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The cyclotomic polynomial F,(x) is defined as the polynomial 
whose roots are the primitive nth roots of unity. It is well known 
that 

F*(x) = g (P/d - p(d). 

For n < 105 all coefficients of F,(X) are zb 1 or 0. For n = 105, the co- 
efficient 2 occurs for the first time. Denote by A, the greatest coeffi- 
cient of F,,(x) (in absolute value). Schur proved that lim sup A ,, = 00. 
Emma Lehmerl proved that A fi >cn l/a for infinitely many 72, In fact 
she proved that infinitely many such n’s are of the form Pqr with 
p, q, and r prime. In the present note we are going to prove that 
A,>nb for every K and infinitely many n. This is implied by the still 
sharper theorem: 

THEOREM 1.2 For infinitely many n 

A, > exp [cl(log n)“‘]. 

Spec$icdly we may take n = 2 -3 -5 - - - ph for su.ciently large k. 

Since 

Theorem 1 follows at once from the following theorem. 

THEOREM 2. For infinitely many n 

y: 1 Fn(x) 1 > exp [c&g nYa]. 
+- 

For the proof of Theorem 2 we require several lemmas. 

LEMMA 1. Let f(x) be II po2ynomia.l of highest coe$cient 1 of degree m 
with all its roots on the unit circle. Suppose that in the unit circle f (x) 
assumes its maximum at x0 (1 XCI 1 = 1), and let y0 be the root off(x) closest 
to XO. Then the arc between xg and yo is not less than a/m; and if it 
equals r/m, f(x) =xm-1. 

Received by the editors May 5, 1945, and, in revised form, August 22, 1945. 
1 Bull. Amer. Math. Sot. vol. 42 (1936) p. 389. Reference to the older literature 

can be found in this paper. 
1 Throughout the paper c; denotes a positive constant. 
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This is a theorem of M. Riesz3 
Set n=2-3’5 ’ - ’ pk. 

LEMMA 2. pdogn. 

LEMMA 3. $(n)we-%/log log n, where y is Euler’s constant. 

Lemma 2 is a well known consequence of the prime number theo- 
rem, and Lemma 3 follows from Lemma 2 and a theorem of Mertens.’ 

LEMMA 4.Supposepku5u spk 4la where 1 <a 5 4/3, and let N be the 
number of integers not greater than u which are prime to n. Then for 
su.ciently large k, 

PROOF. The integers in question are primes greater than Pk. By 
the prime number theorem 

N - U/log 24 - &/log pk - U/log U. 

Now l/log ‘112 3/(4 log pk) ; and, by Lemmas 2 and 3, log pENlog log n 
Me-m/$(n). Lemma 4 now follows from fl<3/4, 

LEMMA 5. Suppose that for an in$nite number of integers m we are 
given a polynomial g,,,(x) of highest coeficient 1 of degree m, with all its 

roots on the unit circle and symmetric with respect to the real axis, and 
with 1 g,,,(l) 1 = 1, Let t, be afunction of m such that t,/m <n and t,+ 00 
as m-+ 0~. Suppose constants c4, B (0 <E < 1, 0 <cl < 1) given such that 
for any u with t, l--~ Su St, the number of roots of g%(x) =gm(eSe) with 
10] 5u/m is greater than (1 +c&/7r, that is, greater than (1 +c.I) times 
the number of roots of xm = 1 in the same interval. Then for sti.ciently 
large m 

p”,“; I g(x) I B exp I&J~ 
z= 

PROOF. Denote by A, B, C the following arcs: 

B: lel _I t&n, 
c: 1 I9 [ I (t, + 7r)/m. 

We define new polynomials h,(x) =xm+ l - - as follows. Outside B, 

i Jber. Deutschen Math. Verein. vol. 23 (1914) pp. 3.54-368. 
’ See, for example, Hardy and Wright, Introduction to the theory ofnumbers, p. 349. 
8 An analogous but weaker theorem has been stated in a previous paper (Ann. of 

Math, vol. 44 (1943) p. 337. 
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h, and g, have the same roots. In A, lz, has no roots. On B-A we 
place consecutive roots spaced by the angle 27r/m. Finally the remain- 
ing roots of h,,, are placed at the end points of B, half at each. 

Let 01, 82, - - - and 41, $2, - - . denote the arguments of the roots 
of g,,, and It, in B above the real axis; we number them in increasing 
order of magnitude. Our construction implies 

(1) #, 2 min (tZ’/m + 2rr/m, L/m) 

while the hypothesis of Lemma 5 translates into 

(2) 19, S mitX (6*/m, 2rr/(l + c&z). 

From (1) and (2) we deduce +,Z 0,, that is, the process has pushed 
roots of g, away from 1. If ede, eia are points above the real axis re- 
spectively inside and outside B, then 

a] (e’” - e'e)(e'" - e-i@) 1 /as = 8 sin B(cos (11 - cos 0) < 0 

so that the process reduces g,,, outside B, that is, 

(3) 1 hm(4 I s I gm(d I 

outside B. 
We shall next prove 

(4) ] L(l) [ 3 exp (c&J. 

Take m large enough so that t,‘12 and confine r to the interval 

1-e 

(5) 
(1 + c&a /2?r is r 

s (1 + G*)fm/4P. 

Then (2) reduces to 

(2’) e, s 2?rr/(l + Cl)?% 

Since from (5) and q < 1 we have %r 5 t,, (1) similarly becomes 

(1’) & 2 27rr/m. 

Combining (1’) and (2’) we find q&/e, - 12 174 whence 

II- exp (z&J \ 2 c7(1 - exp (ie,) (. 

From this it follows that 1 h,,,(l) ] 291 g,(l) 1, where R is the number 
of values of r permitted in (5). Since for large m, R > cdm, we have 
c~~>exp(c&), proving (4). 

Let X denote the number of roots of h, at the end points of B. 
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It follows from our hypothesis that X>C&,,/T. We define a further 
polynomial Km(x) =Xm+ a - - by placing roots at the points with 
arguments +?r/m, +3x/m, -I Sri/m, . . . on the arc A. If the number 
of these points is Y, then Y<cstm lee. We place (X- Y)/2 roots of k, 
at each end point of B and otherwise the roots of h, and k, coincide. 

In moving the Y roots to pass from h,,, to k, the greatest migration 
along the arc is from t,,,/m to a/m. Hence 

(6) 1 K,(l) [ 2 (clo/tAY 1 km(l) 1. 

Outside the arc C the movement of roots tends to increase Jz,,,; the 
worst place is right at the end points of C and there we have the 
similar estimate 

(7) 1 W4 1 S hL)y 1 h&l 1 

outside C. Now k, has roots all through B spaced Zrr/m apart, and 
k,#x”- 1. By Lemma 1, k, must assume its maximum at a point xo 
outside C. Then, applying (3), (7), (6), and (4) in succession, we ob- 
tain 

1 g&o> 1 > (Cllt7J-%oltm>y exp (csL> 

= (GtP/tm)2Y exp (c6b> 

> exp MJ, 

which completes the proof of Lemma 5. 
PROOF OF THEOREM 2. Take n = 2 - 3 - 5 - - - Pk. It is well known 

that IF,(l)1 =l. I n view of Lemma 4, we may apply Lemma 5 with 
m, g,(x), t,, E replaced by $(n), F,(x), $k4” and l/6 respectively. The 
conclusion is precisely Theorem 2. 

Theorem 2 is probably not the best result. It should not be difficult 
to extend the method to show that 

A,, > exp (log B> k 

for every k and infinitely many n. A very much stronger result may 
be true, namely 

(8) A,, > exp (cm/log log n> 

for infinitely many n. If true, this would be essentially the best possi- 
ble result, because for a certain cl4 and all n, 

A n < exp (clilnllog log n) . 

(The proof is omitted.) 
The possibility that (7) may be true is indicated in the following 

theorem. 
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THEOREM 3. Let n be the product of k distinct primes pl, pz, . . s , ph 
and denote by f(x) the number of integers not greater than x which are 
relatively prime to n. Let 

p = (1 -i/PI> * - * (1 -l/PA 

g(x) =f(x) - Px. 

Then there exists an XO, 15x0 in, such that 

(9) 1 g(xa) 1 > ~162~‘~(log k)-I”. 

The connection between Theorem 3 and (8) is as follows. The func- 
tion g(x) measures how much the roots of F,,(x) are displaced from 
the uniform distribution. Lemma 5 then suggests that it might be 
possible to prove 

(101 yFl 1 F%(x) 1 > exp [c162k/2(log k)-l12]. 
2= 

If in particular we take n = 2.3 ‘ 5 . * * $k, then 

pplog rtwk log k, 

and (10) is a result similar to (8). 
PROOF OF THEOREM 3. The usual sieve process gives 

Define (x/r) =x/r - [x/r], so that g(x) = &,~4(r)(x/r.). Then 

$ Cdx>12 = p(Ms)$l (+Xx/4. 

Let r =ud, s=sd, (u, e) =l. Then the final sum becomes 

g (x/r)(x/s) = nd(~-s)-~~ [u + a + d + . - - $ a + (24 - l)d] 

- [a + a Tad + - - - + a + (o - l)d] 

= n(3rs - 3r - 3s + d2 + 2)/12rs. 

In carrying out the second summation, the first three terms vanish. 
Hence 

12; k412 = H rFn Cd2 + 2MM5)/~S 

= n(2”P + 2P3. 
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Now P >tlJlog K, as follows a fortiori from Lemma 3. Hence 

2 [g(dl” > c1en2”/log k, 
z-1 

from which the existence of an x0 satisfying (9) follows at once. 
I am indebted to Dr. Irving Kaplansky who shortened some of the 

proofs and extensively revised the first draft of the manuscript. 
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