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Abstract

Suppose that the entries of a relational database are collected in an unreliable
way, that is the actual database may differ from the true database in at most
one data of each individual. An error-correcting key is such a set of attributes,
that the knowledge of the actual data of an individual in this set of attributes
uniquely determines the individual. It is showed that if the minimal keys are
of size at most k, then the smallest sizes of the minimal error-correcting keys
can be ck3 and this is the best possible, all minimal error-correcting keys
have size at most 3k3.



1 Introduction

A database can be considered as an m×n matrix M , where the rows are the
data of one individual, the data of the same sort (attributes) are in the same
column. Denote the set of attributes (equivalently, the set of columns of the
matrix) by Ω, its size is |Ω| = n. It will be supposed that the data of two
distinct individuals are different, that is, the rows of the matrix are different.
A subset K of Ω is called a key if the data in K determine the individual
(row) uniquely. In other words, there are no two distinct rows of the matrix
which are equal in K. A key is a minimal key if its no proper subset is a key.
Denote the family of all minimal keys by K.

Suppose that the data are collected in a non-reliable way, that is, at most
e of the data of each individual can be incorrect. Let M denote the matrix of
the real data and M∗ (m×n, again) the collected ones. We know that M and
M∗ differ in at most e entries in each row. Although it is here also supposed
that the real data of two distinct individuals are different, that is the rows of
M are different, this cannot be stated about M∗. Moreover a key K cannot
determine the row if the entries of the unreliable matrix M∗ are given in the
columns belonging to K. In the present paper we will investigate such sets of
attributes (columns) which uniquely determine the individual from M∗. We
say that C is an e-error-correcting key if it has this property, that is, knowing
the entries of M∗ in the columns belonging to C, the individual (and its row
in M) can be uniquely determined.

The number of different entries in two rows is called the Hamming distance
of these two rows. The m× |C| submatrix of M determined by the set C of
its columns is denoted by M(C). If the Hamming distance of any two rows
of M(C) is at least 2e + 1 then the Hamming distance of any two rows of
M∗(C) is at least 1, that is, knowing the entries of the unreliable matrix in C
it determines the row uniquely, C is an e-error correcting key. The converse
is true, too: if the Hamming distance of two rows of M(C) is at most 2e
then it may happen that the rows are equal in M∗(C), that is, C is not an
e-error-correcting key. We obtained the following proposition.

Proposition 1.1 C ⊂ Ω is an e-error-correcting key iff the pairwise Ham-
ming distance of the rows of M(C) is at least 2e + 1. 2

It is easy to see that if the pairwise Hamming distance of the rows of
M(C) is at least 2e then the knowledge of M∗(C) detects the error, but does
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not determine the row uniqely. This case is less interesting, but it makes
worth introducing the more general definition: C ⊂ Ω is called a d-distance
key iff the pairwise Hamming distance of the rows of M(C) is at least d.

The main aim of the present investigations is to find connections between
the family of keys and the family of d-distance keys. The next proposition is
the first step along this line.

Proposition 1.2 C ⊂ Ω is a d-distance key iff for any choice a1, . . . , ad−1 ∈
C one can find a K ∈ K such that K ⊂ C − {a1, . . . , ad−1}.

Proof. The necessity will be proved in an indirect way. Suppose that
there exist a1, . . . , ad−1 ∈ Ω such that C−{a1, . . . , ad−1} contains no member
of K, that is, C−{a1, . . . , ad−1} is not a key. Therefore there are two distinct
rows of M which are equal in M(C−{a1, . . . , ad−1}). The Hamming distance
of these two rows in M(C) is less than d. This contradiction completes this
part of the proof.

To prove the sufficiency suppose, again in an indirect way, that M(C) con-
tains two distinct rows with Hamming distance < d. Delete those columns
where these columns are different. We found a set C − {a1, . . . , ad−1} sat-
isfying the condition that M(C − {a1, . . . , ad−1}) contains two distinct rows
which are equal everywhere, therefore C − {a1, . . . , ad−1} is not a key in M ,
it cannot contain a member of K. 2

It is easy to see that the family K of minimal keys is non-empty and
inclusion-free, that is, K1, K2 ∈ K, K1 6= K2 implies K1 6⊂ K2. On the
other hand, it is known ([1], [2]) that there is a database for any non-empty
inclusion-free family K in which this is the family of all minimal keys. This
is why it is sufficient to give a non-empty inclusion-free family rather than
constructing the complete database or matrix. Note that, by Proposition
1.2, K and d determine Cd, therefore the notation Cd(K) will be used, if it is
necessary to emphasize that Cd is generated by K.

Our first observation is that it may happen that there is no d-distance
key at all. Fix an element a ∈ Ω (that is, a column) and an integer 2 ≤ k.
Define K as the family of all k-element sets (⊂ Ω) containing a. Then C−{a}
cannot contain any key, so the condition of Proposition 2 does not hold for
any C if 2 ≤ d: there is no d-distance key in this database for 2 ≤ d.

On the other hand, if K consists of all k-element subsets of Ω then all
sets C with at least k + d− 1 elements are d-distance keys. In the case when
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there are d-distance keys, it is enough to consider the minimal ones. Let Cd
denote the family of all minimal d-distance keys. Our last example suggests
that the sizes of the members of Cd do not exceed the sizes of the members
of K by too much. We will show that this is not really true.

Now we introduce some notations. Let
(

Ω
≤k

)
denote the family of all

subsets of Ω with size not exceeding k. Furthermore

f1(K, d) = min{|C| : C ∈ Cd(K)},

f2(K, d) = max{|C| : C ∈ Cd(K)},

fi(n, k, d) = max
K⊂( Ω

≤k)
fi(K, d).

We will prove the following theorem in Section 2.

Theorem 1.3

c1k
d ≤ f1(n, k, d) ≤ f2(n, k, d) ≤ c2k

d

holds for n0(k, d) ≤ n where c1 and c2 depend only on d.

Section 3 contains suggestions how to continue this research.

2 The proof

Let K be a family of subsets of Ω. We say that the elements a1, . . . ad−1 ∈ Ω
represent K if each K ∈ K contains one of the as. Proposition 1.2 can be
said in the form that C ⊂ Ω is a d-distance key iff no d − 1 elements can
represent the family {K : K ∈ K, K ⊂ C}. If C is minimal with respect
to this property then no proper subset of C has the above property, that is,
for all a ∈ C the family {K : K ∈ K, K ⊂ C − {a}} can be represented by
d− 1 elements. This gives a new variant of Proposition 1.2:

Proposition 2.1 C ∈ Cd iff {K : K ∈ K, K ⊂ C} cannot be represented by
d− 1 elements, but it can be represented by d elements a, a1, . . . , ad−1 where
a can be given arbitrarily in C, in advance.
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Lower estimate. We give a non-empty, inclusion-free family K consist-
ing of k-element sets which generates a Cd consisting of one member having
size at least ckd.

Fix an integer 1 ≤ i and take a subset A ⊂ Ω of size i + d − 1. Let
A1, A2, . . . be all the

(
i+d−1

i

)
i-element subsets of A and

K(i) = {A1 ∪B1, A2 ∪B2, . . .} ,

where A,B1, B2, . . . are pairwise disjoint and |B1| = |B2| = · · · = k− i. This
can be carried out if

i + d− 1 +

(
i + d− 1

i

)
(k − i) ≤ n. (2.1)

Show that the only member of Cd(K(i)) is C = A∪∪iBi. It is easy to see that
K(i) cannot be represented by d− 1 elements. On the other hand, if a ∈ Bj

for some j then the d-element {a}∪(A−Aj) represents K. If, however, a ∈ A
then any d-element D ⊂ A containing a represents K, therefore C is really a
member of Cd(K(i)). It is easy to see that there is no other member.

Choose i =
⌊
k(1− 1

d
)
⌋
. Then the size of C, given by the left hand side of

(2.1) asymptotically becomes

(d− 1)d−1

dd(d− 1)!
kd.

2

Upper estimate. Let C ∈ Cd(K) where K ⊂
(

Ω
≤k

)
. We will prove that

|C| ≤ dkd. Since we have to consider only the subsets of C, so it can be
supposed that all members of K are subsets of C.

Proposition 2.1 defines d-element subsets D of C each of them is repre-
senting K. Moreover, still by Proposition 2.1, their union is C. Denote this
family by D. We know

∪K∈K = ∪D∈D = C, (2.2)

D ∩K 6= ∅ for all D ∈ D, K ∈ K (2.3)

and K cannot be represented by a set with less than d element.
Let I ⊂ C. Define the I-degree of D as the number of members of D

containing I, that is,

degI(D) = |{D ∈ D : I ⊂ D}|.
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Lemma 2.2
degI(D) ≤ kd−|I|.

Proof. We use induction on j = d − |I|. Suppose that j = d − |I| = 1,
that is, |I| = d − 1. If all members of K meet I then K can be represented
by d − 1 elements, a contradiction. Therefore there is a K ∈ K which is
disjoint to I. By (2.3) all the sets D satisfying I ⊂ D must intersect this K,
therefore their number is ≤ |K| ≤ k. This case is settled.

Now suppose that the statement is true for j = d−|I| ≥ 1 and prove it for
j + 1 = d− |I|. Let |I∗| = d− j − 1. There must exist a K ∈ K, K ∩ I∗ = ∅
otherwise K is represented by less than d elements, a contradiction. Let
K = {x1, . . . , xl} where l ≤ k. By (2.3) we have

{D ∈ D : I∗ ⊂ D} = ∪li=1{D ∈ D : (I∗ ∪ {xi}) ⊂ D}. (2.4)

The sizes of the sets on the right hand side are degI∗∪{xi}(D) which are at

most kd−j by the induction hypothesis. Using (2.4)

degI∗(D) ≤ lkd−j ≤ kd−j+1

is obtained, proving the lemma. 2

Finally, consider any K = {y1, . . . , yr} ∈ K where r ≤ k. By (2.3), the
families {D ∈ D : yi ∈ D} cover D. Apply the lemma for I = {yi}:

{D ∈ D : yi ∈ D} ≤ kd−1.

This implies |D| ≤ kd and

| ∪D∈D D| ≤ |D|d ≤ dkd.

Application of (2.2) completes the proof: |C| ≤ dkd. 2

Let us emphasize the simplest case when the probability of an incorrect
data is so small that practically at most one data of an individual can be
incorrect. In this case e = 1, d = 3, therefore, if the minimal keys have at
most k elements, then the 1-error-correcting keys have at most 3k3 elements,
and this is sharp up to a constant factor. So even in this simple case, the
error-correcting keys may be much larger then the keys.
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3 Further problems

1. Although Theorem 2.1 determines the order of magnitude of f1(n, k, d),
it does give the exact value. We believe that the lower estimate is sharp.

Conjecture 3.1

f1(n, k, d) = max
i
{i + d− 1 +

(
i + d− 1

i

)
(k − i)}.

holds for n0(k, d) ≤ n.

2. Knowing K, can we effectively compute Cd (for a given d)? If k is fixed,
then Theorem 1.3 shows that the problem can be decided in polynomial time.
If the size of K is exponential, then this is trivial. We cannot answer the
question, e.g. when K consist polynomially many sets with unbounded sizes.

3. It is very easy to characterize the families which can be the family of
minimal keys of a database. Can it be done for Cd?

4. The investigations of the paper should be extended for the dependency
structure of the databases.

5. The questions analogous to the results of the present paper can be
asked for any other database model, replacing the relational one.

6. The following problem sounds similar to the problem treated here,
but it is actually very different. Suppose that the data go through a noisy
channel, where each data can be distorted with a small probability. Try to
add new attributes to make the effective keys for the transmitted database
small.
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