A new type of coding problem

Graham Brightwell
Department of Mathematics, LSE
Houghton St., London WC2A 2AE, UK. G.R.Brightwell@lse.ac.uk
Gyula O.H. Katona*
Rényi Institute
Budapest, Reáltanoda u. 13-15, 1053
Hungary
ohkatona@renyi.hu

Keywords: graph, code, distance, design, hamiltonian cycle

Let X be an n-element finite set, $0<k<n / 2$ an integer. Suppose that $\left\{A_{1}, B_{1}\right\}$ and $\left\{A_{2}, B_{2}\right\}$ are pairs of disjoint k-element subsets of X (that is, $\left|A_{1}\right|=\left|B_{1}\right|=\left|A_{2}\right|=\left|B_{2}\right|=$ $\left.k, A_{1} \cap B_{1}=\emptyset, A_{2} \cap B_{2}=\emptyset\right)$. Define the distance of these pairs by $d\left(\left\{A_{1}, B_{1}\right\},\left\{A_{2}, B_{2}\right\}\right)=$ $\min \left\{\left|A_{1}-A_{2}\right|+\left|B_{1}-B_{2}\right|,\left|A_{1}-B_{2}\right|+\left|B_{1}-A_{2}\right|\right\}$. It is known ([2]) that this is really a distance on the space of such pairs and that the family of all k-element subsets of X can be paired (with one exception if their number is odd) in such a way that the distance of the pairs is at least k. Here we answer questions arising for distances larger than k.

1 Introduction

Let X be a finite set of n elements, $1<k<n$ an integer. Unordered disjoint pairs $\{A, B\}$ of k-element sets (that is, $|A|=|B|=k, A \cap B=\emptyset$) will be considered. Define the distance

$$
d\left(\left\{A_{1}, B_{1}\right\},\left\{A_{2}, B_{2}\right\}\right)=\min \left\{\left|A_{1}-A_{2}\right|+\left|B_{1}-B_{2}\right|,\left|A_{1}-B_{2}\right|+\left|B_{1}-A_{2}\right|\right\}
$$

between two such pairs. It has been verified in [2] that it is really a distance, that is, it satisfies the triangle inequality. We say that a set \mathcal{C} of such pairs is an (n, k, d)-code if the distance of any two elements is at least d.

Let $C(n, k, d)$ be the maximum size of an (n, k, d)-code. $C^{\prime}(n, k, d)$ denotes the same under the additional condition that a

$$
\begin{equation*}
k \text {-element subset may occur only once in the pairs }\{A, B\} \in \mathcal{C} \text { as } A \text { or } B . \tag{1}
\end{equation*}
$$

The following theorem was proved in [2].

[^0]
Theorem 1

$$
C^{\prime}(n, k, k)=\left\lfloor\frac{1}{2}\binom{n}{k}\right\rfloor .
$$

It is obvious that one cannot choose more pairs using any k-element set at most once, so the theorem actually states that this many pairs can be constructed with pairwise distance k and satisfying (1). Theorem 1 is a sharpening of a theorem of [1] where $\left\lfloor\frac{1}{2}\binom{n}{k}\right\rfloor$ pairs were constructed under the condition that

$$
\max \left\{\left|A_{1}-A_{2}\right|,\left|B_{1}-B_{2}\right|\right\}, \max \left\{\left|A_{1}-B_{2}\right|,\left|B_{1}-A_{2}\right|\right\} \geq \frac{k}{2}
$$

The method of the proofs of the constructions uses Hamiltonian type theorems.
It is quite natural to ask if one can choose $\left\lfloor\frac{1}{2}\binom{n}{k}\right\rfloor$ pairs with pairwise difference at least $k+1$. The answer is negative. In Section 2 we will give an upper estimate on $C(n, k, d)$ which will be less than $\left\lfloor\frac{1}{2}\binom{n}{k}\right\rfloor$ for $k<d$. Section 3 contains lower estimates on $C(n, k, d)$.

2 An upper estimate

Theorem 2 Let $d \leq 2 k \leq n$ be integers. Then

$$
C(n, k, d) \leq \frac{1}{2} \frac{n(n-1) \cdots(n-2 k+d)}{k(k-1) \cdots\left\lceil\frac{d+1}{2}\right\rceil \cdot k(k-1) \cdots\left\lfloor\frac{d+1}{2}\right\rfloor}
$$

holds.

Proof: Let \mathcal{C} be a family of pairs of disjoint k-element subsets of X such that $d\left(C, C^{\prime}\right) \geq d$ for all $C, C^{\prime} \in \mathcal{C}$ and count the number of pairs (C, D) where $C=\{A, B\} \in \mathcal{C}, D$ is a $k-\left\lfloor\frac{d}{2}\right\rfloor$-element subset of X and D is a subset of one of either A or B.

First, let us fix a $C=\{A, B\} \in \mathcal{C}$. There are exactly

$$
2\binom{k}{k-\left\lfloor\frac{d}{2}\right\rfloor}=2\binom{k}{\left\lfloor\frac{d}{2}\right\rfloor}
$$

appropriate $D \mathrm{~s}$, therefore the total number of counted pairs (C, D) is

$$
\begin{equation*}
|\mathcal{C}| 2\binom{k}{\left\lfloor\frac{d}{2}\right\rfloor} . \tag{2}
\end{equation*}
$$

On the other hand, if D is fixed then suppose that $C_{1}=\left\{A_{1}, B_{1}\right\}, C_{2}=\left\{A_{2}, B_{2}\right\} \in \mathcal{C}$ and $D \subset A_{1}, A_{2}$. Since $\left|A_{1}-A_{2}\right| \leq\left\lfloor\frac{d}{2}\right\rfloor$ therefore $\left|B_{1}-B_{2}\right|$ must be at least $\left\lceil\frac{d}{2}\right\rceil$, that is, $\left|B_{1} \cap B_{2}\right| \leq k-\left\lceil\frac{d}{2}\right\rceil$. Consequently the possible B s are subsets of the $n-k+\left\lfloor\frac{d}{2}\right\rfloor$-element $X-D$ and they cannot cover the same $k-\left\lceil\frac{d}{2}\right\rceil+1$-element set. Hence the number of possible B s is at most

$$
\frac{\binom{n-k+\left\lfloor\frac{d}{2}\right\rfloor}{ k-\left\lceil\frac{d}{2}\right\rceil+1}}{\binom{k}{k-\left\lceil\frac{d}{2}\right\rceil+1}} .
$$

The total number of pairs (C, D) cannot exceed

$$
\begin{equation*}
\binom{n}{k-\left\lfloor\frac{d}{2}\right\rfloor} \frac{\binom{n-k+\left\lfloor\frac{d}{2}\right\rfloor}{ k-\left\lceil\frac{d}{2}\right\rceil+1}}{\binom{k}{k-\left\lceil\frac{d}{2}\right\rceil+1}} . \tag{3}
\end{equation*}
$$

$(2) \leq(3)$ leads to Theorem 2 by appropriate cancellations.
Corollary 3 If $2 \leq k \leq n / 2$ then

$$
C(n, k, k+1)<\left\lfloor\frac{1}{2}\binom{n}{k}\right\rfloor .
$$

Proof: Using Theorem 2 it is sufficient to prove

$$
\begin{equation*}
\frac{1}{2} \frac{n(n-1) \cdots(n-k+1)}{k(k-1) \cdots\left\lceil\frac{k+2}{2}\right\rceil \cdot k(k-1) \cdots\left\lfloor\frac{k+2}{2}\right\rfloor}<\frac{1}{2} \frac{n(n-1) \cdots(n-k+1)}{k!}-\frac{1}{2} . \tag{4}
\end{equation*}
$$

It will be proved in the form

$$
\begin{equation*}
1<\frac{n(n-1) \cdots(n-k+1)}{k!}\left(1-\frac{\left\lfloor\frac{k}{2}\right\rfloor!}{k(k-1) \cdots\left(\left\lceil\frac{k}{2}\right\rceil+1\right)}\right) . \tag{5}
\end{equation*}
$$

Observe that

$$
2 \leq \frac{n}{k}<\frac{n-1}{k-1}<\ldots<\frac{n-k+1}{1}
$$

and

$$
\frac{1}{2} \geq \frac{\left\lfloor\frac{k}{2}\right\rfloor}{k}>\frac{\left\lfloor\frac{k}{2}\right\rfloor-1}{k-1}>\ldots>\frac{1}{\left\lceil\frac{k}{2}\right\rceil+1}
$$

Using these inequalities in (5) we arrive to the stronger inequality

$$
1<2^{k}\left(1-\frac{1}{2^{\left\lfloor\frac{k}{2}\right\rfloor}}\right)
$$

which is trivially true for $2 \leq k$. (5), (4) and the corollary are proved.

3 Lower estimates

Let $1<v<u<n$ be integers. The family \mathcal{P} is called an (n, u, v) packing family if it consists of u-element subsets of an n-element underlying set X and every v-element subset of X is contained in at most one member of \mathcal{P}. The class of all (n, u, v) packing families is denoted by $\mathbb{P}(n, u, v)$. Introduce the notation

$$
m(n, u, v)=\max \{|\mathcal{P}|: \mathcal{P} \in \mathbb{P}(n, u, v)\} .
$$

The inequality

$$
\begin{equation*}
m(n, u, v) \leq \frac{\binom{n}{v}}{\binom{u}{v}} \tag{1}
\end{equation*}
$$

is obvious for a (n, u, v) packing family $\mathcal{P}(1)$ holds with equality iff every v-element subset is contained in exactly one member of the family \mathcal{P}. In this case \mathcal{P} is called an (n, u, v) Steiner family.

The celebrated theorem of Rödl [5] (see also [3]) states that there are families asymtotically achieving the upper estimate (1), that is

$$
\frac{m(n, u, v)\binom{u}{v}}{\binom{n}{v}} \rightarrow 1
$$

for fixed u, v when n tends to infinity.
Proposition 4 Let $d \leq 2 k \leq n$ be integers. Then

$$
\begin{equation*}
C(2 k, k, d) \frac{n(n-1) \cdots(n-2 k+d)}{(2 k)(2 k-1) \cdots d}(1+o(1)) \leq C(n, k, d) \tag{3}
\end{equation*}
$$

holds, where o(1) may depend on k and d.

Proof: Take a family $\mathcal{P} \in \mathbb{P}(n, 2 k, 2 k-d+1)$ with size

$$
|\mathcal{P}|=(1+o(1)) \frac{\binom{n}{2 k-d+1}}{(2 k-d+1)}=(1+o(1)) \frac{n(n-1) \cdots(n-2 k+d)}{(2 k)(2 k-1) \cdots d}
$$

which exists by [5]. Let A_{1}, B_{1} and A_{2}, B_{2} be partitions (into k-element sets) of two different members of \mathcal{P}, that is, $A_{1} \cap B_{1}=A_{2} \cap B_{2}=\emptyset,\left|A_{1}\right|=\left|A_{2}\right|=\left|B_{1}\right|=\left|B_{2}\right|=k$ and $A_{1} \cup B_{1}, A_{2} \cup B_{2}$ are in \mathcal{P}. Their intersection has at most $2 k-d$ elements, hence we have

$$
\left|A_{1} \cap A_{2}\right|+\left|B_{1} \cap B_{2}\right|,\left|A_{1} \cap B_{2}\right|+\left|B_{1} \cap A_{2}\right| \leq\left|\left(A_{1} \cup B_{1}\right) \cap\left(A_{2} \cup B_{2}\right)\right| \leq 2 k-d .
$$

This implies

$$
\begin{gathered}
d\left(\left\{A_{1}, B_{1}\right\},\left\{A_{2}, B_{2}\right\}\right)=\min \left\{\left|A_{1}-A_{2}\right|+\left|B_{1}-B_{2}\right|,\left|A_{1}-B_{2}\right|+\left|B_{1}-A_{2}\right|\right\}= \\
\quad \min \left\{k-\left|A_{1} \cap A_{2}\right|+k-\left|B_{1} \cap B_{2}\right|, k-\left|A_{1} \cap B_{2}\right|+k-\left|B_{1} \cap A_{2}\right|\right\} \geq d .
\end{gathered}
$$

Take the maximum number $C(2 k, k, d)$ of such partitions with distance at least d in each member of \mathcal{P}. This construction proves (3).

Now we give a lower estimate on $C(2 k, k, d)$ for some cases. The method is a modification of the method used by Sloane and Graham [4] proving lower bounds for constant weight codes.

Let us first consider the simplest case of $C(2 k, k, 3)=C(2 k, k, 4)$.

Theorem 5

$$
|\mathcal{N}| \leq C(2 k, k, 3)
$$

where \mathcal{N} is the family of all k-element subsets A of $X=\{1,2, \ldots, 2 k\}$ such that

$$
\sum_{i \in A} i \equiv 0 \quad(\bmod 2 k+1) .
$$

Proof: Since $1+2+\ldots+2 k=k(2 k+1) \equiv 0 \quad(\bmod 2 k+1)$ holds, $A \in \mathcal{N}$ implies $X-A \in \mathcal{N}$, too. \mathcal{N} consist of complementing pairs of k-element subsets of X.

Suppose that $A, B \in \mathcal{N},|A \cap B|=k-1$ holds.

$$
\sum_{i \in A} i \equiv \sum_{i \in B} i \quad(\bmod 2 k+1)
$$

implies

$$
\sum_{i \in A-B} i \equiv \sum_{i \in B-A} i \quad(\bmod 2 k+1)
$$

Here $A-B$ and $B-A$ are 1-element sets, therefore they must be equal. Hence $A=B$, that is two different members of \mathcal{N} cannot have $k-1$ common elements. They cannot have exactly one common element either, since this would imply that A and $X-B \in \mathcal{N}$ have $k-1$ common elements, a contradiction.

It seems that $|\mathcal{N}|$ cannot be much smaller than

$$
\frac{1}{(2 k+1)}\binom{2 k}{k} .
$$

We are quite sure that this is known, but we were unable to find the appropriate reference.
Suppose now that $q=2 k+1$ is a prime power. We can prove an analogous lower bound for $C(2 k, k, d)$ only in this case. Let $X=\left\{\omega_{1}, \ldots, \omega_{q-1}\right\}$ be the set of all non-zero elements of the finite field $G F(q)$. Let $d=2 \delta$ and define $\mathcal{N}_{0}(k, \delta)$ as the family of all k-element subsets A of X such that

$$
\begin{equation*}
\sum_{i_{1}<\ldots<i_{\rho} \in A} \omega_{i_{1}} \cdots \omega_{i_{\rho}}=0 \tag{4}
\end{equation*}
$$

holds for every integer $1 \leq \rho<\delta$.
Let us see that $A \in \mathcal{N}_{0}(k, \delta)$ implies the same for $X-A$. Introduce the notation

$$
s(B, u, v)=\sum \omega_{j}^{u} \omega_{i_{1}} \cdots \omega_{i_{v}}
$$

for all $B \subset\{1, \ldots, q-1\}, 0 \leq u, 0 \leq v<|B|$ where the sum is taken for all $v+1$ different elements $j, i_{1}<\ldots<i_{v}$ of B. It is obvious that $s(B, 0, v)$ is $(|B|-v)$ times the sum of all products of v distinct $\omega_{i} \mathrm{~s}$ with indeces from B. On the other hand $s(B, 1, v)=\frac{(v+1)}{|B|-v} s(B, 0, v)$ holds and $s(B, u, 0)$ is the sum of the u th powers of ω_{i} s with indices from B.

$$
\begin{equation*}
s(B, u, 0) \frac{s(B, 0, v)}{|B|-v}=s(B, u, v)+s(B, u+1, v-1)(1 \leq u, 1 \leq v<|B|) \tag{5}
\end{equation*}
$$

is obviously true.
Let ε be a primitive root of the field. Then

$$
\begin{equation*}
s(X, u, 0)=\varepsilon^{0 u}+\varepsilon^{1 u}+\varepsilon^{2 u}+\ldots+\varepsilon^{(q-1) u}=\frac{\varepsilon^{q u}-1}{\varepsilon^{u}-1}=0 \tag{6}
\end{equation*}
$$

holds for $1 \leq u<q$.
(5) will be applied for $B=A$ several times. Start with the case $u=1, v=\delta-2$:

$$
s(A, 1,0) \frac{s(A, 0, \delta-2)}{|A|-(\delta-2)}=s(A, 1, \delta-2)+s(A, 2, \delta-3)
$$

Here $s(A, 0, \delta-2)$ and $s(A, 1, \delta-2)$ are zero by (4). Consequently $s(A, 2, \delta-3)=0$ also holds. Applying (5) with $u=2, v=\delta-3$ and using $s(A, 2, \delta-3)=0$ the equality $s(A, 3, \delta-4)=0$ is obtained. Continuing this procedure we arrive to $s(A, \delta-1,0)=0$. The equations $s(A, u, 0)=0$ can be obtained in the same way for $1 \leq u \leq \delta-1$. In other words,

$$
\begin{equation*}
\sum_{i \in A} \omega_{i}^{u}=0 \quad(1 \leq u \leq \delta-1) \tag{7}
\end{equation*}
$$

holds. (6) and (7) imply that

$$
s(X-A, u, 0)=s(X, u, 0)-s(A, u, 0)=\sum_{i \in X-A} \omega_{i}^{u}=0
$$

also holds for $1 \leq u \leq \delta-1$. If the previous method is applied backwards for $X-A$, then it leads to the validity of (4) for $X-A$, proving that it is really in $\mathcal{N}_{0}(k, \delta)$.

We will now see that the symmetric difference of any two members A, B of $\mathcal{N}_{0}(k, \delta)$ is at least 2δ. Otherwise $A-B=\left\{r_{1}, \ldots, r_{\gamma}\right\}, B-A=\left\{s_{1}, \ldots, s_{\gamma}\right\}$ hold where $\gamma \leq \delta-1$. Introduce the shorter notations $\alpha_{i}=\omega_{r_{i}}, \beta_{i}=\omega_{s_{i}}$. It is easy to see (see [4]) that the defining conditions (4) imply the equations

$$
\begin{aligned}
\sigma_{1}=\sum_{i} \alpha_{i} & =\sum_{i} \beta_{i} \\
\sigma_{2}=\sum_{i<j} \alpha_{i} \alpha_{j} & =\sum_{i<j} \beta_{i} \beta_{j} \\
\ldots & \\
\sigma_{\delta-1}=\sum_{i_{1}<\ldots<i_{\delta-1}} \alpha_{i_{1}} \cdots \alpha_{i_{\delta-1}} & =\sum_{i_{1}<\ldots<i_{\delta-1}} \beta_{i_{1}} \cdots \beta_{i_{\delta-1}}
\end{aligned}
$$

That is, the elementary symmetric functions of the $\alpha_{i} \mathrm{~S}$ and the $\beta_{i} \mathrm{~s}$ agree, therefore $\alpha_{1}, \ldots, \alpha_{\gamma}, \beta_{1} \ldots \beta_{\gamma}$ are all zeros of the polynomial

$$
x^{\gamma}-\sigma_{1} x^{\gamma-1}+\sigma_{2} x^{\gamma-2}-\ldots(-1)^{\gamma} \sigma_{\gamma}
$$

of order γ. This contradiction proves that the pairwise distance of A and B is at least $d=2 \delta$. Since the same holds for the complements, the complementary pairs of the members of $\mathcal{N}_{0}(k, \delta)$ are really in distance at least d. The following theorem is proved.

Theorem 6 If $2 k+1$ is a prime power and $d=2 \delta$ then

$$
\frac{1}{2}\left|\mathcal{N}_{0}(k, \delta)\right| \leq C(2 k, k, d)
$$

holds.
The size of $\mathcal{N}_{0}(k, \delta)$ can be determined for small values, but we believe that it cannot be much less than

$$
\frac{1}{q^{\delta-1}}\binom{2 k}{k}
$$

since the defining sums are probably nearly equally distributed among all the $q^{\delta-1}$ possibilities.

4 Open problems

Theorem 2 and Proposition 4 imply the following statement.

Corollary 7

$$
c_{1}(k, d) n^{2 k-d+1} \leq C(n, k, d) \leq c_{2}(k, d) n^{2 k-d+1} .
$$

However we think that the upper bound of Theorem 2 is asymptotically correct.

Conjecture 8

$$
\lim _{n \rightarrow \infty} \frac{C(n, k, d)}{n^{2 k-d+1}}=\frac{1}{2 k(k-1) \cdots\left\lceil\frac{d+1}{2}\right\rceil \cdot k(k-1) \cdots\left\lfloor\frac{d+1}{2}\right\rfloor} .
$$

Actually we believe that, for an arbitrary pair of k and d, there are infinitely many $n \mathrm{~s}$ with equality in Theorem 2.

The case $d=1$ is uninteresting. If $d=2$ then the upper and lower estimates coincide providing the $(n, 2 k, 2 k-1)$ Steiner family exists. Therefore the first unfinished case is $d=3$. Even in the case of $k=2$, the upper and lower estimates significantly differ. The upper estimate is

$$
C(n, 2,3) \leq \frac{n(n-1)}{8} .
$$

On the other hand $C(4,2,3)$ is obviously 1 , therefore our construction gives only the lower bound

$$
\frac{n(n-1)}{12}
$$

when an $(n, 4,2)$ Steiner family exists. Can one add $\frac{n(n-1)}{24}$ pairs of disjoint two-element sets (edges) to the Steiner system which preserves the condition that the pairwise distance of the pairs is at least 3 ?

References

[1] J. Demetrovics, G.O.H. Katona and A. Sali, Design type problems motivated by database theory, J. Statist. Planning Infer. 72(1998) 149-164.
[2] H. Enomoto and G.O.H. Katona, Pairs of disjoint q-element subsets far from each other, Electronic Journal of Combinatorics (1999) 52
[3] P. Frankl and V. Rödl, Near perfect coverings in graphs and hypergraphs, European J. of Combinatorics (1985) 6 317-326.
[4] R. Graham and N. Sloane, Lower bounds for constant weight codes, IEEE Trans. on Information Theory (1980) 26 37-43.
[5] V. Rödl, On a packing and covering problem, European J. of Combinatorics (1985) 6 69-78.

[^0]: *Research was supported by the Hungarian National Foundation for Scientific Research, grant number T029255.

