A new type of coding problem
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Let X be an n—element finite set, 0 < k < n/2 an integer. Suppose that {A;, B1} and
{Ag, Bo} are pairs of disjoint k-element subsets of X (that is, |A1| = |Bi| = |A2| = |Bs2| =
k,A1 N By = 0, A, N By = (). Define the distance of these pairs by d({A1, B1},{As, B2}) =
min{|A; — As| + |B1 — Ba|,|A1 — B2|+ |B1 — A2|}. It is known ([2]) that this is really a distance
on the space of such pairs and that the family of all k—element subsets of X can be paired (with
one exception if their number is odd) in such a way that the distance of the pairs is at least k.
Here we answer questions arising for distances larger than k.

1 Introduction

Let X be a finite set of n elements, 1 < k < n an integer. Unordered disjoint pairs {A, B} of
k-element sets (that is, |A| = |B| = k, AN B = ) will be considered. Define the distance

d({A1, B1},{A2, Bo}) = min{| Ay — Ag| + | By — Bal, |A1 — Ba| + |B1 — Az}

between two such pairs. It has been verified in [2] that it is really a distance, that is, it satisfies
the triangle inequality. We say that a set C of such pairs is an (n, k, d)—code if the distance of
any two elements is at least d.

Let C(n, k,d) be the maximum size of an (n, k, d)-code. C'(n,k,d) denotes the same under
the additional condition that a

k—element subset may occur only once in the pairs {A, B} € C as A or B. (1)

The following theorem was proved in [2].
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Theorem 1

C'(n, k, k) = B (Z)J :

It is obvious that one cannot choose more pairs using any k-element set at most once, so the
theorem actually states that this many pairs can be constructed with pairwise distance k and
satisfying (1). Theorem 1 is a sharpening of a theorem of [1] where L% (Z)J pairs were constructed
under the condition that

max{\Al - AQ‘, |Bl - Bg]},max{\Al - BQ’, ‘Bl - AQ’} Z

o |

The method of the proofs of the constructions uses Hamiltonian type theorems.
It is quite natural to ask if one can choose L% (Z)J pairs with pairwise difference at least k+ 1.
The answer is negative. In Section 2 we will give an upper estimate on C(n, k,d) which will be

less than |1 (})| for k < d. Section 3 contains lower estimates on C(n, k, d).

2 An upper estimate

Theorem 2 Let d < 2k < n be integers. Then

nn—1)---(n—2k+d)
Rk = 1) [HH] k(k = 1) - [457)

C(n,k,d) <

N | =

holds.

PROOF: Let C be a family of pairs of disjoint k-element subsets of X such that d(C,C") > d for
all C, C" € C and count the number of pairs (C, D) where C = {A,B} € C, Disak— L%J—element
subset of X and D is a subset of one of either A or B.

First, let us fix a C = {A, B} € C. There are exactly

2<k —kL§J> B 2<L§J>

appropriate Ds, therefore the total number of counted pairs (C, D) is

en( )

On the other hand, if D is fixed then suppose that C1 = {A41,B;1},C2 = {As, By} € C
and D C Ay, As. Since |A; — Ag| < L%J therefore |B; — Bs| must be at least [%], that is,
|B1NBs| < k—[%]. Consequently the possible Bs are subsets of the n — k + | 4]-element X — D
and they cannot cover the same k — (%W + 1-element set. Hence the number of possible Bs is at
most

n—k—l—L%J
(k—(%Hl)

(ot



The total number of pairs (C, D) cannot exceed

n—k+| 4]
epgp 1)
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(2) < (3) leads to Theorem 2 by appropriate cancellations. [
Corollary 3 If2 < k <n/2 then

Cln, b k+1) < L;(;;L)J

ProoOF: Using Theorem 2 it is sufficient to prove

1 nn—1)---(n—k+1) Inn—=1)---(n—k+1) 1
9 k42 2 S5 ' -5 (4)
2k(k— 1) [E2] k(k—1).-- [E£2] ~ 2 k! 2
It will be proved in the form
—1---(n— kn
1<n(n 1)~ (n—k+1) - |5] i . 5)
g Kk 1) (514 1)
Observe that
2<ﬁ<n—1< n—k+1
—k k-1 7 1
and N N
Sl blzt 1
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we arrive to the stronger inequality

1< 2” (1— 1k >
9l3z]

which is trivially true for 2 < k. (5), (4) and the corollary are proved. [

Using these inequalities in (5

3 Lower estimates

Let 1 < v < u < n be integers. The family P is called an (n,u,v) packing family if it consists of
u-element subsets of an n-element underlying set X and every v-element subset of X is contained
in at most one member of P. The class of all (n,u,v) packing families is denoted by P(n,u,v).

Introduce the notation
m(n,u,v) = max{|P|: P € P(n,u,v)}.
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The inequality
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is obvious for a (n,u,v) packing family P (1) holds with equality iff every v-element subset is
contained in exactly one member of the family P. In this case P is called an (n,u,v) Steiner
family.

The celebrated theorem of Rdl [5] (see also [3]) states that there are families asymtotically
achieving the upper estimate (1), that is

m(n,u,v) (z)

(2)

—1

for fixed u, v when n tends to infinity.

Proposition 4 Let d < 2k < n be integers. Then

nn—1)---(n—2k+d)

Ok k)= o — 1)

(1+0(1)) < C(n, k, d) (3)
holds, where o(1) may depend on k and d.

PROOF: Take a family P € P(n, 2k,2k — d + 1) with size

nn—1)---(n—2k+d)

|P| :(1+0(1))M: (L+0(1)) (2k)(2k —1)---d

(2k—2]c€l+l)

which exists by [5]. Let Ay, By and As, By be partitions (into k-element sets) of two different
members of P, that is, AyNBy = AsNBy = Q), ‘A1| = ‘AQ’ = ’31’ = ’BQ’ =kand A1UB1, AoUDB>
are in P. Their intersection has at most 2k — d elements, hence we have

|A1 ﬂAQ’ + |B1 N B2|, |A1 N B2| + ‘Bl ﬂAQ’ < |(A1 UBl) N (Ag UBQ)| <2k —d.
This implies
d({A1, B1},{A2, Bo}) = min{|A; — As| + | By — Ba|,|A1 — Ba| + |B1 — Az|} =

min{k— ’AlﬂA2’+k— ‘BlﬂBgl,k— ‘AlﬁBg‘ + k- \BlﬂAg\} > d.

Take the maximum number C(2k, k,d) of such partitions with distance at least d in each
member of P. This construction proves (3). O

Now we give a lower estimate on C(2k,k,d) for some cases. The method is a modification
of the method used by Sloane and Graham [4] proving lower bounds for constant weight codes.
Let us first consider the simplest case of C'(2k, k,3) = C(2k, k,4).

Theorem 5
N < C(2k k,3)
where N is the family of all k-element subsets A of X ={1,2,...,2k} such that

Zi =0 (mod 2k+1).
i€A



PROOF: Since 1+2+...42k =k(2k+1) =0 (mod 2k+1) holds, A € N implies X — A € N,
too. N consist of complementing pairs of k-element subsets of X.
Suppose that A, B € N,|AN B| =k — 1 holds.

ZiEZi (mod 2k + 1)

i€A 1€B

Y i= ) i (mod2k+1).

icA-B i€eB—A
Here A — B and B — A are l-element sets, therefore they must be equal. Hence A = B, that
is two different members of A/ cannot have k — 1 common elements. They cannot have exactly
one common element either, since this would imply that A and X — B € N have k — 1 common
elements, a contradiction. [

implies

It seems that |[N| cannot be much smaller than

mrns)

We are quite sure that this is known, but we were unable to find the appropriate reference.
Suppose now that ¢ = 2k + 1 is a prime power. We can prove an analogous lower bound for

C(2k, k,d) only in this case. Let X = {w1,...,wq—1} be the set of all non-zero elements of the

finite field GF(q). Let d = 24 and define Ny(k,d) as the family of all k-element subsets A of X

such that
Z wi1-~-wip:0 (4)

i1<...<ip€A

holds for every integer 1 < p < 4.
Let us see that A € Ny(k,d) implies the same for X — A. Introduce the notation

s(B,u,v) = Zw;‘wil Wiy

for all B C {1,...,¢—1},0 < u,0 < v < |B| where the sum is taken for all v + 1 different
elements j,i; < ... < i, of B. It is obvious that s(B,0,v) is (|B| — v) times the sum of all

products of v distinct w;s with indeces from B. On the other hand s(B,1,v) (v+1) s(B,0,v)

= 1Bl
holds and s(B,u,0) is the sum of the uth powers of w;s with indices from B.
B,0
s(B,u,O)S‘(B”’U) =s(B,u,v)+s(Bu+1,v—1) (1 <wu,1<v<|B|) (5)
—v
is obviously true.
Let € be a primitive root of the field. Then
0 1 2 1 e™ -1
s(X,u,O):5“+a“+e“+...+s(q*)“:gu_l:0 (6)

holds for 1 < u < gq.
(5) will be applied for B = A several times. Start with the case u=1,v =46 — 2:

s(A,0,0 — 2)

s(A,1,0)7|A‘ — -2

=s5(A,1,0 —2) +s(A,2,6 — 3).



Here s(A,0,0 —2) and s(A, 1,5 — 2) are zero by (4). Consequently s(A,2,5 —3) = 0 also holds.
Applying (5) with u = 2,v = § — 3 and using s(A, 2,0 — 3) = 0 the equality s(A4,3,6 —4) =0 is
obtained. Continuing this procedure we arrive to s(A,—1,0) = 0. The equations s(A,u,0) =0
can be obtained in the same way for 1 < u < § — 1. In other words,

dwp=0 (1<u<di-1) (7)
i€A
holds. (6) and (7) imply that
s(X — A,u,0) = s(X,u,0) — s(A4,u,0) = Z wi=0
ieX—A

also holds for 1 < u < § — 1. If the previous method is applied backwards for X — A, then it
leads to the validity of (4) for X — A, proving that it is really in Ny(k, ).

We will now see that the symmetric difference of any two members A, B of Ny(k,d) is at
least 26. Otherwise A — B = {r1,...,ry},B—A = {s1,...,5y} hold where v < § — 1. Introduce
the shorter notations a; = wy,, i = ws,. It is easy to see (see [4]) that the defining conditions

(4) imply the equations
o1 =Y ai=Y B
i i

oy = iy =Y BiB,

i<j i<j
O5_1 = Z iy Qs = Z Biy - Bis_,-
11<... <851 11<...<is_1
That is, the elementary symmetric functions of the a;s and the 3;s agree, therefore aq, ..., o, 31 ... 8y
are all zeros of the polynomial
27 — o2’ 4 o2 — L (—1)70,

of order . This contradiction proves that the pairwise distance of A and B is at least d = 24.
Since the same holds for the complements, the complementary pairs of the members of Ny(k,d)
are really in distance at least d. The following theorem is proved.
Theorem 6 If 2k + 1 is a prime power and d = 20 then

1
holds.

The size of Ny(k,d) can be determined for small values, but we believe that it cannot be

much less than
1 [2k
qéfl k ’

since the defining sums are probably nearly equally distributed among all the ¢°~! possibilities.



4 Open problems

Theorem 2 and Proposition 4 imply the following statement.

Corollary 7
c1(k, d)n?* = < C(n, k,d) < ca(k, d)n?* =0+,

However we think that the upper bound of Theorem 2 is asymptotically correct.

Conjecture 8

lim C(n,k,d) 1
n—oo m2k—dtl T op(f _1)... (%} k(k—1)--- L%J'

Actually we believe that, for an arbitrary pair of k£ and d, there are infinitely many ns with
equality in Theorem 2.

The case d = 1 is uninteresting. If d = 2 then the upper and lower estimates coincide
providing the (n,2k,2k — 1) Steiner family exists. Therefore the first unfinished case is d = 3.
Even in the case of k = 2, the upper and lower estimates significantly differ. The upper estimate
is

-1
C(n,2,3) < "<"8)
On the other hand C'(4, 2, 3) is obviously 1, therefore our construction gives only the lower bound
n(n —1)
12

1
4
(edges) to the Steiner system which preserves the condition that the pairwise distance of the
pairs is at least 37

when an (n,4,2) Steiner family exists. Can one add % pairs of disjoint two-element sets
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