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Abstract. The intersection graph of a set system S is a graph on the vertex set S, in
which two vertices are connected by an edge if and only if the corresponding sets have
nonempty intersection. It was shown by Tietze (1905) that every finite graph is the
intersection graph of 3-dimensional convex polytopes. The analogous statement is false
in any fixed dimension if the polytopes are allowed to have only a bounded number of
faces or are replaced by simple geometric objects that can be described in terms of a
bounded number of real parameters. Intersection graphs of various classes of geometric
objects, even in the plane, have interesting structural and extremal properties.

We survey problems and results on geometric intersection graphs and, more gener-
ally, intersection patterns. Many of the questions discussed were originally raised by
Berge, Erdős, Grünbaum, Hadwiger, Turán, and others in the context of classical topol-
ogy, graph theory, and combinatorics (related, e.g., to Helly’s theorem, Ramsey theory,
perfect graphs). The rapid development of computational geometry and graph drawing
algorithms in the last couple of decades gave further impetus to research in this field.
A topological graph is a graph drawn in the plane so that its vertices are represented
by points and its edges by possibly intersecting simple continuous curves connecting the
corresponding point pairs. We give applications of the results concerning intersection
patterns in the theory of topological graphs.
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1. From topological graphs to intersection graphs

A topological graph is a graph G drawn in the plane with possibly intersecting
curvilinear edges. More precisely, the vertices of G are points in the plane and
the edges are simple continuous curves connecting the corresponding point pairs
and not passing through any other point representing a vertex. These curves are
allowed to cross, but we assume for simplicity that any two intersect only in a finite
number of points, no two are tangent to each other, and no three share an interior
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point. In the special case when the edges are straight-line segments, G is called a
geometric graph. In notation and terminology, we do not distinguish between the
vertices (edges) of a topological graph and the vertices (edges) of the underlying
abstract graph.

In the past few decades, the theory of topological and geometric graphs has
become a fast growing separate field of combinatorial geometry with interesting
applications in graph drawing, in combinatorial and computational geometry, in
additive number theory, and elsewhere. See, e.g., [5], [74], [108], [113], [29]. Many
related contributions can be found in the proceedings of the annual Graph Drawing
symposia, published in Springer’s Lecture Notes series in Computer Science and
in two collections of papers [86], [87]. For surveys, see Chapter 14 in [88], Chapter
10 in [60], and Chapters 1 and 3 in [37].

In this section, we would like to illustrate by an example how questions about
topological graphs lead to the study of intersection graphs of geometric objects.

Definition 1.1. Two edges, e and f , of a topological graph are said to cross if
they share an interior point at which e passes from one side of f to the other side.
A topological graph is simple if any pair of its edges have at most one point in
common, which is either an endpoint or an interior point at which they cross.

A topological graph is called k-quasiplanar for some integer k ≥ 2 if no k of its
edges are pairwise crossing.

Using this terminology, a planar graph is 2-quasiplanar.

Conjecture 1.2. For any fixed k ≥ 2, the number of edges of every k-quasiplanar
topological graph with n vertices is O(n).

For k = 2, this follows from Euler’s polyhedral formula. For k = 3, for sim-
ple topological graphs, Conjecture 1.2 was proved in [4]. Without the simplicity
condition, the statement was first proved in [91]. The best known upper bound of
roughly 8n was established by Ackerman and Tardos [3]. For k = 4, the conjecture
has been verified by Ackerman [1].

For larger values of k, Conjecture 1.2 is still open. The upper bound n(log n)O(k)

for the number of edges of a simple k-quasiplanar topological graph was first proved
in [92], and then for all k-quasiplanar topological graphs in [91]. This was further
improved to n(log n)O(log k) by Fox and Pach [44]. For k-quasiplanar geometric
graphs and, more generally, for simple topological graphs whose edges are repre-
sented by x-monotone arcs (that is, curves in the plane such that every vertical line
intersects them in at most one point), Valtr [119], [120] showed that the number
of edges cannot exceed ckn log n. Extending Valtr’s ideas, Fox, Pach, and Suk [47]
(see also [103]) proved the following.

Theorem 1.3. [47] The number of edges of every k-quasiplanar topological graph
of n vertices with all edges represented by x-monotone arcs is at most 2ck6

n log n,
for a suitable absolute constant c.
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Using similar ideas, Suk and Walczak [112] established another generalization
of Valtr’s result: the number of edges of any simple k-quasiplanar topological graph
with n vertices is also Ok(n log n).

For convex geometric graphs, that is, for geometric graphs whose vertices form
a convex n-gon, the Conjecture 1.2 was proved by Capoyleas and Pach [23].

Theorem 1.4. [23] The maximum number of edges that a k-quasiplanar convex
geometric graph with n vertices can have is 2(k − 1)n −

(
2k−1

2

)
, provided that n ≥

2k − 1.

The intersection graph of a set system S is a graph on the vertex set S, in
which two vertices are connected by an edge if and only if the corresponding sets
have nonempty intersection.

A natural attempt to prove Conjecture 1.2, at least for geometric graphs, is the
following. Let Kk denote a clique (complete graph) on k vertices.

Problem 1.5. Given two integers k, m > 2, determine the smallest number α =
αk(m) with the property that the intersection graph of any system of m segments in
the plane which contains no Kk as a subgraph has at least α independent vertices.
The same problem can be raised for intersection graphs of continuous curves.

Assume for a moment that for some k there exists εk > 0 such that αk(m) >
εkm. This would immediately imply Conjecture 1.2 for geometric graphs. To see
this, let G be a k-quasiplanar geometric graph with vertex set V (G) and edge
set E(G). By definition, the intersection graph of the open segments representing
the edges of G contains no Kk as a subgraph. By our assumption, G has an
independent set of size at least εk|E(G)|. The corresponding segments induce a
planar subgraph of G. Therefore, we obtain εk|E(G)| ≤ 3n − 6, implying that
|E(G)| < (3/εk)|V (G)|, as required.

However, generalizing a construction of Pawlik et al. [99], Walczak [121] proved
that α3(m) = O(1/ log log m). Hence, the above attempt to verify Conjecture 1.2
fails. The best known lower bound on α3(m) is 1 over a polynomial in m (see [44]).
On the other hand, every Kk-free intersection graph of m unit segments in the
plane has an independent set of size at least εkm, for a suitable constant εk > 0.
Moreover, Suk [110] proved that for a fixed k, the chromatic numbers of these
graphs are bounded by an absolute constant. In [112], a similar statement was
proved for intersection graphs of continuous curves, each intersecting the x-axis in
precisely one point.

Due to space limitations and personal preferences, many classical topics con-
cerning geometric intersection patterns and graph representations will be sup-
pressed or not mentioned at all in this survey. These include Helly-type re-
sults [122], geometric transversal theory [27], approximate embeddings of graphs
into normed spaces [82], orthogonal and other geometric graph representations [77],
[79], epsilon-nets and VC-dimension [106].
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2. Forbidden subgraphs of intersection graphs

In combinatorics and computer science, several natural classes of geometric inter-
section graphs have been considered. On the line, the most frequently studied
objects are interval graphs: intersection graphs of intervals. They serve as the
simplest examples of perfect graphs, that is, graphs in which the chromatic number
of every induced subgraph is the same as the clique number (the size of the largest
clique). We know good characterizations of interval graphs [56],[57] in terms of
forbidden subgraphs, and simple linear time algorithms for their recognition [19].

There are various natural generalizations of interval graphs in the plane: in-
tersection graphs of (1) segments, (2) convex sets, (3) arcwise connected sets, etc.
The first class is contained in the second, the second class in the third. It is easy
to verify that class (3) coincides with the class of string graphs.

Definition 2.1. An intersection graph of simple continuous curves (“strings”) in
the plane is called a string graph.

The rank of a string graph G is the smallest integer r such that the vertices of
G can be represented by continuous curves in the plane, any two of which intersect
in at most r points, so that two vertices of G are connected by an edge if and only
if the corresponding arcs intersect.

The investigation of string graphs was initiated by Benzer [16] and Sinden [107],
in connection with genetic structures and printed electrical circuits.

Sinden [107] showed that the graph of fifteen vertices depicted below is not a
string graph, therefore, it does not belong to any of the classes (1)-(3). Ten years
later Ehrlich, Even, and Tarjan [28] constructed a string graph which is not a
segment intersection graph, that is, it belongs to class (3), but not to class (1).

Thus, a string graph cannot contain this 15-vertex graph as an induced sub-
graph. However, we cannot hope that string graphs have a good characteri-
zation in terms of forbidden subgraphs, unless P=NP: it was shown by Kra-
tochv́ıl [68] that recognizing string graphs is NP-hard, and by Schaefer, Sedgwick,
and Štefankovič [105] that it belongs to NP. The problem of recognizing whether
a graph is an intersection graph of segments is also known to be NP-hard (in fact,
equivalent to the existential theory of reals [69], [104]). Even for relatively simple
graphs, it may be a formidable task to decide whether they allow such a repre-
sentation by segments. For example, it was a longstanding conjecture that every
finite planar graph is an intersection graph of segments. It was finally verified by
Chalopin and Gonçalves in 2009 [24].
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Definition 2.2. A graph property P is called hereditary if every induced subgraph
of a graph with property P also has property P . The property that G is a string
graph obviously satisfies this condition.

The total number of graphs on n labeled vertices is 2(n
2). Since most of them

contain an induced subgraph isomorphic to the fifteen-vertex graph depicted above,
most graphs are not string graphs. Using the extremal theory of graphs with some
hereditary property, developed in [32], [102], [18], Pach and Tóth [96] established
the following more precise asymptotic results.

Theorem 2.3. [96] The number of string graphs on n labeled vertices is 2( 3
4+o(1))(n

2).

Theorem 2.4. [96] For any fixed positive k, the number of string graphs of rank
k on n labeled vertices is 2o(n2).

Every graph which is an intersection graph of segments is a string graph of
rank 1. For intersection graphs of segments, we have a much better result, which
can be deduced using a theorem of Olĕınik and Petrovsky [100], Milnor [85], and
Thom [116] from real algebraic geometry (see also [15]). The number of n-vertex
intersection graphs of segments is 2O(n log n), and the order of magnitude of the
exponent is correct. The best known upper bound, 2O(n3/2 log n), for the number of
n-vertex string graphs of rank 1 is due to Kynčl [72]. The structure of a “typical”
string graphs was studied in [61].

The above results can be applied to estimate the number of combinatorially
different ways a complete graph on n vertices can be drawn in the plane so that
any pair of its edges cross at most r times, where r is a fixed positive integer [96],
[72].

3. Ramsey-type properties of intersection graphs

By the quantitative form of Ramsey’s theorem, established by Erdős and Szek-
eres [35], every graph of n vertices has a clique or an independent set of size at
least constant times 1

2 log n. In a seminal paper written in 1989, Erdős and Haj-
nal [33] showed that the family of all graphs that do not contain a fixed forbidden
graph G as an induced subgraph, have much stronger Ramsey-type properties than
the family of all graphs. More precisely, they proved the following.

Theorem 3.1. [33] For any graph G, there exists a constant c = c(G) > 0 such
that every graph of n vertices that does not contain G as an induced subgraph has
a clique or an independent set of size at least ec

√
log n.

They raised the question whether one can always find a complete or empty in-
duced subgraph of size nc. This remains one of the most challenging open problems
in Ramsey theory.

A complete bipartite graph with ⌈n/2⌉ vertices in one class and ⌊n/2⌋ vertices
in the other is called a bi-clique of size n. Erdős, Hajnal, and Pach [34] proved a
bipartite variant.
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Theorem 3.2. [34] For any graph G, there is a constant c = c(G) > 0 such that
every graph on n vertices that does not contain G as an induced subgraph has a
bi-clique of size nc or the complement of such a bi-clique.

See [50] for a strengthening of this result.
Obviously, the last two theorems remain true for all hereditary families of

graphs, that is, for any family other than the family of all finite graphs that is
closed under taking induced subgraphs. The family of string graphs (intersection
graphs of continuous curves or arcwise connected sets in the plane) and, hence,
the families of all graphs that can be obtained as intersection graphs of segments,
convex sets, etc. belong to this category.

In [40], we introduced the following terminology.

Definition 3.3. A family F of graphs has the

1. (Weak) Erdős-Hajnal property if there is a constant c(F) > 0 such that every
graph in F on n vertices contains a clique or an independent set of size nc(F);

2. Strong Erdős-Hajnal property if there is a constant b(F) > 0 such that for
every graph G in F on n vertices contains a bi-clique of size b(F)n or the
complement of such a bi-clique.

It was shown in [6] that if a hereditary family of graphs has the strong Erdős-
Hajnal property, then it also has the Erdős-Hajnal property. The converse is false,
as is shown, e.g., by the family of triangle-free graphs. The first nontrivial result
showing that a geometric intersection graph has the Erdős-Hajnal property was
found by Larman et al. [73].

Theorem 3.4. [73] The intersection graph of n convex sets in the plane has a
clique or an independent set of size at least n1/5.

It is enough to assume here that every set of the family is vertically convex, that
is, a connected set with the property that every vertical line meeting it intersects
it in an interval or in a point. It is an interesting open problem to improve the
exponent 1/5 in the theorem. The best known upper bound, due to Kynčl [71], is
log 8/ log 169 ≈ .405 (cf. [62]), so there is plenty of room for improvement.

The family of intersection graphs of convex sets in the plane also has the strong
Erdős-Hajnal property [49]. However, the family of intersection graphs of verti-
cally convex sets does not [95]. By definition, any x-monotone curve, that is, any
continuous curve in the plane such that every vertical line intersects it in at most
one point, is vertically convex.

Theorem 3.5. [95] For every n, there is an n-member family of x-monotone
curves in the plane such that neither their intersection graph, nor its complement
contains a bi-clique of size at least cn/ log n. Here c is an absolute constant.

If we put an upper bound r on the number of times two curves are allowed
to meet, then the corresponding intersection graphs, string graphs of rank r (see
Definition 2.1) behave much nicer.
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Theorem 3.6. [48] The family of string graphs of rank r has the strong Erdős-
Hajnal property.

One of the most challenging unsolved problems in this area is to decide whether
the family of all string graphs has the (weak) Erdős-Hajnal property.

4. Intersection graphs of semialgebraic sets

According to Tietze’s theorem [117] cited in the abstract, every finite graph can
be obtained as the intersection graph of 3-dimensional convex bodies. This may
suggest that there is no hope to generalize the results in the previous section to
higher dimensions. Actually, this is not the case. The proof method of Pach-
Solymosi [93], where it was first shown that the family of intersection graphs of
segments in the plane has the strong Erdős-Hajnal property, can be extended as
follows.

Definition 4.1. [15] A semialgebraic set S in Rd is the locus of all points that
satisfy a given finite Boolean combination of at most d polynomial equations and
inequalities of degree at most d in the d coordinates. (Without loss of general-
ity, these three parameters are bounded by the same integer d.) The description
complexity of S is the smallest integer d for which S has such a representation.

Every element S of a family F of semialgebraic sets of constant description
complexity d can be represented by a point S∗ of a d∗-dimensional Euclidean
space (in which the coordinates are, say, the coefficients of the monomials in the
polynomials that define S). A graph (binary relation) R ⊂ F ×F is semialgebraic
if the corresponding set {(S∗, T ∗) ∈ R2d∗ | S, T ∈ F , (S, T ) ∈ R} is semialgebraic.
Semialgebraic hypergraphs (relations of h variables, h-ary relations) can be defined
analogously.

Theorem 4.2. [6] For any d, the family of all graphs that are associated with a
semialgebraic binary relation of description complexity at most d has the strong
Erdős-Hajnal property.

The relation that two semialgebraic sets, S, T ∈ F , with description complexity
d have nonempty intersection is semialgebraic. Thus, we have the following.

Corollary 4.3. [6] Any family of intersection graphs of (real) semialgebraic sets
of constant description complexity has the strong (and, therefore, the weak) Erdős-
Hajnal property.

Basu [14] extended this result for a broader class of algebraically defined sets (o-
minimal sets).

An n-vertex graph is called t-Ramsey if it contains no clique and no independent
set of size at least t. A probabilistic construction of Erdős [31] shows that there
are n-vertex graphs that are 2 log n-Ramsey, but it appears to be a formidable task
to find comparably good efficient constructions. The best known polynomial time
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deterministic algorithm, due to Barak et al. [11], produces only 2(logn)o(1)
-Ramsey

graphs. The previous record was held by Frankl and Wilson [51]. Theorem 4.2
above shows that no no(1)-Ramsey graphs can be defined using semialgebraic re-
lations of constant description complexity. This settles a conjecture of Babai [10].

Fox, Gromov, Lafforgue, Naor, and Pach [39] proved the following far-reaching
generalization of Theorem 4.2.

Theorem 4.4. [39] Let α > 0, let F1, . . . ,Fh be finite families of semialgebraic
sets of constant description complexity, and let R be a fixed semialgebraic h-ary
relation on F1 × · · · × Fh such that the number of h-tuples that are related (resp.
unrelated) with respect to R is at least α

∏h
i=1 |Fi|. Then there exists a constant

c′ > 0, which depends on α, h and on the maximum description complexity d of
the sets in Fi (1 ≤ i ≤ h) and R, and there exist subfamilies F ′

i ⊆ Fi with
|F ′

i | ≥ c′|Fi| (1 ≤ i ≤ h) such that F ′
1×· · ·×F ′

h ⊆ R (resp. (F ′
1×· · ·×F ′

h)∩R = ∅).
Moreover, each subset F ′

i consists of exactly those elements of Fi that satisfy a
certain semialgebraic relation of constant description complexity.

Apart from the fact that the last statement also handles semialgebraic hyper-
graphs (h-ary relations), it also strengthens Theorem 4.2 in another direction. It is
not just a Ramsey-type theorem, which guarantees that at least one of two or sev-
eral possibilities will occur. It is a so-called “density theorem,” which tells us that
if sufficiently many h-tuples are related by the relation R (that is, the h-uniform
semialgebraic hypergraph R has sufficiently many hyperedges), then there are h
large subsets F ′

i ⊆ Fi (1 ≤ i ≤ h) such that no matter how we pick an element
from each, the resulting h-tuple is related (is a hyperedge of R).

By repeated application of this statement, one can obtain an even stronger
Szemerédi-type partition theorem. An equipartition of a finite set P is a partition
P = P1 ∪ . . . ∪ Pk into almost equal parts. That is, |Pi| = ⌊|P |/k⌋ or ⌈|P |/k⌉ for
every i.

Theorem 4.5. [39] For any h, d and for any ε > 0, there exists K = K(ε, h, d)
satisfying the following condition. For any k ≥ K, for any semialgebraic relation
R on h-tuples of points in a Euclidean space Rd with description complexity at
most d, every finite set P ⊆ Rd has an equipartition P = P1 ∪ . . . ∪ Pk such that
all but at most an ε-fraction of the h-tuples (Pi1 , . . . , Pih

) have the property that
either all r-tuples of points with one element in each Pij are related with respect
to R or none of them are.

The investigation of semialgebraic versions of Ramsey’s theorem for h-ary rela-
tions was initiated in [25]. Let Nd

h(n) be the smallest integer N such that for any
semialgebraic relation R on h-tuples of N points in Rd with description complex-
ity at most d, there is a homogeneous subset of size n, that is, a subset with the
property that either all of its h-tuples belong to R or none of them does. It was
shown that the function Nd

h(n) grows in n as a tower of height h − 1, and that in
some sense this result is optimal. This is one exponential better than the behavior
of the general Ramsey function for arbitrary h-ary relations.

For some related results and geometric applications, see [39], [20], [13], [30],
[12], [111].
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5. Intersection graphs and partially ordered sets

Given a partially ordered set (P, <), its incomparability graph is the graph with
vertex set P , in which two elements are adjacent if and only if they are incompa-
rable. Incomparability graphs are fairly well understood. In 1950, Dilworth [26]
proved that every incomparability graph is a perfect graph, so the chromatic num-
ber of an incomparability graph is equal to its clique number. Gallai [56] gave a
characterization of incomparability graphs in terms of minimal forbidden induced
subgraphs, and there exist polynomial time algorithms to recognize them [58].

There is a curious relation between incomparability graphs and string graphs
(Definition 2.1), which was first observed by Golumbic, Rotem, and Urrutia [59]
and, independently, by Lovász [76].

Theorem 5.1. [59], [76] Every incomparability graph is a string graph.

The converse is obviously not true. For example, a cycle of length five is
a string graph, but it is not perfect, therefore, it cannot be an incomparability
graph. Kleitman and Rothschild [64] showed that the number of incomparability
graphs on n vertices is only 2(1/2+o(1))(n

2), which is much smaller then the number
of string graphs, asymptotically given in Theorem 2.3.

Nevertheless, it was shown by Fox and Pach [45] that most string graphs con-
tain huge subgraphs that are incomparability graphs. The geometric conditions
somehow seem to enforce a partial order on the curves.

Theorem 5.2. For every ε > 0 there exists δ > 0 with the property that if F is
a family of curves whose string graph has at least ε|F|2 edges, then one can select
a subcurve γ′ of each γ ∈ F such that the string graph of the family {γ′ : γ ∈ F}
has at least δ|F|2 edges and is an incomparability graph.

This implies that every dense string graph contains a dense spanning subgraph
(i.e., a dense subgraph on the same vertex set) which is an incomparability graph.
However, it is not true that every dense string graph contains a dense induced
subgraph with a linear number of vertices that is an incomparability graph. Indeed,
since every incomparability graph is perfect, this would imply that every string
graph has a clique or an independent set of size at least constant times

√
n. This

is certainly false, e.g., for the construction of Kynčl, mentioned after Theorem 3.4.
Fox [38] proved that incomparability graphs “almost” have the strong Erdős-

Hajnal property.

Theorem 5.3. [38] If n is large enough, the incomparability graph of every n-
element partially ordered set, or its complement, the comparability graph, has a
bi-clique of size at least n

4 log2 n . This bound is tight up to a constant factor.

The second part of this statement, combined with Theorem 5.1, immediately
implies that the family of string graphs does not have the strong Erdős-Hajnal
property (which was Theorem 3.5).

In [42], Theorem 5.3 was generalized to several partial orders. Note that the
proof of Theorem 3.4 is based on the fact that on any family of (vertically) convex
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sets in the plane, we can define four partial orders so that two sets have nonempty
intersection if and only if they are incomparable by all of them. Using the general-
ized version of Theorem 5.3, we obtain that the intersection graphs of (vertically)
convex sets in the plane also “almost” have the strong Erdős-Hajnal property. As
was mentioned in Section 3, for convex sets a stronger statement is true (which
does not hold under the weaker assumption of vertical convexity).

Theorem 5.4. [49] The family of intersection graphs of finitely many convex sets
in the plane has the strong Erdős-Hajnal property.

The dimension of a partially ordered set (P, >) is the minimum number of
linear extensions of the relation “>” such that their intersection is “>.” For the
proof of Theorem 5.4, one has to consider a new type of extremal problem for
incomparability graphs: What is the maximum number of edges that an n-vertex
incomparability graph of a partial order of dimension d can have if it does not
contain, say, a complete bipartite subgraph Kr,r, for a fixed r? The same question
can be asked about comparability graphs and also for the case where the condition
on the dimension is dropped.

In the same paper, a stronger form of Theorem 5.3 was proved for dense graphs.

Theorem 5.5. [49] For every ε > 0, there exists δ > 0 such that every incom-
parability graph with n vertices and at least εn2 edges contains a bi-clique of size
δn/ log n.

Combining this result with Theorem 5.1, we obtain

Corollary 5.6. For every ε > 0, there exists δ > 0 such that every string graph
with n vertices and at least εn2 edges contains a bi-clique of size δn/ log n.

The formulation of Theorem 5.3 may suggest a certain kind of symmetry be-
tween incomparability and comparability graphs. However, Theorem 5.1 has no
analogue for comparability graphs. The following strengthening of Theorem 5.3 is
also slightly asymmetric.

Theorem 5.7. [49] There is constant c > 0 such that the incomparability graph
of every n-element partially ordered set has a bi-clique of size at least cn/ log n, or
its complement, the comparability graph, has a bi-clique of size at least cn.

6. Intersection graphs and planar separators

Given a family of continuous curves (strings) in the plane, introducing a vertex at
each intersection point and each endpoint of the curves, we obtain a planar graph.
Under some fairly natural conditions, there are few strings that connect far-away
parts of this planar graph. In such cases, there is a good chance that we can use
the Lipton-Tarjan separator theorem for planar graphs [75].

A separator for a graph G = (V, E) is a subset V0 ⊂ V such that there is a par-
tition V = V0∪V1∪V2 with |V1|, |V2| ≤ 2

3 |V | and no vertex in V1 is adjacent to any
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vertex in V2. The Lipton-Tarjan separator theorem states that every planar graph
with n vertices has a separator of size O(

√
n). By a classical theorem of Koebe [65],

every planar graph can be represented as the intersection graph of closed disks in
the plane with disjoint interiors. Miller, Teng, Thurston, and Vavasis [84] found a
generalization of the Lipton-Tarjan separator theorem to higher dimensions. They
proved that the intersection graph of any family of n balls in Rd such that no k of
them have a point in common has a separator of size O(dk1/dn1−1/d).

Fox and Pach [41] established the following common generalization of the sep-
arator theorems of Lipton and Tarjan and of Miller et al. in the plane.

Theorem 6.1. [41] If F is a finite family of Jordan regions with a total of m
boundary crossings, then the intersection graph of F has a separator of size O(

√
m).

Corollary 6.2. [41] If F is a finite family of curves in the plane with a total of m
crossings, then the intersection graph (string graph) of F has a separator of size
O(

√
m).

Using Theorem 6.1 and Theorem 1.4, one can deduce the following.

Theorem 6.3. [41] Every Kk-free intersection graph of convex bodies in the plane
with m edges has a separator of size O(

√
km).

Notice that in this statement, the size of the separator is bounded in terms of
the number of edges of the intersection graph, rather than the number of vertices.
Nevertheless, since planar graphs are K5-free and (by Koebe’s theorem) can be
obtained as intersection graphs of convex bodies, Theorem 6.3 also implies the
Lipton-Tarjan separator theorem.

Fox and Pach [43] made the following conjecture, much stronger than Corol-
lary 6.2.

Conjecture 6.4. [43] Every string graph with m edges has a separator of size
O(

√
m).

In [43], a weaker bound, O(m3/4
√

log m), was established. This bound was used
to deduce the following interesting property of string graphs. Let Kk,k denote the
complete bipartite graph with k vertices in each of its classes (that is, a bi-clique
of size 2k).

Theorem 6.5. [43] For any positive integer k, there is a constant c(k) such that
every Kk,k-free string graph with n vertices has at most c(k)n edges.

This is in sharp contrast with the general behavior of graphs. According to the
Kővári-Sós-Turán theorem [67], for a fixed k, every Kk,k-free graph with n vertices
has at most O(n2−1/k) edges. For k > 2, this bound is not known to be optimal,
but the right exponent is definitely at least 2− 2/k > 1 (see, e.g., [17]). It is a rich
and active subfield of extremal graph theory to estimate the maximum number of
edges of a B-free graph of n vertices, for a given bipartite graph B. Theorem 6.5
shows that for string graphs there is no such theory: no matter what B is, the
maximum is O(n).



12 János Pach

Matoušek [83] came close to proving Conjecture 6.4. He adapted some powerful
techniques developed by Feige, Hajiaghayi, and Lee [36], who used the framework
of multicommodity flows to design efficient approximation algorithms for finding
small separators. See also [66].

Theorem 6.6. [83] Every string graph with m edges has a separator of size at
most O(

√
m log m).

In [46], the last theorem was utilized to deduce that Theorem 6.5 is true with
c(k) = k(log k)O(1), which is not far from being optimal. It is conjectured that
the best possible value of c(k) for which the theorem still holds satisfies c(k) =
O(k log k).

7. The theory of topological graphs

It was probably Erdős who first suggested in the 1960s that some of the basic ques-
tions in extremal graph theory have natural analogues for geometric or topological
graphs. For instance, what is the maximum number of edges that a geometric
graph of n vertices can have without containing a fixed “forbidden” configuration,
that is, a set of edges such that their intersection pattern is specified. The first
such result, in which the forbidden configuration consisted of 2 disjoint edges (that
cannot have any endpoints or internal points in common) was published by Avital
and by Erdős’s close friend, Hanani [9]. The answer is n. Thirteen years later, in
his master’s thesis [70], Kupitz started to explore these questions systematically.
Alon and Erdős [7] proved that every geometric graph with no 3 disjoint edges
has O(n) edges. The first general bound was established in [98] and uses partial
orders.

Theorem 7.1. [98] For any integer k ≥ 2, the maximum number of edges of a
geometric graph with n vertices that contains no k disjoint edges is Ok(n).

The best known value of the constant hidden in the Ok-notation is O(k2)
(see [118]). It is perfectly possible that this bound can be improved to O(k),
which would be best possible.

It is conjectured that Theorem 7.1 remains true for simple topological graphs,
i.e., for topological graphs in which every pair of edges intersect in at most one
point (Definition 1.1). For the case k = 2, Conway made the following stronger
conjecture, which has become known as the “thrackle conjecture”.

Conjecture 7.2. [123] Every simple topological graph with n ≥ 3 vertices that
contains no 2 disjoint edges has at most n edges.

It is known that every such graph has a linear number of edges in n (see [78],
[21], [52]). The thrackle conjecture has been verified for simple topological graphs
with x-monotone edges ([94], cf. Theorem 3.5) and in the case where all vertices
lie on a circle and all edges in its interior [22].
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We do not know whether the analogue of Theorem 7.1 is true for simple topo-
logical graphs, when k ≥ 3. All we know is that, according to [97], the maximum
number of edges of a simple topological graph with n vertices that contains no k
disjoint edges is n(log n)O(k). In the most optimistic scenario, this bound could
be improved to O(kn). Suppose that this is the case. This would imply that a
complete simple topological graph with n vertices (and

(
n
2

)
edges) must have at

least cn disjoint edges, for a suitable constant c > 0. Suk [109] proved a weaker
bound.

Theorem 7.3. [109] Every complete simple topological graph with n vertices must
have at least cn1/3 disjoint edges, for a suitable constant c > 0.

An alternative proof of this theorem was found by Fulek and Ruiz-Vargas [53].
Ruiz-Vargas has recently announced the improved bound cn1/2−ε, for every ε > 0.
Both proofs break down if we want to extend Theorem 7.3 to all dense simple
topological graphs, that is, to graphs with at least δn2 edges for some δ > 0.
We cannot generalize this statement even for complete bipartite simple topological
graphs.

In Section 1, we considered the “dual” problem, where the forbidden configu-
ration consists of k pairwise crossing edges. Recall that topological graphs with
no k pairwise crossing edges are called k-quasiplanar (see Definition 1.1). What is
the maximum number of edges that a k-quasiplanar topological graph of n vertices
can have? The conjectured answer is Ok(n) (or perhaps even O(kn); cf. Conjec-
ture 1.2). As was mentioned in Section 1, this is known to be true only for k ≤ 4.
Presently, the best upper bound is n(log n)O(log k).

If the stronger conjecture was true, i.e., every k-quasiplanar graph of n vertices
had at most O(kn) edges, it would follow that every complete topological graph of
n vertices has at least cn pairwise crossing edges, for a suitable constant c > 0. For
geometric graphs, Aronov et al. [8] established a weaker statement, dual to Theo-
rem 7.3: Every complete geometric graph with n vertices must have at least cn1/2

pairwise crossing edges, for a suitable constant c > 0. A similar statement holds
for all reasonably dense topological graphs, in which any pair of edges intersect at
most a bounded number of times.

Theorem 7.4. [44] For every ε > 0 and for every integer t > 0, there exists
δ = δ(ε, t) > 0 with the following property. Every topological graph with n vertices,
in which no two edges intersect in more than t points, has at least nδ pairwise
crossing edges.

It follows from the results in [46] that if we drop the assumption in the last theorem
that every pair of edges intersect in at most t points, then we can guarantee the
existence of only nδ/ log log n pairwise crossing edges.

More complicated forbidden configurations have also been considered. For in-
stance, let k be a positive integer and let G be a geometric graph with n vertices
that contains no two sets of edges, E1, E2 ⊂ E(G), each consisting of k pair-
wise crossing edges, such that every edge in E1 is disjoint from every edge in E2.
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Fulek and Suk [54] proved that then G has at most Ok(n log n) edges, and they
conjectured that the correct order of magnitude is linear for every fixed k.

Let k and l be fixed positive integers. A (k, l)-grid in a topological graph is a
pair of subsets, E1, E2 ⊂ E(G), with |E1| = k, |E2| = l such that every edge in
E1 crosses every edge in E2. If, in addition, each Ei consists of disjoint edges, the
(k, l)-grid is called natural. It is known that every n-vertex topological graph with
no (k, l)-grid has Ok,l(n) edges [89], [115].

Conjecture 7.5. [2] For any positive integers k and l, there exists a constant ck,l

such that every simple topological graph on n vertices with no natural (k, l)-grid
has at most ck,ln edges.

This conjecture would immediately imply that Theorem 7.1 generalizes to sim-
ple topological graphs. It would also imply that every simple topological graph
on n vertices which contains no (k, l)-grid such that all 2(k + l) endpoints of its
edges are distinct, has at most Ok,l(n) edges. We cannot even verify this weaker
conjecture. We can prove only the following.

Theorem 7.6. [2] For every positive integer k, there is a constant ck such that ev-
ery topological graph on n vertices that contains no (k, k)-grid with distinct vertices
has at most ckn log∗ n edges, where log∗ denotes the iterated logarithm function.

It was already pointed out by Klazar and Marcus [63], in a slightly different
formulation, that the proof of the Marcus-Tardos theorem [80] can be easily mod-
ified to prove that Conjecture 7.5 is true for convex geometric graphs, that is, for
geometric graphs whose vertices form the vertex set of a convex n-gon.

The above mentioned results and conjectures might suggest that for every non-
trivial forbidden configuration F of a fixed size, the maximum number of edges
that an F -free geometric or topological graph with n vertices can have is linear in
n. However, this is not the case. It was shown in [90] that the maximum number of
edges of a geometric graph with n vertices, containing no self-intersecting path of
length 3, is at most cn log n for a suitable constant c, and that the order of magni-
tude of this bound cannot be improved. This result was extended by Tardos [114]:
for every k ≥ 3, he constructed geometric graphs with a superlinear number of
edges that contain no self-intersecting path of length k. As a corollary, one can
obtain a simple characterization of all abstract graphs G, for which all geometric
graphs with n vertices that contain no self-intersecting subgraph isomorphic to G
have O(n) edges: these graphs are forests with at least two components that are
not isolated vertices.

Note that there exist arbitrarily large (abstract) graphs with a superlinear
number of edges that contain no cycle of a fixed length k. For example, it is well
known that for k = 4, there are C4-free graphs with n vertices and ( 1

2 + o(1))n3/2

edges (see [17], [55]). On the other hand, improving an argument of Pinchasi and
Radoičić [101], Marcus and Tardos [81] obtained the following almost tight result.

Theorem 7.7. [81] Every topological graph on n vertices that contains no self-
intersecting cycle of length 4 has at most O(n3/2 log n) edges.



Geometric Intersection Patterns and the Theory of Topological Graphs 15

References

[1] Ackerman, E., On the maximum number of edges in topological graphs with no four
pairwise crossing edges, Discrete Comput. Geom. 41 (2009), 365–375.

[2] Ackerman, E., Fox, J., Pach, J., and Suk, A., On grids in topological graphs, in: 25th
Symp. Comput. Geometry (SoCG 2009), ACM Press, New York, 2009, 403–412.

[3] Ackerman, E. and Tardos, G., On the maximum number of edges in quasi-planar
graphs, J. Combin. Theory, Ser. A 114 (2007), 563–571.

[4] Agarwal, P. K., Aronov, B., Pach, J., Pollack, R., and Sharir, M., Quasi-planar graphs
have a linear number of edges, Combinatorica 17 (1997), 1–9.
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[8] Aronov, B., Erdős, P., Goddard, W., Kleitman, D. J., Klugerman, M., Pach, J., and
Schulman, L. J., Crossing families, Combinatorica 14 (1994), no. 2, 127–134.

[9] Avital, S. and Hanani, H., Graphs, continuation, Gilyonot Le’matematika 3 (1966),
no. 2, 2–8.

[10] Babai, L., Open problem, in: Proc. 5th Hungar. Conf. Combin. (A. Hajnal and V.
T. Sos, eds.), Keszthely, Hungary, 1976, Vol. 2, North Holland (1978), 1189.

[11] Barak, B., Rao, R., Shaltiel, R., and Wigderson, A., 2-source dispersers for no(1)

entropy, and Ramsey graphs beating the Frankl-Wilson construction, Ann. of Math.
(2) 176 (2012), no. 3, 1483–1543.
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[40] Fox, J. and Pach, J., Erdős-Hajnal-type results on intersection patterns of geometric
objects, in: Horizons of Combinatorics, Bolyai Soc. Math. Stud. 17, Springer, Berlin,
2008, 79–103.

[41] Fox, J. and Pach, J., Separator theorems and Turán-type results for planar intersec-
tion graphs, Advances in Mathematics 219 (2008), 1070–1080.



Geometric Intersection Patterns and the Theory of Topological Graphs 17

[42] Fox, J. and Pach, J., A bipartite analogue of Dilworth’s theorem for multiple partial
orders, European J. Combin. 30 (2009), no. 8, 1846–1853.

[43] Fox, J. and Pach, J., A separator theorem for string graphs and its applications,
Combin. Probab. Comput. 19 (2010), no. 3, 371–390.

[44] Fox, J. and Pach, J., Coloring Kk-free intersection graphs of geometric objects in
the plane, European J. Combin. 33 (2012), 853–866.

[45] Fox, J. and Pach, J., String graphs and incomparability graphs, Adv. Math. 230
(2012), no. 3, 1381–1401.

[46] Fox, J. and Pach, J., Applications of a new separator theorem for string graphs,
Combin. Probab. Comput. 23 (2014), no. 1., 66–74.

[47] Fox, J., Pach, J., and Suk, A., The number of edges in k-quasi-planar graphs, SIAM
J. Discrete Math. 27 (2013), 550–561.
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[66] Kolman, P. and Matoušek, J., Crossing number, pair-crossing number, and expan-
sion, J. Combin. Theory, Ser. B 92 (2004), no. 1, 99–113.
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