N. G. pE BruijN and P. ErpOS: On a combinatioral problem.
(Communicated at the meeting of November 27, 1948.)

Let there be given n elements ay, as, ..., ar. By Ay, Ao, ..., Am we shall
denote combinations of the a's. We assume that we have given a system
of m>1 combinations A4, Ay, ..., Am so that each pair (a:, a;) is con-
tained in one and only one A. Then we prove

Theorem 1. We have m = n1), with equality occurring only if either
the system is of the type A; = (ay, as ....an_1), Ay = (ay,an),
A; = (ag, an) ... An = (an_1,aa), or if n is of the form n = k{k—1) +1
and all the A's have k elements, and each a occurs in exactly k of the A’s.

Corollary: If the elements a; are points in the real projective plane the
theorem can be stated as follows: Let there be given n points in the plane,
not all on a line. Connect any two of these points. Then the number of lines
in this system is = n. In this case equality occurs only if n—1 of the
points are on a line.

This corollary can be proved independently of Theorem 1 by aid of the
following theorem of GALLAl (= GRUNWALD} 2}):

Let there be given n points in the plane, not all on a line. Then there
exists a line which goes through two and only two of the points.

Remark: The points of inflexion of the cubic show that it is essential
that the points should all be real, thus GALLAl's theorem permits no pro-
jective and a fortiori no combinatorial formulation. Also the result clearly
fails for infinitely many points.

We now give GALLAI's ingenious proof: Assume the theorem false. Then
any line through two of the points also goes through a third. Project one
of the points, say a, to infinity, and connect it with the other points. Thus
we get a set of parallel lines each containing two or more points a: (in
the finite part of the plane). Consider the system of lines connecting any
two of these points, and assume that the line (a; aj ax) forms the smallest
angle with the parallel lines. (This line again contains at least three
points). But the line connecting a; with a,; (at infinity) contains at least
another (finite) point ar, and clearly (see figure) either the line (a:;a-)

1} This was also proved by G. SZEKERES but his proof was more complicated.

2) This thecrem was first conjectured by SYLVESTER, GALLAI's proof appeared in
the Amer. Math. Montly as a sclution to a problem by P. ERDOS, The corollary to
Theorem 1 also appeared as a problem in the Monthly.

See also H. S. M. COXETER, Amer. Math. Monthly 55, 26—28 (1948), where very
simple proofs due to KELLY and STEINBERG are given.
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or the line (ar, ax)} forms a smaller angle with the parallel lines then
(arajar). This contradiction establishes the result,

Remark: Denote by f(n) the minimum number of lines which go
through exactly two points. It is not known whether lim f(n) = co, All
that we can show is that f(n) = 3.
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Fig. 1.

Now we prove the corollary as follows: We use induction, Assume that
the number of lines determined by n—1 points, not all on a line, is
= n—1. Then we shall prove that n points, not all on a line, determine at
least n lines.

Let (a;, ay) be a line going through two points only. Consider the points
ag, ag, ..., an. If they are all on a line, then (a;, a:i), i =2,3,...,n and
(as, ag, ..., an) clearly determine n lines. If they do not all lie on a line,
then they determine at least n—1 lines, and (a,, a5) is clearly not one of
these lines. Thus together with (a,, a;) we again get at least n lines. The
same induction argument shows that we get exactly n lines only if n—1
of the points lie on a line, q.e.d.

Proof of theorem 1. For simplicity we shall call the elements
aj, ay, ..., an points and the sets Ay, Ay, ..., An lines. Denote by k; the
number of lines passing through the point ai, and by s; the number of
points on the line A;. We evidently find (by counting the number of
incidences in two ways) '
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Further if A; does not pass through a;, then
Sjgk;'....‘...-.(Z)

(2) follows from the fact that a; can be connected by a line (i.e. an A)
to all the s; points of, A;, and any two of these lines are different, since
otherwise they would have two points in common.

Assume now that kn is the smallest k; and that A;, A,, ..., A¢, are the
lines through a.. We may suppose that each line contains at least two
points, since otherwise it could be omitted. Also k, > 1, for otherwise all
the points are on a line. Thus we can find points a: on Ai, ai 5% an,
i=1,2, ..., kn. Also if iz£j, i=kn, j= ka then a; is not on A; (for
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otherwise A; and A; would have two points in common). Hence by (2)
(putting k» = »)

55k sk, Sk sk <k forj>v. (3)

From (1), (3) and the minimum property of k. we obtain m = n, which
proves the first part of Theorem 1.

We now determine the cases where m = n. If m — n, then all the
inequalities of (3) have to be equalities. Consequently we can renumerate
the points so that s; — ky, s; = ko, ..., sn == kn. We may suppose that
ky = ko = ... = kn > 1. There are two cases:

a) ky >k, Hence by s; = ki > ki (2=<i=n), (2) shows that all
the a; (i = 2) lie on A;. Of course a, does not lie on A; and we have the
first case of Theorem 1.

b) k; = k. If no k: is less than k; then clearly ki = 5; (1 =i, j =n).
We shall show that this is the only possibility. If k; << k;, then we have
by (2) that a; lies on both A; and A,. Hence kn is the only &k which can
be less than k;. Now s, — k. different lines contain a.. Any line through
an contains one further point and all but one contain two further points,

since k;y = kg = ... = ka—1> kn = 2. Thus there are at least two lines
which do not contain ap; for both of these lines we have by (2) s; = kn.
This contradicts s; = sp = ... = Sa_1> ks.

Apart from case a) we only have the case where si—=k; =k,
(1=ij=n). It is easily seen that then n =k (k—1) + 1, and also
that any pair of lines has exactly one intersection point. For if A; does
not intersect A ;; and if a; lies on A; then we infer from (2) that ki = s;+1
which is not possible since k1 = s; = k. The two dimensional projective
finite geometries with k — 1 — p?, p prime, are known to be systems of this
type, but F. W. LEv1 3) constructed a non-projective example with k= 9.

3) F, W. LEVI, Finite geometrical systems, Calcutta 1942.




