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Consider a sequence @, =1 < a, <a, <...<ap =n of integers
such that every a; ({>=1) can be written as the sum a;+ a; of two pre-
ceding elements of the sequence. Sueh a sequenee has been ecalled by
A. Scholz (1) an addition chain. He defines I(n) as the smallest % for which
there exists an addition chain 1 = gy < a, < ... < @ = n.

Clearly I(n) >lognflog2, the equality occurring only if » =2
Schoelz conjeetured that

. log?2
(1) ll_ril(n) T 1
and A. Brauer (?) proved (1). In faet Brauer proved that
. 1\ logn }
I(n) < = or 9
(2) () 1221:;{(1-'_ 'r) log2 +

loglog:
ogogn]it

where 2™ < n < 2™%', From (2) by choosing r = [(l—s) Tog2

follows that

i log log
" o< 1088, logn_( ogn )

log2 loglogn loglogn
In the present note I am going to prove that (3) is the best possible.

In fact I shall prove the following
THEOREM. For almost all n (i. e. for all n except a sequence of density 0)

logn logn ( logn )
loglogn/

in) =
() log2  loglogn

(1) Jahreshericht der Deutsehen Math. Vereinigung 47 (1937), p. 41.
() Bull. Amer. Math. Soc. 45 (1939), p. 736-739.
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In view of (3) it will suffice to prove that for every & the number of
integers m satisfying

4 " Lom) logn : logn
: — < <L ik, m) < —— —(l—g)———n
) 2 T L log2 ( . loglogn

is o(n). In fact we shall prove that the number of integers satisfyving (4)
is less than »#'77 for some 5 = y(e) = 0.

To prove our assertion we shall show (as the stronger result) that
the number of addition chains 1 = a, << a; < ... < a;, satizfving

log log
(5) = < gy < ik, k< ogn (1 —¢ M il
2 log2 loglog i

ix less than #'7" for some # = 0 (5 = ().

An addition chain is clearly determined by its length & and by a mapyp-
ing (i), 1 <i < k—1, which associates with i two indices ' and ;@
not exceeding . To such a mapping there corresponds an addition chain
if and only if for every i, G+ ;) > a;.

We split the indices ¢, 2 < ¢ << k—1, into three elasses. In the first
class are the indices i for which a;., = 2¢;. In the second class are the i's
for which ¢;.;<<2e; and a;., =(1+0)"a;_, , for every r=>0 (6= d(¢)
is a sufficiently small positive number). In the third class are the #’s for
which a;., < 2a; and a;.; < (1—98)a;,,_, for tome » > 0. Denote the
number of i's in the classes by wy, sy, Uy, Uyttt i1, = kE—1.

Assume now that (5) is satisfied, we are going to estimate the number
of addition chains satisfying (5). First we show that (5) implies

(6) a1ty = o(k).

To prove (6) observe that if ;,., = 2a; then a;, < a;+a; ;. Thus
from a; < 2a,_, we obtain

(7) @y <30,

Thus from (5) and (7), since there are at least [ (.- u3)] = [ (k—u,
—1)]—1 intervals (i—1,4+1), 1 < ¢ = k—1, which are disjoint half-
open (i. e. open to the left) and for which i is in the second or third class,
we have

0

ks 7 G ~ L - (gt
- < & < QutlglE—m)a . ok, W < 9k—(uz-+ug){100
3

or k >

log#n ( Uy Uy

)—1, which contradicts (4) if (6) is not sat-
log2 100

isfied.
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The number of ways in which we can split the indices ¢ into three
elasses having iy, 1., %5 elements (u;-+wu,——u; = k—1) equals (H};:is) %
e {%2;“3). Now since u,—uy = o(k), (@tgiffs) AP — (L_Lo(l)]", also
( : )( . ) = ( : ) = flé—r_)(l}]k. Further for w, and #, we have at
g+ ugf \uptitg o(k) o S 3
most &* choices. Thus the total number of ways of splitting the indices
into three clagses is [l—é—o(l))". Henceforth we consider a fixed splitting
of the indices into three classes.

For the ¢'s of the first eclass a;.;, = 2a;, and thus a;, is uniquely
determined. If ¢ belongs to the second class then from a;, = (1+ 6)7a;.,
it elearly follows that there are at most ¢, = ¢, (0) a’s in the inferval
(da;, a;). From a; ; = (1—9)a; if follows that only the a;'s of the inter-
val (da;, a;) have to be considered in defining a; ,. Thus there are at
most ¢ choices for @;.1, and hence for the number of addition chaing
satisfying () the contribution of the s of the second class it at most
a2 — (l%{; (1))".

The number of possible choices given by the u, indices of the third

% k2 " . — - .
class is less than (“ ) To see this observe that the indices iy, iy, ..., iy,
3

which belong to the third class have already been fixed and our sequence is

completely determined if we fix the indices §{0, §y0); 02 162 5Cug) 5 ug)

Uz Us
which define a; . @, ..., Biyyi1e Because of a; ., <ag, <...<e .,
their order is determined uniquely (this is easy to see by induction).
The total number of pairs (w, v), 1 < u < v = k, equals (I‘;) +k < k2
whence the result.

Thus we have proved that the number of addition chains satisfying
(p) is less than

k) (k2
(8) Do 3 ()
k ug

where the summation is extended over all possible choices of k and w,,
satisfying (5). Now we show

e\ logn
9 iy < [1— =) ———.
) s = ( ‘2-)10g]0g-n-

To prove (9) observe that if ¢ is in the third class then for some #; > 0
(10) Gy < Gpp1-g {1+ 0)75.

The intervals (i+1—#»;, t+1) cover all the i's of the third class.
From these intervals we form (in a unique way) a set of non-overlapping
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intervals (ug, vy), s =1,2,...,t, which contain all the intervals
(i+1—w;, i+1), where ¢ is in the third class.

A simple argument shows by (10) and the construetion of the inter-
vals (ug, vs) that

(11) 8y, < @y, (14 8)"C",

The intervals u, < @ < v,, 1 < s <1 cover all the i's of the third
class. Thus

H
(12) Z (s —Ug) = Ug.
=]
From (5), (11), (12) and a;, < 2a; we infer that
(13) 2 S a <21 o < b

for sufficiently small é = §(e). Thus from (13)

logn
log2

&
(14) k—-ua(l—g) zF —
(14) and (5) clearly implies (9).
From (3), (9) and (8) we infer that the number of addition chains sat-
isfying (3) is less than

(15) L+ o= (3),

where

1 ; 2 \
A [( LR ﬂg_:_) ] B— [(l_z) __1_03_3],
log2 loglogn 2/ loglogn

Now

: (B )
(16) (B)<(B)e _('+0()]
= (1+0(1}]!03“(log-n)B(l'?'f’U}) — ploeztoQ)

From (15) and (16) we finally infer that the number of addition
chains satisfying (5) is less than »n'~***°® < »'™7 for y < /2, which com-
pletes the proof of our Theorem.

It would be of interest to obtain a more accurate estimation of I(n)
and in particular to try to obtain an asymptotic distribution function
for I(n), but I have not succeeded in making any progress in this direc-
tion.

We can modify the definition of an addition chain as follows: a se-
quence 1 =a, < a, < ... < ap = n is said to be an addition chain of
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order r if each a; is the sum of r or fewer a;’s where the indices do not exceed
4. Denote by l.(n) the length of the shortest addition chain of order «
with 4, = n. Using a modification of the method of Brauer and of this
note we can prove that for all »

logn logn ( logn )
0
logr (r—1)loglogn loglogn/’

and that for almost all »

L(n) = logn logn 0( logn )

logr (r—1)loglogn loglogn

Peter Ungar in a letter has asked me the followig question: Define
I'(n) as the smallest k for which there exists a sequence a, =1, a,, a,, ...,
a, = n where for each §, a; =a,ta,, v <j, v <j (@, <@y <... 8
not assumed here). The problem has arisen in trying to compute «" with
the smallest number of multiplications and divisions. Clearly ' (n) < I(n)
and it can be shown that our Theorem holds for '(n) too.

Regu par la Rédaction le 20. 8. 1959
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