ON SETS OF DISTANCES OF n POINTS IN EUCLIDEAN SPACE

by
P. ERDOS

Let [P¥] he the class of all subsets P{¥ of the M dimensional space consist-
ing of a distinct points and having diameter 1. Denote by g,(%, 7} the maximum
number of times a given distance » can occur among n points of a set P%)| Put

Gn) = max g (n, r), gln)= gyn]1)

(i. el g,(n) denotes the maximum number of times the diameter can occur
as a distancd among n points of % dimensional space and G,(n) denotes the
maximum number of times the same distance can occur between # suitably
chosen points in & dimensional space). It is well known [1] that g,(n) = n
and | [2] proved that

{l] nlt cflog loz n| 4 Gz(fi.-} < 3.

Further I conjectured thatl Gy(n) < n1=1 for every a > 0 if u > ny(e). VAZsoNYI
conjectured that g,(n] = 2d — 2 and this was proved simultaneously and
independently by GriNaum [3], Heppes [4] and StraszewicZ [5] (all
using similar methods). 1 am going to prove

(2) e it P < Gyln) < e« 053,

Perhaps G,(n) < »#3%¢ holds for all n > n(e)]

One could have expected that G, ( n) = o n2) and g,( n) < ¢, n for every kI
In 1955 Lex7 showed that this is not so. In fact Lenz showed that (LENZ's
result is unpublished)

3) g¥(n) 344

Thd proot of Lgxg is very simple. Put g {%H and consider the following

n points in four-dimensional space:

(€] y40,0),1=g1=s(0/0]z,9),8 HL =j<n

. 1
xﬂ—]{yﬁ:;{ Clearly all the

1 1
where 0 <1x, &) 41 ﬂfgja‘?-H1?=“
EUNET %
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a8 (N — s = distances between the points (2] y,| 0] 0) and (0, O, #;| ¥}

is 1 (and 1 is the diameter of the set (x| y;| 0, 0); (O, 0, x,, ¥
By a slight modification of this method Lgxz in f}act proved that

g.(n) ﬂ% + ¢gn for a certain ¢y > 0. LExZ then asked: what is the limit

of g,(n)/n? as m — ooy In this note I am going to prove the following

Theorem. For every k = 4

. , . 1
lim g.(n)/nd = lim G (n)n?= —
-l n—-cl 2

Clearly g,(n) £ G,n) and g,(n} < g+(n), G(n) = G,,(n). Thus to
prove our Theorem it a-ill suffice to show that for every [ = 2

J 1
(4 Liml gy (n n)/n% 2] o1
and
(5) lim Gy (n) 02 < L §
n—-w 2 21

The proof of (4) is trivial generalization of the proof of LENZz. Forf each

f]1 <t £ 1 denote by ] the group of ﬂpoints whose first 2t — 2 coordid

nates are 0 the 2t — 1-th and 2t-th coordinated are 2y, 1 < 7 < % ,
41

Ty Y A 0]+ yi = L and the remaining 21 — 2f coordinates are 0l Clearly

for any t| 44 ¢, the distance between any two points of I,/ and I;|is 1 and the
setlsus.:, has diameter 1. Thus
f

Gai(n) = (; } [%]2 = ’-;—2 l;l — %y + O(n)

which clearly implies (4).
Next we prove (5). If (@)is not true then there exists an ¢ > 0 < that
for a certain I > 1 and infinitely many =,

Gy (ng) > ’E —-217‘ -+ 3

In other words there exists a set P2*D in 2] + 1 dimensional space
and a distance r which occurs among at least A(n,) pairs of points of P~V
Connect any two points of P&+ whose distance is r. Thus we obtain a graph

nd - A(ng) |
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of n, vertices and A(n ) edges. By a theorem of A. H| STONe and myself}
[6] this graph contains for sufficiently large 7y = n,(¢) a subgraph| of 3 (] + 1)
vertices o 1 <l il < 3, 1 <t <1l + 1 so that any twd vertices #{ and
x(,-’f) are eonnectedl by an edge if] t] # tJ (in other words the distance between
20 and 2{t) is rif ¢] 5 &,)] But, then a simple geometrical argument shows
that the 1"+ 1 planes (z{?] &, 2{")] 1 < ¢ < I + 1 must be mutually per-
pendicular, which implies that the dimension of the space spanned by the
g is at least 2/ 4| 2| This contradiction proves (5) and thus the proof of
our Theorem is complete]

By a sharpening which I recently obtained of the result of STONE and
myself | can prove

. .

1 1 s

(6) G (n) < (E — _'—k“) n? 4+ O(n*—*%)

2|

where ¢, — () as k--f e1 1 do not know how close (6) is to the true order of
magnitude of @,(n)] Perhaps the result of LENZ

1
4 [
k
gives the right order of magnitude.
Nowl we are going to prove (2)] First we prove the upper estimate. Let
Ty Xy, ..., %, b€ n points in three dimensional space, assume that there are
a, points at distance » from ;. Clearly to any three points x4 x;, %, there
can be at most two points ] at distance 71 Thus since the total number of

a 1
(7) G,(n) > :

n*+ ¢

triplets (x| @, ;) is a simple argument gives

E
i=1

ol (N
S *]g2| ]
=13 3
or
n
(8) Nad < e,nd.

n n
If M a? is given NVafis maximal if all the «, are equal. Thus (8) implies
i=1 i=1
n

Sa; < eyn’
i=1

which proves the upper bound in (2).

1 The theorem in guestion states as follows: To every & #=2 and ] there exists
anl 'nf {e] 7, I] so that if m > n, (el 74 I and @] id a graph of n verticesl and more than
3

g b 7 + e] edges then G, contains ¢ vertices i’ 1 <Ji <4, 1 < (< r so

that for every  # &, 2l and a{{Pare connected by an edge for every 1 < 4 i < 1.
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To prove the lower bound in (2) consider the points (x| ¥, z) of integer
coordinates 0 < #; ¥ ¢ < [n's]] Clearly the number of these points is less
than n but is greater than n (1 — &)] The square of the distance between
two of these points is of the form

(9‘ wd+ pd+ w20 <ujv,w £ n'd

The numbers (9) are all less thanl or equal 3»*4 and since there are more than
1 —
i 2l such distances, clearly for some n the same distance mustl occur
at least 1/7»"4 times, which completes the proof of (2). From deep number
theoretic results it follows that for suitable 7 the same distanee occurs more
than ¢;n*q loglog| m times and this is the best lower bound I can get for Gy(n)

at the present time.

(Received December 18, 1959.)
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0 PACCTOSIHUA X
MEXQY| » TOUKAMH 3BKJIMJOBA| TPOCTPAHCTBA
P. ERDOS

Pesiome
Mycrel P8 ecT MHOKeCTBO, cocTosiuied W3 11 TOUEK K-MEPHOTO| TpoCcTpaH-
ctBa] pmuameTp Kotoporo pareH 1. Obosuaumm uepe3y g,(n) r) MaKCHManbHO®
YuCTIO TAp| TOUEK (X, X;)| Anst KOTOPHIX| PACCTOSHNME X} M X; PaBHO| T
G,(n) = 313‘;\'}3 giln, r); giln) = gu(n] 1) .
r
Paupinel aBrop joKazan) uro

nl—alloglogn = (;2{”) = p2,



OF SETY OF DISTANCEY OF » POINTH IN EUCLIDEAN SPACH 169

Buino usBectHo, uto g¢y(n) = n) GRUNBaUM| HEPPES M SrtraszEwIC
AoKasajiy  TUMOTe3y| VAZSONY!, COIJIacHO  KOTOpOH gy(n) = 2 — 2. LEnZ
JoKasan, 4ro

g, (n) >%‘|‘1"27’1-

B Hactosiuieii cTaThe ABTOP 10Ka3biBaer) uTo
ey n < G(n) < ¢y n3B
nj ecmm k 2| 4, To

; . 1
lim g, ()| n3 =1im G (n)jn2 = — — 1
A ' n-eo ) k
o[



