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Abstract

We show that the average size of subsets of [n] forming an intersecting Sperner family of
cardinality not less than (;"_:1) is at least k& provided that k¥ < n/2 — /n/2 + 1. The statement is

not true if n/2 = k > n/2 —+/8n + 1/8+9/8. (© 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

Let [n] be the set {1,...,n} and 21" be the power set of [n]. A set & C21 is

called a Sperner family (or antichain) if there are no inclusion relations between the
members of Z:

A% B forall ABec %, A#+B.

A family # C 2" is called intersecting if any two members of # are nondisjoint:

ANB+#(Q for all A,BEF.

In [12], Kleitman and Milner found the following result on the average size of sets in
Sperner families:
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Theorem 1. Let k<n/2 be an integer. If # C2") is a Sperner family with | #|>(}),
then the average size of the sets in F is at least k.

Kleitman and Milner gave two proofs for their result, one using replacement op-
erations as in [13], the other using the LYM-inequality and linear duality. See also
[3,8—10], [1, p. 62] and [2, p. 155].

In this note we address the question whether the corresponding statement of Theorem
1 remains true for intersecting Sperner families. Note that by the Erdés—Ko—Rado
Theorem [5] the maximum size of an intersecting Sperner family consisting only of
sets of size k, k<n/2, is (;{’j ). Thus, we ask whether the average size of the sets of

an intersecting Sperner family # C 2["] is at least k provided that |7 | =170

This is certainly true if all sets in & have size not greater than n/2, which follows
directly from Theorem 1 using a correspondence between intersecting Sperner families
in 2"l and Sperner families in 20"~ ([6], see also [1, Chapter 8]).

Putting no restrictions on the setsizes, we have the following result.

Theorem 2. Let k<(n+ 2)/2 — \/n/2. If # C2") is an intersecting Sperner family
with |F |2(Z:} ), then the average size of sets in F is at least k.

This statement fails if n/2>k>n/2 — +/8n + 1/8 + 9/8.

One might ask for the smallest cardinality an intersecting Sperner family must have

in order to ensure an average setsize not less than k. An easy general upper bound for
this cardinality is given by the next theorem:

Theorem 3. Let k<n/2. If # C2" is an intersecting Sperner family with
|7| = ("), then the average size of sets in F is at least k.

The proofs of Theorems 2 and 3 use the known description [4,11] of the convex
hull of all profiles of intersecting Sperner families. Recall that the profile of a family

F C 2" is the (n+ 1)-dimensional vector having the number of i-sets of .# as its ith
entry (0<<i<n).

2. Proof of Theorem 3

Our proof follows the one given in [9] for Theorem 1 (see also [1, p. 62]).
Let # C2I" be an intersecting Sperner family with profile ( fo, fi,..., f»). The fol-
lowing LYM-type-inequality was proved in [7]

fi Jfi
,-;/;Z(T)—.—’_Z mél. (1)

i—1 i>nf2

Let g(i) denote the coefficient of £ in this inequality. It is easy to verify that the
sequence g(i), i=1,...,n, is convex. If g is extended to a function on the real
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interval [1,n] by linear interpolation, then Jensen’s inequality, (1) and the hypothe-
sis |7 =(,",) give

5 fi e 1
' (Z \7\) <3 5 IS G <o)

i

Now the theorem follows from the monotonity of the function g(x), 1<x<k.
We remark that instead of (1) other inequalities [11] might be used as well, which
give slight improvements of the bound (";1 ). We omit the details.

3. A preliminary lemma

Let us first record the following easily established numerical fact: If (as in the
supposition of Theorem 2)

k<n+2 B _\/-_IE
~ 2 2 L}
then
(n+1=2k)n+2—-2k)=2(k-1) (2)

and the sequence

n+1 . n—1 .
( 5 -z)(i_l), i=1,....k 3)

is increasing.

Lemma 4. Let a<b<c<d, e<n natural and 8, & nonnegative real numbers satisfying
b<n/2,

Z — >4, (4)

(n-+1—2b)d — b)=b, (5)

(n+1—2b)(e — b)=b. (6)
Then

(c#—b—l—(e—b)s)i—i»(b—~at—(d—b)(5)L

() (2)

>(c—a+(e—a)e—(d—c)d+ (e —d)de) —1- (7)

(5)
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Proof. Let () for 0<x<n, x real, be defined by linear interpolation of the sequence
1/(7), i=0,...,n, ie.

(’17) 1 —(xn— 1x]) + x—"[xJ _

S (@) ()

It is well known that the function 1 /(1), 0<x<n, is convex. We will use the function
b-=x

(b) /() -1

It is easily established that y is increasing on the entire domain [0,5). Indeed, if

x=1i+o, i<b a nonnegative integer, 0 <a <1 real, we have

3y ay= 11" DE)G) == () /(1)

Y(x):=

0<x<b.

b] s

() =)/ (7) +o/ (1)) ~1)°

which is nonnegative by the convexity of the sequence 1/("), i=0,...,n. (The mono-

tonity of the sequence (i), i #b, i<n/2, was already used in [12].) Furthermore, the
function v is constant on [b — 1,b):

b

!IJ(JC)-—m for b—1§x<b
Now the LHS of (7) is by Jensen’s inequality not less than

(c—a+(e—b)e—(d— b)5),—lz,

(5)

where

b — b (b —a)e—b)e+ (c—b)d — b)d

- c—a+(e—>b)e—(d—b)d

To establish (7), it suffices therefore to show that

(5) _c—a+(e—a)e—(d—c)s+(e—d)i
()" c—a+(e—b)—(d—-b)

which is easily seen to be equivalent to

(b—a)e—b)e+ (c—b)d— b)s

(b—a)e+(c—b)o+ (e —d)de

Since by (4) we have b* <b, it suffices to show by the above-mentioned properties of

Y that the RHS of the last inequality is not less than b/(n + | — 2b). If £=0 resp.
0=0 this is just (5) resp. (6). If 3,6>0, we want to show that

Y(b*) <

b—gﬁ((n+l—2b)(e~b)~—b)+c;b((n+1—2b)(d—b)—b)

=b(e —d).
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However, using (4), the last inequality follows from

(d —b)n+1-—2b) (e—b-%—c—;é)zb(e—d)—kb(d—b)-kb(cgb)

:b(e—bJrC_b),
&

which is (5). O

4. Proof of Theorem 2

We start with the first statement of Theorem 2. Our proof method follows the proofs
of Theorem 1 given in [2,10].

Let 2 CR"™! be the convex hull of all profiles of intersecting Sperner families in
2["1. The extreme points of the polytope # were determined in [5]. They are

z=(0,0,...,0),

n
vp= | 0,0,.005| . ,...,0, j>n/2,

J

-1

P (0,0,...,(7 )o) i<n/2,

i—1

n—1 n—1
wi= |0,0,...,{ . ey ) ,oos0), i<n/2, i+ j>n,

i i1 p

where the nonzero entries of v;, w; resp. w;; occur at the coordinates j, 7 resp. i and j.
If # C 21" is an intersecting Sperner family with || >(} ")), then the profile (£, fi,
<.y fi) of & lies in the intersection of & and the halfspace given by

e (101), ®

We denote this new polytope by 2. The average size of sets in # will be at least &
iff the profile of # satisfies the linear inequality

n

> (i —k)fi=0. 9)

i=0

Hence, it is enough to verify (9) (under the hypothesis of Theorem 2) only for the
extreme points of 2. Obviously, each extreme point of £’ is a convex combination
of two extreme points of 2. Consequently, it is sufficient to prove the following im-
plication: If p, and p, are extreme points of # such that ap) + (1 — o) p, satisfies
(8) for some 0<a<1, then ap; + (1 — o) py satisfies also (9).



264

Let us write

0.0 n—1 n—1 n b
= sUse o, Gy siwies s O pusie » g ! g §
Pi 1 11—1 gl j; ay, f]

(the nonzero entries located at coordinates i, Ji1 and £y) with i, <n/2, i, + j, >n,
{1 >n/2 and

(O-ilf’ O_.}'l . O-{] ) E {(0’ 09 0)9 (13 09 O)s (05 O, 1 ), (1, 1, 0)}.
An analogous notation with (g, 05, 0y,) instead of (g;,,0;,,0;,) is used for p, (where

for simplicity of notation the variables 0i,, 0j,, 05, are considered to be different from
071’0.—1'170-/1)'

Let k<(n+2)/2 — \/n/2. We want to show that for 0<a <1 the following is true:
If

then

=1 n—1 n—1
(i — k)aa, | + (2 — k)1 =)oy, | . + (1 — k)oo;, ;
iy ~=1 1 Ji
n—1 n
+ (2 = k)(1 — a)ay, : + (41 — k)aoy,
J2 £

+(f2—k)(1—oc)o'/z(2) >0. (11)

Since (11) trivially holds if i|,i» =k, we may assume that /; <k and g;, =1. Then
necessarily gy, = 0.

Case 1: i<k or g, =0.

By lower estimating (j; — k), (j» — k), (/1 —k) and (/> — k)to (n+1)/2 -k and
using (10) we have that the LHS of (11) is not less than

n+1 n—1
( 2 ‘k) (k~1)

n+1 n—1 n+1 { n—1
—~( 2 —-n)a _— —( 3 —12)( — a)oj, 1)’

which in both cases i, <k and o, =0 is nonnegative by the monotonity (3).
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Case 2: iy>k and g, = 1.

We have then o, =0, =0 and (If:j )2(;:: :

Case 2.1: (;_\) +a, (", )2 ().

Then necessarily o;, = 1. Using the last two inequalities we have that the LHS of
(11) is not less than

n—1 n—1
(jl—k)fx( . )+(i|—k)0t(. )
J1 i —1
(i — n—1 ) ) n—1
2 — k) E—1 - (ji — 1) i—1)

which is again nonnegative by the monotonity (3).
Case 2.2: ("71 )+ %("i—il )<(nf| ).

ij—1 ih—1

By ecliminating o in (10) and (11), it suffices to show that
(n—l )

A 1

n—1 n—1
(2)/ ()

+ | 2=k + (2= B)a

k —i — (i — k),

> izz‘1+(jz~il)"1'z'(?j:n%w(j'i2)%%m
() (R
EEHE

We apply Lemma 4 with a:=i; — 1, b:=k—1,c:=i — 1, d:=j) — 1, =7 —1,
=0, ("N e =ap (/D)) and ni=n— 1
Since (11) holds if g;, =1 and

n—1 n—1
Ul”‘k)( . )B(k—il)(. )
J1 1 —

we may assume the opposite; thus condition (4) from Lemma 4 is satisfied. Finally,
conditions (5) and (6) follow from jj,j>>(n+ 1)/2 and (2).
This completes the proof of the first statement of Theorem 2. In order to show the

second statement, consider an intersecting Sperner family % C 2"} with f; =(f;::l2 5
- —1 . . -1 -1 —1
furri =" —=({Z3) and fi=0 for i#k—1,n+2~k. Since (;~;)—(;2,) < (504 )

-_m(;:;) for n/2 =k >n/2—+/8n + 1/8+9/8, such a family can be taken as a subfamily

+(jl _jl)o:ilo-jz
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of one realizing the profile wi_1,42-4. It is now easily checked that the inequality (9)
fails exactly for our choice of k. [

Remark. We conjecture that the first statement of Theorem 2 remains valid for all
k<n/2 —\/8n/8. However, our proof method will not give this result: There is a con-
stant ¢ >+/8/4 such that for k = |n/2—c+/n/2| and large n, the polytope %’ contains a
point which does not satisfy the inequality (9). Indeed, take a suitable convex combina-
tion oow;, +(1 —a)w;, ;,, where e.g. i} = [;—’—0.8—?], k=% —0.764J, h=[%-03%],
=2 4+031¥4),
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