PARTITION RELATIONS AND TRANSITIVITY DOMAINS
OF BINARY RELATIONS

P| ERDOS and R. RADO

1. Introduction

Let a, B and ¢ be order types and r a positive integer. The partition
relation [1]

x—>(B{ )1 (1)

expresses, by definition,| the following condition. If 8 is an ordered set,
of order type tp 8= a, and if the set [ST| of all subsets of § of exactly
elements is arbitrarily expressed as the union of two sets K| K] then there
always exists a set X o 8 such that either tp X] = and [X] < K, or
tpX =+ and [X] = K,| The following result is known [1; Theorem 25]
involving the least infinite ordinal wy = w and the negation a«-- (8] y)] of (2.

TaroreM 1. Given positive integers m and =, there is a positive integer
lo(m] m) such thatl

wy fo(m] m) > (m] wy n)?
y+>(m, wyn)?

for every ordinal y < wyly(m] n). The number lj(m| n) is the least positive
integer 1 such that, whenever p(A| u) €{0, 1} for 0 < A, u <1, then there always
exists either (i) a system A, . .., A,,_, of m distinct numbers out of 0,1 .., 1 1.
such that p(A;JA;) =0 for 0 <d<j<mjor (i) asystem A, ..., A,_j of n distinct

numbers out of O, . . . . I< 1 such that p(A;] A,)=p(,, A)=1for 0<i<j<n.

It will be seen that Zy(m n) is characterized by a finite combinatorial
property and can therefore be determined for every given pair m, n. We
have 1,(1) n)=1,(m 1)= 1 for all m and n, and [,(m] 2) = 2m-1 for m < 4.
In Theorem 2 of this note we show that, more generally, there is a positive
integer I(m/ n) such that, for every ordinal « and positive integers m, #,

wyl(m] n)->(m] w,m)*

We recall that w, is the least ordinal whose cardinal is ®,] We give an
explicit upper estimate for I(m, 12). We conjecture that [,(m] n) can be
taken as 1 (m, n) but have only been able to prove this when m<g 4 andn g 2.

Theorem 3 is a * stepping-up ™ result of the general form : if &,—(8);!
for all y < x and certain k] and if every a, is a power of w,then X o, —( 3, B)2
The symbols involved here will be defined in §6.

Theorem 4 was suggested by the following corollary of Theorem 2.
Let the binary relation <y be defined on a set 8 and have the property
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that for @ ye S exactly one of the relations x =y ; <y ; y=<< @ holds. Then,
given a positive integer a, there always exists a subset X of S, of cardinal
a, such that the given relation is transitive on X, provided that S has at
least 24— elements. This result was first obtained by R. Stearns [7]] His
proof is reproduced in [§ ; p. 126] and is very simple indeed. In the present
note we establish a similar result for infinite cardinals a,

We should like to thank the referee for his helpful suggestions and,
above all, for having pointed out two errors in the first version of this

paper.
2. Small letters denote ordinals unless another convention is introduced.

Tueorem 2. Given positive integers m and %, there is a positive integer
I(m, n) such that, for every a

w,l(m| n) ->(m{ w,n)* (2)

If l,(m, n) denotes the least number /(m, ») such that (2) holds for a given «,
then

l(m] ) (20— 3)71[2"(n ~ 1)™ +n— 2] @A)
yrm] wy n) (4)
for every y < w, 1, (m] n). Also, (4) holds for] every e« and every y < w,l,(m] n).

Remarks. (i) We conjecture that  (m| n) = I,(m)n). This has so far
only been proved when m g4 and n g 2.

(ii) If in the first relation of Theorem 1 we make n—w we obtain,
formally,

wl>(m] 0 (M<w))

a relation which was, in fact, proved by Specker [3]] It is not known
whether the same process, when applied to the relation (2) of Theorem 2,
leads to a correct relation. This has not even been decided for & = 1 and
m= 3 when we are led to the relation

wy w—>(3) v w)*

3. Before proving Theorem 2 we introduce some notation and con-
ventions. For a <8 we put [«) B) = {f :a < £<f}. Capital letters denote
sets, and | A | denotes the cardinal of A. By |«|we denote the cardinal
ofasetorderedaccordingtothetypea. @By A<B,A+B,A—-Band AB
we denote inclusion in the wide sense, union, difference and intersection
respectively. Also, X (veN) A, and Il (reN) A, are alternative ways of
denoting unions and intersections. If S is ordered and [S]'=X(AeL)K,|

i The right hand side of (3) is @ positive integer, equal to 1H (n- 1) Z{p<<i| — 1) (n-1)~.
JOUR. 168 IN
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then we put
[K,]1={tpX]: X<=S{[XF<K,}]| (xeL).
If, in addition, n = 2 then we put
Uﬂx):[y =, y}eKal (AeL; ze8).

We use the obliteration operator * whose effect on a well-ordered sequence
consists in removing the member above which it is placed. The symbol
{a,, .oy £,1,] denotes the set {z,, ..., £,} and also expresses the condition
that =) # «, for 4 <v < i Following Tarski, we denote by cf(«) the least 8
such that X, is the sum of R, cardinaldl less than X,| We put &' = R, if
a= X, and ef(«) = 8. The symbol A + ‘B denotes the set A + B and, at
the same time, expresses the condition that AB=@] More generally,
Z'(4 < n) A, denotes the set (4 < n)4, and also expresses the condition
that 4,4,=0 for u<v<n) If, for v <=, §]is an ordered set then
Z(y <n) S,(tp) denotes the set S=3'(y < n) S, and expresses the fact that
Slis ordered in such a way that the order in each §) is preserved and every
member of S| precedes every member of S| for p <v<n.

4. We need the following result in the theory of graphs due to de Bruijn
and Erdds [2]) Let ¢ < wy and let I1be a finite directed graph such that
from every node of I' there start fewer than c edges. Then the chromatic
number of I is less than 2¢! For convenience we state this result without
using the language of graphs and give the very simple proof.

Lesva. Letp<o; Q={(B.y): B y<p; B#v}
vB) ={1:(8] v)eQ}| <e<w (B<p)|
Then there are numbers kq, . . ., k, < 2d = 1 such that &, # k., whenever (8, y) & Q.

Proof. The case p = 0 is trivial. Let p 3 1 and use induction over p,

Putl w(B)=|{y 1 B, y)e@ or (y, B)e @}| (8 <p)l We may assume that
w(0)>... > w(p— 1). By induction hypothesis there are numbers

By - - . kpa <20 = 1 such that k,+# k.| whenever 8|y <p— 1and (8, y)e Q.
Since

w(p-1)<p Z@<p)w(B)=2p L(B<p)v(B)<2c-2,

there is k, < 2¢ 1 such that k, | # k, whenever (8, p— 1)e @ or
(p—1,B)a@] This proves the lemma.

5. Proof of Theorem 2. Let«> 0. Then, clearly, for 1 <# <w, we
have I,(1,#)=1and,(2,#) == It is known ([5]]also [1 ; Theorem 44]) that

wy > (ay, ,)?) (5)

Hence I (m, 1) =1 for 1dm <wi It is now easily verified that (3) holds
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for m < 3 and arbitrary =) and also for n = 1 and arbitrary m. Therefore
it suffices to consider the case when s > 3 and w > 2, and we may assume
that [, (u, n) exists for | 9 p <mi

Let 1 <p < wand w,p+>(m| w,n)? This is, for instance, true if p = 1.
Let S=XZ(m<p)S,(tp)] where tpS,=w, for #<p. Then tpS=w,p|
and there is a partition [S]3= K|+ K such that

m ¢[K,]; o,n ¢[K,] (6)
By (5) and the relations « > m ¢[ K] there is a set §,]< § | such that
|8,'|=R] and [S, ]2c K| for w<p. Put N {(B) y}: {B] y}.<[0, p)}
We define operators 0,, 0, which operate on systems (A,, . .., 4, ;)
of psets 4,=8,] and are defined as follows. We have, for A4 2,
0,(4yf ...y A) = (441, . .) 42_). We now define 4,2

(i) If there is a pair (8) y)e N such that, for suitable sets A4,"c 4 4 and
A,<A, wahave |4, |=|4,'|=R, and | Uy(x) 4,'| <R, for zc 44| then
we choose such ] 3 and put AL=A4,; A°=A4; A =4 for
7€[0, p)— {8, v}. Then | 4,°|=|4,°|=R, and | U,(x) 4,°| <R, for zc 4 )
If there is no such pair (8] y) then we put A" = A, for = <p|

(i) If there is a pair (8; y)eN] such that, for a suitable element Ze 4,
we have | Uy(z)4,|=R,| then we choose such g and » and put
Af=A,—{d 1 Usx)4,|<R}{ 4,'=4,] for =€[0,p)— {#}] Then
| Up(x) 4,1 =R, for ze A41] If there is no such pair (8, y) then we put
A=A, for n<p.

We now iterate these operators @, and put in particular
0,7@-1 0 2@-D(8]. .., 851) =(8"]. . s Sp-1)

y Mp—1
Then 8,/1=8,’a S ]and §,"] =R]/for m<p.
Denote by P the set of all pairs (8) ¥) such that g] y<p and
| Uy(w) 8, |< X, for #a 85”| Then, by definition of 8,’, (=] #) € Pl for

|
m <P. Wjé have, for j3 <p and all ze §,",

| Up(x) 8, | <R ] ifl (B] y)e P|
=R if (B,y)e N—P.

In order to see this we need only observe that the relations between
cardinals of sets of the form U,(x) A which have been established by an
application of 0, and 0, are not destroyed by any further applications
of the operators 0 ,4

Let 8]y<pand e S,". Then tp Uy(z) S, =« if (8] y) ¢ P. More-
over, by (6) and the definition of /, (m| — 1) n) = ¢, say, we have tp U, (z) < w, C.
Hence »(B) <¢, where

v(B)=|{yl :(8) v)eN-P}| (B<p)
By applyinng the lemma to the set ¢§ =N—- P we find numbers
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Kgs - - kpq| < 2¢= 1 such that k] # &, whenever (8, y)eN{ P. Put
M,={B: ky=p)| for p<2c—1. We may assume that | My|>p(2d —1)7".
We have (8, y) € P whenever B]yq M.

Case 1l |M{|Zns Then H(rg M8, 123T+...+T,_(tp), where
tp T',=w/ for v<n and

|Us@) T, | <R, (u] v<ny 2eT )]
Case la. of(z) = «) Then we write
(v, o) s v<mio<w,)= {(v, 0,): p<w,}
We can choose z,,, . ., #,] such that
2,€ Tﬁ({x‘,,_,_, 2} +Z(r<p) Uo{x,)1 for p<wy
Put X = {z |: p < w,}| Then [X]¥a K and tp X 3w, = which contradicts (6).
Case Ib.  ef(«) <t o Let 7 = weg(,y. We can write
{vyr) vy r<r}= {(v,] 7)) © per}. ()
Also, R = 3 (p < 7)|a(p), where
lr|<a(0)<...<d(r) <X,
(6@ =ae) (e<n)

The a(p) can be found by the following standard procedure. There are
cardinals b(p) < X, such that N, =2 (p <rJbp). Then, by definition of r,
we have

(8)

sup(p <p)b(p) <R, =sup(p<r)b(p) for p<r.
Hence there is py < n such that &(p,) > | n |; and we can find inductively
ordinals py, , . ., pJ such that

blpa,) > Z(A<Ag) b(A) +sup(A< Ag)b(p,) for Ag<r.

Now we may put a(A) = (b(pa)ﬂ for X < r; where b+ denotes the least
cardinal greater than b!

We can write 7, =X(p <7) T, (p) (tp), where|T (p)|=alp) (v<nj p<7r).
Let v, v'<njp<r) xe T, (p)] Then|Uyz)T;|< R, Thereis z(a, V') < r

such that | U,(z) T | < a(m(2, "")l Put =(2)=max(v' <n)=(x] V). Then,
by (8), there are a set T,'(p) < T,(p)} and a number =,{p) <n such that
| T, (p)|=alp)] (9)
n(@)=mp) (v<ni p<r; 2eT,(p))
Then
|Uo(x}|T,-1<a(w,(p)] (v, vV'<nj p<r; :ceT,'(p)H
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There is 7(p) such that p € 7(p) <r and
| S(we 1, (p)] Uy(x) T, | <alr(@) () v'<n; p<r)] (10)

We now define ordinals s(p) for g < ri Let p, < ry and let the ordinals s(p)
be defined for g <p, and satisfy s(p) < » for p < p,. Then we can choose
8(py) such that p, g s(p,) < n and

S <po)a(r(r(s(p)) ) <a((ste0)). (1

This defines s(p) for g <7 Now consider the sets A,, . . . . 4, defined
inductively by

4= Tl ooto0) | - <pui 524} Vi) o<
Let py < ri Then

Z(p<pos € 4,) Ugla) Topo(r(s(00) )
<Z(p<p) | Z@ed,) Up@) Tryo (7(s(60) )
<Z(p<po) | Z(2e 7% (+(560))) ) Uote) T
<p<pa(r(r(s))) 1 (o)
qm(f(s(po))) (by (11))
= | Tpo(r(stew) ) | (bt (0)
Hence

| 4pol=a(r(s(0)) | >aleol (e <1

It now follows from (7) that tp X(p <7} A, Hwyn. Since, in addition,
[Z (d<r)A J§< Ky we have a contradiction against (6).

Case 2. |My|<n. Then p(2c—1)'<|M,(<n-1; p<(n—1)(2c—1)
Hence I, (m| n) exists, and we may put in all foregoing relations
p=1,(m| ?a)-1. we note that p > 0. We have thus shown that

Lum, n) = 1< (n=1) (2l (m—1,n)=1)]
Put n-lI=q and I (g, n)—1=d) (2sp<m)] Then d,<q(2d,_,+1)]
i.e.d,+e<2q(d,_,+e)] where e=g(2¢-1)-1] Hence

dn+eg (29)"2(dy+e) = (29)" (g +e)

which is the same as (3).

We now prove (4). Let tpS=y<w,l,(m, n). Then y=w,l' +5'|
where l1<l,(m|n)and s’ <w,; We have S=S,+8,(tp); tp Sy=w,!;
tp §,=s". By definition of { (m, #) there is a partition [S,]*< K| + K|
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such that (6) holds. Then we can write [§]2= K + 'L,] and we have,
obviously, w,n ¢[L,]| Hence (4) follows.

To complete the proof of Theorem 2, let us suppose that y < wy I,(m, n)|
Then ¢ = w, 1" + 5", where I' < I;(m| n) and s” < w,4 By the property of
Io(m, n) stated in Theorem 1, there is a function p(A, )g {0/ 1} defined for
Al w < 1" such that

(i) there is no set {Ay] . . ., Au_q}d < [0, Z7) such that
p(Af &) =0l for 4<j<m)]
(ii) there is no set {A] . . .. A,_1}.{ € 0 Z”) such that
p(Ad A)=p(A;, A))=1 for i<j<m.
Let S= [0, y) and order S by magnitude, so that tp S = y. Then
[ST3= K|+ 'K,/ where
K0=[{wa)t+|ﬂ w XN +7Y A, X< A#EXN p(A] A)=0] T<T'{wa)‘.

Then it follows from the property (i) of p(A] u) that m ¢[X,] and from the
property (ii) that w, n ¢[X;]| Hence (6) holds, and Theorem 2 is established.

6. Before stating our next theorem we introduce another kind of
partition relation. Leta and B8 be order types and let k be an ordinal.
Then the relation-t

o> (B);t

expresses the following condition. Let S be an ordered set and tp S= «.
LetS=13(x ak) K] Then there always exists a number ¢ < i such that
tp K, > B. We recall that initial ordinals are ordinals § such that ¢ < d
implies | €| <|8].

THEOREM ?i Let n be an ordinal. Let a= a+ . . + &, and
B =B+ ...HB,, where, for v<in, a, is such thatf
% > (o5 o) (12)
and B is an initial ordinal. Suppose that
o, >@)) (v<ni [k[<|B (13)
Then a—>(3, B)2 (14)

ooroLLary.  If  ef(a)=ea] then

W, H—>(3] w P (A <o) (15)

§ This relation is a special| case of the relation a—(g);] which is defined in the obvious
way.
{1 As is well known, (12) holds if andl only if ay is either zero or g power of w;
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Remarks. (i) Fora= 0 the relation (15), in fact, the stronger result
Wb (2 P (p <y H < W)

has already been obtained by E. C. Milner [4].
(i) It is not known whether (15) remains valid when cf(«) < o

7. Let us begin by deducing the corollary from the theorem. We apply
Theorem 3withn=0.1, «=w?™ and B,=w] for »<nl Then (14)
becomes (15), and we need only verify (12) and (13) which amounts to
showing that w2+ —>(w,?+),1 (kc w,)| Let k be fixed, k<w,| Then,
clearly, w,’—>(w,%),*| Let ¢ <wjand suppose that

@, 7= (w,9),} (16)
It suffices to deduce that
@, = (w0, 7). (17)

Let tp S=w, 2 and S=Z(k<k) K, | Then S=Z(v<w,)S,(tp), tp S, =w,?
(r<w,)]  Then, for »<w, we have §,=13(4<k) S K/ and therefore,
by (16), there is k < k such that tp 8/ K, | = w,2| Since ef («] = o) there are a
number « < k and a set M < [0, w,) such that | M |=X, and x,=« for ve M.
Then

tp K, 2Z(veM)tp 8, K, =2(ve M) w,?= w2},
and (17) follows.

8. Proof of Theroem 3. Lettp 4,5« (v <=)and order the set
P {(v] x): n <n; xeA,}lexicographically| Thentp P=u. Let a4-(3, B)2
Then there is a partition [P]3 = K]+ K| such that

3¢[K,] (18)
B¢(K,] (19)

We have to deduce a contradiction. We can write
(v, 1) veny t<ﬁ,}={(v()\), sm] A<t (20)

where | is the initial ordinal satisfying | 1| = | 8|] We now define elements
Porr -, pyOf P. Let AJ <1, and suppose that p,, . .., $1,€P. We shall define
Pad Put @, Uy(p,) for A<A,] Then, by (18),[Q,]*< K and hence, by
(19)] tp @, B for A < A,| Since | Ay| < |8 |we deduce from| (13) that

tpl A (A < Ao) Qa0 (21)
We have || <|l|=]|B]|and so |B|>1 and = > 1] If 8=1 then a+>(3, 1)?]
so that a= 0 and therefore, by (13)] 0 o, —(1),] Which is false. Hence
(8| = 2 and we may put k=1 in (13) and obtain «, > f| (v < %). Therefore

[{po] s Ba } <[ 20| <|B| €] %20 and hence
t'P{P[I! i ﬁln}}ar(?{o]‘ (22]
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It follows from (21)/ (22) and (12) that

tpEA< )@+ (P} Heao=tp P(v(N)).
where P(u) = {(p]a)12€4,) (uan)|
Hence we can choose

P2 P(v0)) ~EQA<2)(@a+ {22}

This defines a set X= {p,] . . . . #;}. which satisfies [X]3 < K,. We have, by
(20),| X P(v) 1> 1 B]1 and hence, since B, is an initial ordinal, tp XP(») > B/
(M<n). But then tpX=X(v<n)tpXP(v)>Z(v<n)B,=f Which
contradicts ( 19). This proves Theorem 3.

9. In this final section we consider a binary relation z<y defined on a
set S, such that for all x, ye S exactly one of the three relations m = Y i
a<y; y<a holds. The relation is said to be transitive on a subset X of S if,
for z, y, ze X | whenever z<] y and < z, then z<z]

Theorem 4. Let a be a cardinal. Then the relation x< vy is transitive
on some subset X of S such that | X | a, provided) that
(i) | 8| > 21 if a <X,
(i) | S| AR if a=R,]
(iii) |8|>Z(b<a)2y if a>R,
where the summation exfends over al cardinds b less than a

Remarks 1. If ¢> R, and if the following weakl version of the
generalised continuum hypothesis is assumed : 24 g a for b < a, then (iii) is
the same ag | S|>a.

2. The condition under (i) is best possible for 1 ga < 3.

Proof] of Theorem 4. Case 1. a<®,|Although, as was mentioned
in the introduction, there is a very simple proof for this case in [8]] it is of
interest to show that the conclusion can be deduced from Theorem 2.
We may assume that a > 2 and S = [0, 2¢-1)] Let R = [0, w29-1) Then
[R]*=K,+ K, Where

By ‘{w)”'{” OX + 7§ 1 /A" <2071 A<AT  n<rlaw N
We order R be magnitude. Then w2 ¢[K,]|By (3) we have I (a, 2) ¢ 221
and therefore, by (2)/tp R—(a, w2)*| Hence ae[K,]| and there is a set
T= {w;‘u'-!*'ro,l e “”}‘a-|| + Ta*]} e R

such that [T']? < K,. We can choose the notation in such a way that
709...< 7,4 <W. Then, by definition of K, 7y < 7jand A,<A]forp «q<a,
so that we may put X = {A]. .., A}
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case 2. a>®,] We first show that
| 8|>(4] a)®) (23)
If a=X then | 8| >X,| and (23) follows from [6]) Now let a = R, > R,]
By (5)] w,—>(3) w,)® Hence, by [1], Theorem 39 (i), we have, for every
ordinal g such that | 8] > ¥ (A < w,) 247 the relation 8—>(4, w,+ 1)% and
therefore
| Bl —>(4] a)*] (24)
Now
TA<w,) 2 <EA<w) R+ Z(v<n)Z(w, A< w,,,) 2%
=R, +Z(v<n) 2R =X(b<a)28<|8|.
Hence in (24) we may, replace | 8| by | 8|, and (23) follows.
We apply (23) to the partition [S]¥=K,+'K,| where
K, [{x, Y, 2} ! :c-(y{z-(x”
Then we have the following cases.

Case 2al There is a set A = {x,, ;) % 23} 4 = 8 such that [4]¥ cK,]
Then we can choose the notation in such a way that z,<z;<#,<z, Then,
by definition of K| xy<x,<x3<2,.

Casd 2al. x,<23] Then z,<z,<2;<x) which contradicts z,< ]

Case 2a2] z3<x;) Then a,<x,<zy<zy Which contradicts xy<z/

Case 2b/ Thereis aset Ba§ such that|B|=aand[B}<K,.Let

X, Y, ze Bland a<y<z/ Then x #z/If z<x, then {z] y; z}e K| which is
false. Hence 2<z| and we may put X = B. This proves Theorem 4.
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