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1. Introduction

Let a, fi and y be order types and r a positive integer. The part&orb
relation [I]

a-48, r)’ (1)

expresses, by deli&ion,  the following condition. If S is an ordered set,
of order type tp A’=  a, and if the set [S]”  of all subsets of 8 of exactly r
elements is arbitrarily expressed as the union of two sets K,, K,, then there
always exists a set Xc X such that either tpX =p and [X~‘C&,, or
tpX=y  and [X]’ cK1. The following result is known [l ; Theorem 251
involving the least infinite ordinal wO  = OJ and the negation a-t+  (/3, Y)?  of (1).

THEOREM 1. Given po&ve  integers m and n, there is a positive integer
l,Jm,  la)  such th,at

w. lob,  n) + h w. nJ2,

for  every ordinal y c ~~Z,(rn,  n). The nzcmber  l,(m,  n) is the least positive
integer 1 such that, whenever p(X,  p) ~(0, 1)  for 0 < A,  p < 1, then there always
exists either (i) a system A,,  . . . , i&+,  of m distinct numbers out of 0, 1, . . , l- 1.
such that p(&,  AJ  = 0 jar 0 <i <j  cm,  or (ii) a system A,,  . . . , A,-, of n distinct
numbers out of 0, . . . . I- 1 such that ~(4,  hj)=p(Xj,  &)=l for O<i<j<n.

It will be seen that Z,(m,  n) is characterized by a finite combinatorial
property and can therefore be determined for every given pa.ir  m, n. We
have Z,(l,  n)=Z,(m,  l)= 1 for all m and n, and I,(m,  2)==  2+l  for rn< 4.
In Theorem 2 of this note we show that, more generally, there is a positive
integer Z(m,  n) such that, for every ordinal CC  and positive integers m, n,

w,E(m,  n)+(m, c.oan)2.

We recall that w,  is the least ordinal whose cardinal is K,. We give an
explicit upper estimate for Z(m,  12). We conjecture that Z,(m,  n) can be
taken as 1 (m, n) but have only been able to prove this when m < 4 and n < 2.

Theorem 3 is a I1 stepping-up ” result of the general form : if av-+(~)kl
for all Y < n and certain JE,  and if every a, is a power of o, then x tl,, +( 3, 8)“.
The symbols involved here will be defined in $6.

Theorem 4 was suggested by the following corollary of Theorem 2.
Let the binary relation x<y be defined on a set S and have the property
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that for x, ye S exactly one of the relations x = y ; x<y ; y+ x holds. Then,
given a positive integer a, there always exists a subset X of S, of cardinal
a, such that the given relation is transitive on X, provided that S has at
least 2*-l  elements. This result was first obtained by R. Stearns [7]. His
proof is reproduced in [8  ; p. 1261 and is very simple indeed. In the present
note we establish a similar result for infinite cardinals a,

We should like to thank the referee for his helpful suggestions and,
above all, for having pointed out two errors in the first version of this
paper.

2 . Small letters denote ordinals unless another convention is introduced.

T H E O R E M  2 . Given positive integers m and 72, there is a positive integer
Z(m,  n) such that, for every u.

o,Z(m,  n) +(m, UI,~)~. (2)

If lor(m,  n) denotes the least number l(m,,  n)  such that (2) holds for a given IX,
then?

Za(m,  n)< (2n-3)-l[2+l(r,-  l)“+n-21, (3)

y+W  w, nJ2 (4)

for every y c CO,  &(m,  n). Also, (4) hold8 for  every u and every y c w,l,,(m,  n).

Remarlcs. (i) We conjecture that Za(m,  n) = I,[m,  n). This has so far
only been proved when m < 4 and n < 2.

(ii) If in the first relation of Theorem 1 we make n-tw  we obtain,
formally,

024(m,  0~~)~ (m < CO),

a relation which was, in fact, proved by Specker  [3].  It is not known
whether the same process, when applied to the relation (2) of Theorem 2,
leads to a correct relation. This has not even been decided for CI  = 1 and
m= 3 when we are led to the relation

o,w4(3,  qwp.

3. Before proving Theorem 2 we introduce some notation and con-
ventions. For u </I  we put [rx, 8) = (5 : et<  t<p}. Capital letters denote
sets, and ) A 1  denotes the cardinal of A. By / aI we denote the cardinal
ofasetorderedaccordingtothetypea. ByAcB,A+B,A-BandAB
we denote inclusion in the wide sense, union, difference and intersection
respectively. Also, ZZ  (vEN)  A, and II (vEN)  A, are alternative ways of
denoting unions and intersections. If S is ordered and [S]‘=E(~E.L)K,,

f The right hand side of (3) is a positive integer, equal to I+ (n- 1) C(p<pla - 1) (n-1)“.
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then we put

[Kn]=  {tpX  : xcs;  [X]‘Gz,) @EL).

If, in addition, r = 2 then we put

We use the obliteration operator A whose effect on a well-ordered sequence
consists in removing the member above which it is placed. The symbol
(XtJ,  *-*, 3:,}+  denotes the set {x0,  . . ., &} and also expresses the condition
that xp # x,  for p -K v < n. Following Tarski,  we denote by cf(or)  the least /l
such that K, is the sum of N,  ca~rdinals  less than X,. We put a’ = X, if
a = X,  and cf(cc)  = /3. The symbol A -t  ‘B denotes the set A +-  B and, at
the same time, expresses the condition that AB=0.  More generally,
X’(v  < n) A, denotes the set X(v < n)A, and also expresses the condition
that A,A,=M for p<v<n. If, for v <n, S,  is an ordered set then
Xc(v  <n) S,(tp)  denotes the set X=Z’(v  < n) X,  and expresses the fact that
S is ordered in such a way that the order in each S,  is preserved and every
member of S, precedes every member of S,  for p < v < n.

4 . We need the following result in the theory of graphs due to de Bruijn
and Erd&  [2].  Let c < w, and let l?  be a finite directed graph such that
from every node of I’ there start fewer than c edges. Then the chromatic
number of I’ is less than 2c. For convenience we state this result without
using the language of graphs and give the very simple proof.

4B)=lb  :(P, Y)“QlI  <c<w @<PI*

Then  there are numbers k,, . . . , i$, < 2c - 1 such that k, # k, whenever (/3,  y) E Q.

Proof. The case p = 0 is trivial. Let p b 1 and use induction over p.
Put  wW=l{y  : b% Y)E& or (y, /?)E Q31  (p <p). We may assume that
w(O)>  . . . > w(p- 1). By induction hypothesis there are numbers
&0, . . . . hPp-i  < 2c - 1 such that k,# k, whenever j3,  y <p-  1 and (p,  7)~  &.
Since

there is kpvl  < 2c-  1 such that Xc,-,  # k, whenever (/3, p- 1)~ & or
(11 - 1, /3)  E  Q, This proves the lemma.

5. Proof of Theorem 2. Let aa 0. Then, clearly, for 1 <n CO, we
have Z,( 1, m) = 1 and 1,(2,  n)  = n. It is known ([5],  also [l ; Theorem 441) that

w, -+(~cl,  oJ2. (5)

Hence l,(v)%,  1) = 1 for 1~ WZ, <w. It is now easily verified that (3)  holds
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for m < 3 and arbitrary ti,  and also for n = 1 and arbitrary m. Therefore
it suffices to consider the case when m > 3 and n > 2, and we may assume
that l,(p,  n)  exists for I 6 p cm.

Let 1 <J-J  < w and w,p++(m,  w,n) 2. This is, for instance, true if 1, = 1.
Let S=C(n<p)S,(tp), where tpS,=o, for n<p.  Then tpS=w,P,
and there is a partition [Xl2  = K, + K, such that

m t4Kll:  wan ~[m. (6)
By (5) and the relations o > m &[K,]  there is a set 8,’ c 8, such that
IS,‘I=K,  and [X,‘12cK1  for ~<p.  Put IV=  ((/3,  y)  : {/3,  r)+c[O,p)).
We define operators O,, 0, which operate on systems (A,, . . ., A,-,)
of p sets A,cS,’ and are defined as follows. We have, for h<  2,
OAc&  --a, A,-,) = (Aoh,  . ..) A;-,).  We now define A,,A.

(i) If there is a pair (8,  Y)EN  such that, for suitable sets A,‘cA,  and

4‘cAy,we  havejAg’I=IAY’I=K,andIU,(z)A,‘I<K,forzEAB’,  then
we choose such p,  y and put A,O=A,‘;  Ayo=A,‘;  Ano=A,  for
~~[O,~)-~~,y}.The~~~A~*~=jA~~[=N,and~U,(x)A,~~<X,fors~A~O.
If there is no such pair (j3, y)  then we put A,” = A, for T <p.

(ii) If there is a pair (/3, y)~iV  such that, for a suitable element EEA@,
we have / U,(Z)A,l=X,, then we choose such j3 and y and put
AB1=AB-(x  :  I U,(x)A,I<X,);  A,1=A,  f o r  a~[O,p)-  (182.  T h e n
1 Uo(x)Ayll=Xa  for sApl. If there is no such pair (j3, r) then we put
A.r=A,for  rr<~.

We now iterate these operators 0, and put in particular

op--I)  oo*@-l)(  So’,  . . . , s;-,) = (So”,  . . .) s;-,)*

Then 8,”  c 8,’ c X, and I 8,” I = K, for n <p.
Denote by 9 the set of all pairs (j?,  y) such that 8,  y<p and

I U,,(X)  X7”  I< 8, for XE  8,“. Then, by definition of S,‘,  (71,  T) E P for
7 <p. We have, for j3 <p and all XE  S,“,

/ uo(x)Sy”j<h  if @, y)EP,

=K,  if (/J,Y)EN-~.

In order to see this we need only observe that the relations between
cardinals of sets of the form U,(x)  A which have been established by an
application of 0, and 0, are not destroyed by any further applications
of the operators 0 ,,.

Let /3, y <JJ  and XE  8,“. Then tp V,(x)  Sy”=w,, if (8,  y) $P. More-
over, by (6) and the definition of I,  (m - 1, n) = c, say, we have tp U,(z)  < o, c.
Hence v(p) KC, where

w?=l~r  :(P,  r,EN--e  W<P,).
By applyinng the lemma to the set & =N-  P we find numbers
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k ,,, . . ., kPvl < 2c- 1 such that k, # k, whenever @, ~)EN-  P. Put
M,={,3: k,=p} for p<2c-1. We may assume that ] MO ( a~(  2c  - 1)-l.
We have (fl,  y) E P whenever /3, YE  M,.

Case 1. 1 M,,  12 it. Then C (ATE  MO) S,” =I  27,  + . . . + T,-, (tp), where
tp Ty=tidl  for vcn and

IU&)T,I<%  (p,  v<n;  =TJ.

Cme  la. cf(a)  = CI.  Then we write

((v, u)  : v<n;  a<w,}= ((v,, up)  : p<O&}.

We can choose x,,,  , . . , gwz such that

xp@vp-  ({xo, . . . . i,}+qT<p) U&J) f o r  p<Wa.

Put X = (zp  : p c 03.  Then [X] 2 c K, and tp X 2 W, w which contradicts (6).

Cme  lb. cf(R)  < CI.  Let r = wcfCa).  We can write

{(v,  7) : v<n;  7<r]= {(v,, T& : per}. (7)

Also, N,  = I;  (p < r) a(p), where

Irl<u(O)<....<b(r)<X,,
( 14P)  ’ =ab)  (~4. I (8)

The a(p) can be found by the following standard procedure. There are
cardinals b(p)  < N,  such that X d = I;  (p < r) b(p). Then, by definition of r,
we have

sup(p<fS)I,(p)<K,=sup(p<r)b(p) for j5<r.

Hence there is pO  < r such that b(pJ  > 1 r j, and we can find inductively
ordinals pl, , . . , jr such that

b(p,,)>C(X<~,)b(~)+sup(~<~,)b(p~)  for x,<r.

Now we may put a(X)  = (b(p,))*  for )I < r, where b+ denotes the least
cardinal greater than b.

WecanwriteT,=E(p<r)Y”,(p)  (tp),whereIG!‘,(p)[=a(p)  (vcn;  p-zr).
Let Y, v’cn;  per; ZE T,(p).  Then / U,(x)  Z’V*I  c X,.  There is a@, v’) c r

such that 1 U,(z)  T,,  j <a x 5, v’)).  Put +)=max(v’-~n)&  v’). Then,( (

by (8),  there are a set T,‘(p) c T,(p)  and a number vy(p) <r such that

l~,'IP)I=4P), (9)

+)=?Ty(P)  ( vcn;  p<r;  wzT,‘(p)).

Then

I U&)  T;l -+,(d) ( v, v’cn;  p<r;  scT,‘(p)).
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There is T(P)  such that p < T(P) <r and

/x(xETy’tp))  u&)T,,  i <a(+@)) (5 v’<n;  p<d. (10)

We now define ordinals s(p) for p < r. Let p,,  < r, and let the ordinals s(p)
be defined for p <p,,  and satisfy s(p) < r for p < pO. Then we can choose
s(ps)  such that pO  f s(pO)  K r and

wm&o(+(P)))) <+(4PJ)). (11)

This defines s(p) for p cr. Now consider the sets A,, . . . . 4 defined
inductively by

A,,  = T&o 7 4%)u 0
-~Wpo;  =:A,)  u,t4 (Po<f9.

Let p,, < r. Then

~B(p<p,)a(r(r(s(p))))  (by  (10))

< t-4 (+bo))) (by  (11))

= j T:,,(+P*)))  ( (by  (9)).

Hence

/%,1=+(&~))  3%3)  bo-).

It now follows from (7) that tp I;(p < r) A, > w, n. Since, in addition,
[Z (p < r) A ,J* c K, we have a contradiction against (6).

Case 2. ji&,l<n. ThenIp(2c-l)-1<~JI’,/fn-1;  ~<(n-1)(2c-1).
Hence Z,(m,  a) exists, and we may put in all foregoing relations
p=Za(m,  ?a)-1. w e note that p > 0. We have thus shown that

Z,(m,n)-l$(n-1)(2Z,(m-1,%)-l).

Put n-l=q and Z,(p,n)-l=dd,  (2<p<mm).  Then ~4~<q(2d,-,+l),
i.e.,  dm+e<2q(dm-l+e),  where e=p(2q-1)-l.  Hence

d,SeC (2q)m-2(d2+e)=  (2q)m-2(g+e)
which is the same as (3).

We  now prove (4). Let tpS=y<w,Z,(m,  n).  Then y=maI’+s’,
where E’  c Z,(m,  la)  and s’ -c w,. We have S=S,+S,(tp);  tpS,=u,Z’;
tp &=s’.  By definition of lor(m,  ti)  there is a partition [A!!?~]~= K,,  -t- K,
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such that (6) holds. Then we can write [S12=  K, + ‘I&,  and we have,
obviously, w,n I[&]. Hence (4) follows.

To complete the proof of Theorem 2, let us suppose that y < w,  &(m,  n).
Then y = W,  I” + s”, where 2” c Z,(m,  n) and s” < wb. By the property of
&,(nt,  n) stated in Theorem 1, there is a function p(h,  P)E  (0, 11, defined for
A,  p -< I”,  such that

(i) there is no set {A,,,  . . ., J&r)+  c [0, Z”) such that

p(&,  A,)=0 for i<j<nt,

(ii) there is no set (ho,  . . . . Anel)+  c [0, Z”) such that

p(&, Aj)=p(hi,Ai)=  1 for i<j<n.

Let S= [0, y) and order S by magnitude, so that tp S = y. Then
[S12 = K, + ‘X1,  where

K,=({co,X+ 7,  W,v+T’}  : A, A’<lf’;  XfX’;  p(X,  X’)=O; T<T’<O,  .1

Then it follows from the property (i) of p(A,  p) that m $[A?,]  and from the
property (ii) that w,  n $[&]. Hence (6) holds, and Theorem 2 is established.

6. Before stating our next theorem we introduce another kind of
partition relation. Let GC  and p be order types and let k be an ordinal.
Then the relation-t

a -+  (Phl

expresses the following condition. Let S be an ordered set and tp S= CI.
Let S = I%  (K  < k) K,” Then there always exists a number K < Ic such that
tpK,> p. We recall that initial ordinals are ordinals 8 such that E < 6
implies 1 E]  <IS].

THEOREM 3. Let n be an ordinal. Let a= a,+. . . + b, and
j? = & + . . . + ji&, where, for v < n, a, is such that$

a, -fb,,  0, (12)

and /3,  is an initial ordinal. Suppose that

av-+(13)k1  Wn; lWPl). (13)

Then a-+(3,8J2. (14)

COROLLARY. Jf Cf(a)=a, then

0 2p+1+,(3,  t&*+1)2a ($2  < w). (15)

t This relation is a ~pcial  case of the relation CC-+(&’  which is deEned  in the obvious
way.

$ As is well known, (12) holds if and  only if cry  is either zero or a power of w.
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Remarks. (i)  For 61=  0 the relation (15),  in fact, the stronger result

wl+@  +( 2h,  w1+q2 (p < 01;  h < w)

has already been obtained by E. C. Milner  [4].
(ii) It is not known whether (15) remains valid when cf(a)  < u.

7. Let us begin by deducing the corollary from the theorem. We apply
Theorem 3 with n=w,p ; 01,=w,p+~  and &,=oa for v<n. Then (14)
becomes (15),  and we need only verify (12) and (13) which amounts to
showing that ~,P+~-+(w,*+l)~l  (kc wJ,  Let k be fixed, kco,. Then,
clearly, w,~-+(w,~)~~.  Let q<w, and suppose that

w,*4(w,Q)k1. P3)

It suffices to deduce that

wag+1  -+(w,g+l)kl. (17)
Let tpS=w,g+land  S=x((K<k)K,. Then S=X(v<w,)X,(tp),  tpS,=o&q
(v < %A Then, for v<w,, we have S,,  = I;  (K < k) 8, K, and therefore,
by (16),  there is K, < k such that tp S,,  KKv  = w,@. Since cf (a)  = CI,  there are a
numberK<kandasetNc[O,w,)suchthat[M(=N,andKv=Kfor  SM.
Then

tpK,~~(vE~f)tpSyKK=~(v~~~)w,g=wag+l,

and (17) follows.

8. Proof of Theroem 3. Let tp A,=  tl,  (v < 72) and order the set
P=  {(v,  2) : Y <n;  xEd,)lexicographically.  Thentp P=u.  Let cr++(3,  /3)2.
Then there is a partition [PI2  = K,  -I-K, such that

3 ~[W, (18)
B ICKII. (19)

We have to deduce a contradiction. We can write

{(v, t) : v<la;  t<j?,}=((Y(h),  l(A))  : Ad], @O)

where Z is the initial ordinal satisfying [ I]  = 1 PI.  We now define elements
po,  , . . , fl of P. Let X,  < I, and suppose that p,,, . . . , j?A,~  P. We shall define
pAo.  Put QA= lJa(p,J  for A<;\,. Then, by (18),  [Q,J2CKI  and hence, by
(19),  tpQ,$j3forX<A,.  Sincej)bIcI~ Iwededucefrom  (13) that

tp z (A < ho) QA~=~LW (21)

We have ~Xo~<~Z~=~~~  and so 18121 and n>l. If ,B=l then a-(3,  1)2,
so that a= 0 and therefore, by (13),  O= c~,+(l)~~  which is false. Hence
(p122 and we may put k=l in (13) and obtain q,>,5  (v<n). Therefore
KPO,  .“3 ~~~l~l~Xol~lBI~l~v~~o~l  and  hence

(22)
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It follows from (21)  (22) and (12) that

tP~(X<&l)(Q,+ {z%K+ %0,=tP+(U)~

where w4 = I(!4  4 : x-q (P < n)*

Hence we can choose

P,,Ep(u(a))-z(x<x,)(&,+  h>).

This defines a set X= {p,,,  . . . . #1)+  which satisfies [Xl2 cK,. We have, by
WV, I XP(4 I 2 I A I and hence, since & is an initial ordinal, tpXP(v)  > jl,
(u < n). But then tpX=E(v<n)tpXP(V)>C(v<n)j3V=/3  which
contradicts ( 19). This proves Theorem 3.

9. In this final section we consider a binary relation x<y defined on a
set S, such that for all x, Y/E  S exactly one of the three reIations  z = y ;
x<  y ; y/<x  holds. The relation is said to be transitive on a subset X of S if,
for 2, y, ZEX,  whenever s< y and y< x, then z<z.

THEOREM 4. Let a be a cardinal. Then the relation x< y is transitive
on some subset X of S such that ] X I= a, provided that

(i) ISl>2a-1 if a < X,,
(ii) ] S/  2 Ho if a=&,

( i i i )  jSI>I;(bca)2”  i f  a;>&,
where the summation e&ends  over all cardinals b less than a.

Remarks 1. If a> X,,  and if the following ,weak  version of the
generalised continuum hypothesis is assumed : 2b < a for b < a, then (iii) is
thesameasISI>a.

2. The condition under (i) is best possible for 1 < a < 3.

.E’roo$  of Theorem 4. Case 1. a < &,.  Although, as was mentioned
in the introduction, there is a very simple proof for this case in [S],  it is of
interest to show that the conclusion can be deduced from Theorem 2.
We may assume that a > 2 and S = [0, 2”-l).  Let R = [0, ~2~4).  Then
[R]a=Ko+‘K1,  where

K,=({wA+ 7,  OX’ + 7’)  : A,  A’ < 2a-1; A<h’  ; 7 < 7) < w 1 .

We order R be magnitude. Then w2  $[KJ. By (3) we have &(a,  2) < 2a-1
and therefore, by (2),  tp R+(a, ~2)~.  Hence aE[&,],  and there is a set

T= {wAO-i-~O,  . . . . wA,-~  + yl} + = R

such that [T12  cK,, We can choose the notation in such a way that
To< . . . <Ta-l < w. Then, by definition of K,, rr, < T*  and &,<b forp < q c a,
so that we may put X = (ha,  . . . , h,-,).
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C a s e  2 .  a>K,. We first show that

I q-+(4,  e. (23)

If a=&,  then ISI&,, and (23) follows from [6].  Now let a = X, > N,.
BY (s),  wn-+(3,  on) *. Hence, by [l], Theorem 39 (i), we have, for every
ordinal ,8 such that ) /?I  > Z (A < w,)  21AI’,  the relation /3+(4,  w,+  l)s  and
therefore

ISb(4, aJS- (24)

Now

C(~<w,)2’~“~~((h<W)No+~(V<n)~(w”~~<<w,+,)2N~

=N,+~CIv<n)2NYNy+l=~CIb<a)2*<ISI.

Hence in (24) we may  replace 1 p [ by 1 S 1,  and (23) follows.
We apply (23) to the partition [KJ3=KO+‘K,,  where

K,= ({x,  y, 2)  : r<y<z<r).

Then we have the following cases.

Case 2a. There is a set A = {x0,  x1,  x,,  x3)+  c 8 such that [AIs CR,.
Then we can choose the notation in such a way that xO<x,<xfl:,ixO. Then,
by definition of K,, x,<x,<x3<x0.

Case  2al .  x2:2<x3. Then xz<x3<x,<x,  which contradicts x1<x8.

Case 2a2.  x31x2. Then x3<x,<xO<x3  which contradicts x31(x0.

Case 2b. There is a set B c S such that 1 BI  = a and [B13  cK,. Let
x, y, ZEB  and x<y<z. Then x #z. If zix,  then (x.  y,  Z}E& which is
false. Hence x<z,  and we may put X = B. This proves Theorem 4.
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