ON SOME SEQUENCES OF INTEGERS

Paul Erdős and Paul Turán*.

Consider a sequence of integers \(a_1 < a_2 < \ldots \leq N \) containing no three terms for which \(a_i - a_{i-1} = a_{i-1} - a_{i-2} \), i.e. a sequence containing no three consecutive members of an arithmetic progression. Such sequences we call \(A \) sequences belonging to \(N \), or simply \(A \) sequences. We consider those with the maximum number of elements, and denote by \(r = r(N) \)

* Received 6 June, 1936; read 18 June, 1936.
the number of elements of such maximum sequences. In this paper we estimate \(r(N) \).

Theorem 1. \(r(2N) \leq N \) if \(N \geq 8 \).

Remark. It is interesting to observe that, as we shall see, the theorem is true for \(N = 4, 5, 6 \), but not for \(N = 7 \).

Proof. First we observe that, if \(a_1 < a_2 < \ldots < a_r \) represents an \(A \) sequence belonging to \(N \), then

\[
N + 1 - a_r < N + 1 - a_{r-1} < \ldots < N + 1 - a_1
\]

is also an \(A \) sequence.

The same holds for

\[
a_1 - k < a_2 - k < \ldots < a_r - k,
\]

for any integer \(k < a_1 \).

Hence, evidently,

\[
r(m+n) \leq r(m) + r(n).
\]

We prove Theorem 1 by induction. Consider first the case \(N = 4 \). If we have \(r(8) = 5 \), then, in consequence of (1) and (2), we may suppose that 1 and two other integers less than or equal to 4 occur in the maximum sequence. Hence the sequence contains either 1, 2, 4 or 1, 3, 4. But it is evident that neither of these sequences leads to \(r(8) = 5 \). Hence \(r(8) \leq 4 \), and, since 1, 2, 4, 5 is an \(A \) sequence, \(r(8) = 4 \).

Consider now \(r(10) \). If \(r(10) = 6 \), then, in consequence of \(r(8) = 4 \) and (2), 1, 2, 9, 10 occurs in the sequence. But then 3, 5, 6, and 8 cannot occur. Thus the only possibility is 1, 2, 4, 7, 9, 10; this is impossible because it contains 1, 4, 7. Hence \(r(10) \leq 5 \), and, since 1, 2, 4, 9, 10 is an \(A \) sequence, \(r(10) = 5 \).

Now we consider \(r(12) \). If \(r(12) = 7 \), by the above argument 1, 2, 11, 12 occurs in our sequence. In consequence of \(r(8) = 4 \) and (2), 4 and 9 must occur, too. Hence the sequence contains 1, 2, 4, 9, 11, 12; but it cannot contain any other integers. Thus \(r(12) = 6 \). Since 1, 2, 4, 5, 10, 11, 13, 14 is an \(A \) sequence, \(r(14) = 8 \) and \(r(13) = 7 \). In consequence of (3), we have \(r(16) \leq 8, r(18) \leq 9, r(20) \leq 10, r(22) \leq 11 \).

From these results we now easily deduce the general theorem.

* \(r(9) = 5 \) and \(r(11) = 6 \), since 1, 2, 4, 8, 9 and 1, 2, 4, 8, 9, 11 are \(A \) sequences.
ON SOME SEQUENCES OF INTEGERS.

Suppose that the theorem holds for $2N-8$. Then, by (3),

$$r(2N) \leq r(2N-8) + r(8) < N-3 + 4 = N+1,$$

i.e. the theorem is proved, for we have established it for the special cases 16, 18, 20, 22.

For sufficiently large N, we have a better estimate by

THEOREM II. For $\epsilon > 0$ and $N > N_0(\epsilon)$,

$$r(N) < \left(\frac{2}{3} + \epsilon\right)N.$$

First we prove that $r(17) = 8$. Since $r(14) = 8$, it is evident that $r(17) \geq 8$. In the case $r(17) = 9$, the numbers 1 and 17 must occur, since $r(14) = 8$. But then 9 cannot occur, and so, by (2),

$$r(17) = r(8) + r(8) = 8. \quad \text{Thus } r(34) \leq 16.$$

Further, $r(35) \leq 16$. For, if $r(35) \geq 17$, then, by $r(34) \leq 16$, the integers 1 and 35 must occur; but then 18 cannot occur, since the sequence would contain 1, 18, 35. Hence, as previously, $r(35) \leq 16$.

Similarly $r(71) \leq 32$, ..., $r(2^k + 2^{k-3} - 1) \leq 2^{k-1}$. Hence the result.

By a similar but very much longer argument we find that

$$r(18) = r(19) = r(20) = 8.$$

On the other hand, $r(21) = 9$, since 1, 3, 4, 8, 9, 16, 18, 19, 21 is an A sequence; further,

$$r(22) = r(23) = 9.$$

Hence, as previously, we find that, for sufficiently large $N > N(\epsilon)$,

$$r(N) < \left(\frac{2}{3} + \epsilon\right)N.$$

At present this is the best result for $r(N)$. It is probable that

$$r(N) = o(N).$$

It may be noted that, from $r(20) = 8$, $r(41) \leq 16$. On the other hand, $r(41) = 16$, since 1, 2, 4, 5, 10, 11, 13, 14, 28, 29, 31, 32, 37, 38, 40, 41 is an A sequence. G. Szekeres has conjectured that $r\left\{\frac{3}{2}(3^k+1)\right\} = 2^k$. This is proved* for $k = 1, 2, 3, 4$.

More generally, he has conjectured that, if we denote by $r_i(N)$ the maximum number of integers less than or equal to N such that no l of

* It is easily seen that $r\left\{\frac{3}{2}(3^k+1)\right\} \geq 2^k$; for, if $u < \frac{3}{2}(3^k-1)$ is any integer not containing the digit 2 in the ternary scale, then the integers $u+1$ form an A sequence.
them form an arithmetic progression, then, for any k, and any prime p,

$$r_p \left(\frac{(p-2)p^k+1}{p-1} \right) = (p-1)^k.$$

An immediate and very interesting consequence of this conjecture would be that for every k there is an infinity of k combinations of primes forming an arithmetic progression.

Another consequence of it would be a new proof of a theorem of van der Waerden which would give much better limits than any of the previous proofs. Namely, it would follow from the conjecture that, if we denote by $N = f(k, l)$ the least integer such that, if we split the integers up to N into l classes, at least one of them contains an arithmetic progression of k terms, then

$$f(k, l) < k^c \log l.$$

The University, Manchester;

Budapest VI, Andrassy út 50.