofgenerality that the �rst k=4 indies are good. To omplete the proof it is suÆientto show how to draw a nonrossing simple alternating path P that uses the segments`i2; `i3 (and perhaps even `i1) for 1 � i � k=4 = 
(pn).Let the �rst points of P be q11 ; p11; q12; p12; q13; p13; in this order. That is, so far wehave built a \zigzag" path that uses the segments `11; `12; `13. Sine 2 is a good index,there exists a segment z2j (j = 1 or 2) whih is not bad. Let us extend P by addingthe verties p2j ; q2j ; q2j+1, and hene adding the edges `2j (from left to right) and z2j .Next we an add the point p2j+1 and, if j = 1, also the points q23; p23, zigzagging justlike before. Continuing in the same manner, we build a path P using at least twoedges from eah group Li (i � k=4). It is easy to hek that P is a nonrossing path,beause (1) its edges belonging to L � S are pairwise disjoint; (2) its edges to the leftof the y-axis do not ross any other edge, by the assumption that the slopes of theelements of S form an inreasing sequene; (3) its edges to the right of the y-axis arenot bad, therefore they do not ross any other edge of P . This ompletes the proofof Theorem 1.Referenes[1℄ R.P. Dilworth: A deomposition theorem for partially ordered sets, Ann. ofMath. 51 (1950), 161{166.[2℄ R.L. Graham, B.L. Rothshild, and J.H. Spener: Ramsey Theory (Seond ed.),Wiley, New York, 1990.[3℄ P. Erd}os and E. Szekeres: A ombinatorial problem in geometry, CompositioMath. 2 (1935), 463{470.[4℄ M. Ho�mann and C. Toth: Alternating paths through disjoint line segments,Inform. Proess. Lett. 87 (2003), 287{294.[5℄ D. Larman, J. Matou�sek, J. Pah, and J. Trsik: A Ramsey-type result forplanar onvex sets, Bull. London Math. So. 26 (1994), 132{136.[6℄ A. Mirzaian: Hamiltonian triangulations and irumsribing polygons of disjointline segments, Comput. Geom. 2 (1992), 15{30.5
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