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Abstract: A powerful tool of extremal set theory, the cycle method is surveyed
in the paper. It works, however inly when the non-emptyness of the pairwise
intersections of the members of the family is assumed. If these intersections
have to be at least 2, the method fails: the celebrated Complete Intersection
Theorem by Ahlswede and Khachatrian cannot be proved by this method. We
show the reasons and some attempts to overcome the difficulties.

1.1 THE BEGINNING

Let X = {1,2,...,n} be a finite set of n elements, we will consider families
F of its subsets: F C 2X. The family of all k-element subsets of X will be
denoted by (),f) A family F of distinct subsets is called intersecting if F,G € F
implies F NG # (. One of the fundamental theorems of the theory of extremal
families is the Erdés-Ko-Rado theorem ([8]). It answers the question, what is
the maximum size of an intersecting family of subsets of an n-element set. If
k > % then the question is uninteresting, one can choose all k-element subsets,
this family will be intersecting. This is not true when k < 3. In this case one
can choose all k-element subsets . ontaining the element 1 € X. The theorem
states that this is the best we car do.
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Theorem 1.1.1 (Erdés-Ko-Rado) Let |X| = n,k < 5, and suppose that
JFEC (),f) 18 an intersecting family. Then

n—1
F| < a 1.1
A< (i) (11)
The cycle method will be illustrated by the proof of this theorem.
Proof ([20]) Place the elements of X listed along a cycle and consider the
intervals along this cycle, that is, the sets of form {i,i+1,...,i+1} where these
numbers are taken mod n. Solve the question of Erdés-Ko-Rado for intervals

of length k, first. The number of intervals of length k containing the element 1

is obviously k and this family of intervals is intersecting. We will see that this
is the best.

Lemma 1.1.2 If Ay, A,, ..., A, is a family of intersecting k-element intervals
in X then

s <k. (1.2)

Proof of the lemma Suppose that one of the A’s, say, A; = {12 0 b
The intersection property implies that every other A has either its first or last
element in A;. However, i cannot be the last element of an A when i + 1 is
the first element of another A, since 2k < n, the two intervals cannot meet
at the “other end”. Therefore there is at most one further A for each pair
i,i+1 (1 <i < k). The total number of As is at most 1 + k — 1 = k, proving
the lemma.

The rest of the proof is based on double counting. Let F be the family in
the theorem. Count the number of pairs (C, F) where C is a cyclic permutation
of X, F € F is an interval in the permuted X. First fix F. The number of
permutations of X where F is an interval is k!(n — k)! since the elements of F
and the other elements can be permuted independently. Therefore the number
of pairs is |F|kl(n — k)!.

Now fix the permutation C. The lemma can be applied for any permuted
version of X therefore, by (1.2), there are at most k members F € F which
are intervals in this permutation. Since the number of cyclic permutations is
(n—1)!, the number of pairs is at most (n—1)!. Comparing the two countings:

|Flk!(n — k)! < (n - 1)!k.

This is equivalent to (1.1).

Observe that the “miracle” works because we found a subfamily (intervals) of
(‘: ) in which the intersecting property ensures proportionally the same bound
as in the original “big” case. Namely, as the lemma states we can have at most
k sets out of the n intervals. The proportion is % This proportional bound is
sufficient for the original problem, since

(oy) _k
-

(k)
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1.2 UNICITY IN THE SPERNER THEOREM

The very first theorem of the theory of extremal families was the theorem
of Sperner ([28]). A family F. of distinct subsets is called inclusion-free if
F,G € F implies F ¢ G. It is obvious that the family of all k-element subsets
is inclusion-free. The largest one of the numbers (3) is ([n?ZJ)’ therefore we
have an inclusion-free family of this size. Sperner’s theorem states that this is
the best.

Theorem 1.2.1 (Sperner) Let F C 2¥ be an inclusion-free family, then

1< (1) .

7= (1) (i) 22

The simplest proof of (2.1) is due to Lubell [24]. His proof is somewhat
simpler than the cycle method. The application of this latter method, however,
gives an easy proof for the second part of the theorem, too.

Proof (Fiiredi [14]) The following lemma solves the analogous question
for the cycle.

with equality only when

Lemma 1.2.2 If Ay, Ay,..., A, is a family of inclusion-free intervals in X
then

s<mn (2.3)

with equality only when the family consists of all possible intervals of a fized
length.

Proof of the lemma Since the family of intervals is inclusion-free, at most
one of them can start with i (1 < ¢ < n). This proves (2.3). In the case of
equality s = n, suppose that the interval starting with 4 is denoted by A;. It
is easy to see that |A;| < |A;y1| holds, otherwise A;p1 C A; contradicts our
assumption. Finally |A4;| < |A2| < --- < |A,| < |A;| proves the statement.

Count the number of pairs (C,F) where C is a cyclic permutation of X,
F € F is an interval in C. For any fixed F' the number of cyclic permutations
in which F' is an interval is |F|!(n — |F|)!, therefore the number of pairs is
|F|IF|!(n = |F])!. On the other hand, for any fixed C there are at most n
intervals from F. The number of pairs is at most (n — 1)!'n. Hence we obtained
the inequality

[FIF|(n — |F])! <n! (2.4)
which is equivalent to (2.1).

Suppose that there is an equality in (2.4). Then there are exactly n intervals
from F along each cycle. Using the second part of the lemma all intervals along
a given cycle must have the same length. Let F,G € F. It is easy to see that
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there is a cycle in which both F and G are intervals. (It can be formed from

the intervals F — G, FNG,G — F, X — F — G.) This proves |F| = |G| for any
two members. Hence
s (X
T \k

for some k. The latter expression is maximum only when k = |3)ork=[%].

1.3 DOUBLE COUNTING WITH WEIGHT

Combine the above conditions and find the largest intersecting, inclusion-free
family. It is easy to see that

X

(f"—“z'—l1)

satisfies these conditions. The following theorem states that this is the best
one.

Theorem 1.3.1 (Milner [25] ) Let F C 2% be an intersecting, inclusion-free
family, then

17| < (rﬂ:':u]). (3.1)

Proof ([22]) We will use double counting with a weight function. This is
why the lemma does not simply upperbound the number of intervals in question.

Lemma 1.3.2 If Ay, Ag,..., A, is a family of intersecting, inclusion-free in-

tervals in X then s
n n
<n . 3.2
2 (IAii) < (r%ﬂ]) (32)

Without proof, see [22].

The number of pairs (C, F) where C is a cyclic permutation of X, F € F is
an interval in C will be counted with the weight (];,l|), that is, the sum

Py (1) 3

will be considered. On one hand it is equal to

3 3 (IE‘I) =3 |F(n - |F|)!(|;I) = |Flnl. (3.4)
FeF  {C:F is an interval in C} FeF
On the other hand, (3.3) can also be written in the form

N VRN (1)

C {F€ZF: is an interval in C}
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that is, by the lemma

;”(rinﬂ) = () (35)

is an upper bound on (3.3). Comparing (3.4) and (3.5) the statement of the
theorem is obtained.

1.4 INEQUALITIES FOR INTERSECTING, INCLUSION-FREE
FAMILIES

One can prove more complicated inequalities rather than just an upper bound
on the number of members of F.

Theorem 1.4.1 (Bollobas [2]) If F is an intersecting, inclusion-free family
of subsets of X then

> —%«51. (4.1)
ey G
|F| < n/2

Proof Again, the analogous inequality for intervals is needed for the proof
of the theorem.

Lemma 1.4.2 If A is a family of intersecting, inclusion-free intervals in X

then 1
> i (4.2)
Ae A
|A] <n/2

holds.

Without proof, see [2] .
The obvious weight function will be used in the double counting, the sum

1
— (4.3)
&1
will be considered. On one hand, it is equal to

1
> > TII*TI = Y |F|!(n—|Fi)!m. (4.4)
FeF {C:F is an interval in C} FeF

|F| <n/2 |F| < n/2

On the other hand, by the lemma we have

Y 1=(n-1) (4.5)
e
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as an upper bound for (4.3). The comparison of (4.4) and (4.5) proves (4.3).
The above theorem does not say anything about the large members of the
family. The following theorem tries to improve this situation.

Theorem 1.4.3 ([18]) If F is an intersecting, inclusion-free family of subsets
of X then

—,11— + 0y }, <1 (4.6)
A R R )
|F| <n/f2 |F| >n/2

Proof Here the small and large members need different kinds of weights.

Lemma 1.4.4 If A is a family of intersecting, inclusion-free intervals in X

then bl 4 1 i
> —_"‘I' ||+ LD DI (4.7)
A€A,|A|<n/2 AEA,|A|<n/2

holds.

Without proof, see [18] .
The rest of the proof is the same as in the case of Bollobas’s theorem.

1.5 CONVEX HULLS

Introduce the notation p;(F) = {F € F: |F|=i}| (1 <i < n). Furthermore,
the vector p(F) = (po,p1,...,pn) € R™! is called the profile vector of F.
Then, e.g. the Bollobas inequality (4.1) can be written in the form

L3]

Y <t

i=1

[VE]

Observe that this is a linear inequality which has to be satisfied for the profile
vector of an intersecting inclusion-free family. The coefficients are

_ = if 1<i<B,

es(m,i) = ¢ (o) .

0 if o

Our other statements can also be written in a form of a linear inequality for
the profile vector:

> fie(n,i) < 1. (5.1)
=1
Supposing k < | 2| and choosing

(m.) L if i=k,
ci(n,i) = k—1
! 0 if i#k
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(5.1) becomes the Erdés-Ko-Rado theorem.

1

(r=419)

c2(n,i) =

makes the Milner theorem from (5.1). Finally, if

then Theorem 4.3 is obtained from (5.1). One can determine all linear in-
equalities of type (5.1) which are satisfied for the profile vectors of intersecting,
inclusion-free families (see [23]). These inequalities (hyperplanes) determine the
convezx hull of the profile vectors of intersecting, inclusion-free families. This
convex hull can be easier described by its extreme points (= vertices).

Theorem 1.5.1 (([6])) The extreme points of the convex hull of the profile
vectors of intersecting, inclusion-free families on an n-element set are
(0,...,0),

(o)) (o)
o) (09
(0(':__11)(";1)0) (osig (;),n<i+]')

where the non-zero components are the ith and jth ones, resp.

IA

Proof It is easy to see that there are intersecting, iclusion-free families with
the above profiles. We only have to prove that any profile can be expressed as
a convex linear combination of the given extreme points. This can be proved

with the cycle method again. First we have to see the analogous problem for
the intervals.

Lemma 1.5.2 The extreme points of the convez hull of the profile vectors of in-

tersecting, inclusion-free families of intervals on a cyclically ordered n-element
set are



©,..c iy ;n—13,...,0) (ogig (g),n<i+j),

where the non-zero components are the ith and jth ones, resp., and the non-zero
Oth and nth components are replaced by 1.

Without proof, see [6].

Proof of the theorem It is easy to see that there are intersecting, inclusion-
free families with profile vectors listed in the theorem. It remained to prove
that the profile vector of any such family is in the convex linear combination

of these given vectors. The proof of this statement, will use the cycle method
with a vector-valued weight function:

w(F):(O,...,(—n_l—l)!,...,O)

where the non-zero component is the |F|th one. As before, the double sum of
this weight will be calculated for the pairs (C, F') where C is a cyclic permutation
of X, F € F and F is an interval along C. Let F (C) denote the family of those
members F' € F which are intervals along C.

For a fixed C we obtain

> w(F) = —p(F(C)).

— 1)
FeF(C) (n =1t

Denote the extreme points in the lemma by e1,...,en. The lemma implies
that p(7(C)) is a convex linear combination of these vectors, that is,

N
PIFC) =D Xi(C)e:
i=1

where the A’ss are non-negative and their sum is 1.

Hence -
2w =33 wr) =% (n_l—l), D AilC)es
C,F cC F (¢} Ti=1
s 1
N (Tho)

follows where E?’;l ﬁ; >-c¢ Ai(C) = 1. We have proved that 2erpw(F)isa
convex linear combination of the e;’s.
Summing in the reverse order we obtain

me=zzwm=zfmwﬁw;ﬂ&w@
e = (n—1)!

C,F

(ot )
= 0 P17y s Pigpyye -y =177 ysPn |,
(?) ()G
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where }~* denotes that (1,0, ..;0) .and {0, ,0, 1) are taken for F' = () and
F = X, resp., as the number of cyclic permutations along which F is an interval
is |[F|'(n—|F|)! for 0 < |F| < n but it is (n—1)! for |F| = 0,n. It follows that the
last vector is a convex linear combination of €1,...,en, therefore (po,...,p,) is
convex linear combination of the vectors listed in the theorem, since they can
be obtained from the e;’s by multiplication with (M)/n (0 <i < n).

1.6 OTHER RESULTS

There are many other applications of the method, see e.g. [4], [10], [12], [15],
(16], [17] and [27]. Most of these are contained in the excellent book of Engel
([3])- In [7] the convex hull of several other classes of families are determined
using the cycle method. [5] extends the method for more general structures.
The most sophisticated application of the method is due to Pyber ([26]). He
proved a special case of the following conjecture.

Conjecture 1.6.1 (Frankl-Fiiredi-Pyber) Let F be an imnclusion-free fam-
ily of subsets of an n-element set, 2 < k < n be a fized integer and suppose that
any two members F,G € F satisfy the conditions

|F| <n—k,
1<|FNG|<k-1.

Faks (::;)

This would be an extension of the Erdés-Ko-Rado theorem. One can easily
modify the method of [11] to prove the conjecture for the case

Then

holds.

100k2
logk —
Pyber proved it for the case
2
r
6k <n< —.

In all other applications of the method, an analogous problem is solved for the
cycle and then double counting makes it valid for the original problem. Here
Pyber considers mutual relationship between cycles. He uses statements, that

if something happens in a cycle, then it strongly influences cycles which are not
“far” from this cycle.

1.7 LARGER INTERSECTIONS

The most important recent theorem in extremal set theory is the following
theorem what will be formulated here in a somewhat weaker form. We say
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that a family F is t-intersecting if t < |F' N G| holds for any pair of members
F.GeF.

Theorem 1.7.1 (Ahlswede-Khachatrian 1]) Let 1 <t < k < n, X =

{1,2,...,n} and suppose that F C (:) is t-intersecting. Then |F| cannot
ezxceed the size of the largest one of the following families

ArZ{AE (f) : !Am{1’23.1t+2r}|2t+1~} (OSTS le—t)
(7.1).

The problem has a long history. It was posed in the original paper of Erdds,
Ko and Rado ([8]). They proved that, the family in (7.1) with 7 = 0 is the best
when n is large enough, and posed the statement of Theorem 7.1 as a conjecture
for the case when n is divisible by 4, k = 5t =2and r = 232 Frankl
has generalized this conjecture in the above form in [9]. He also determined
in [9] the exact threshold in n when 15 < ¢: the conjecture is true when
(k—t+1)(t+1) < n with 7 = 0, otherwise the construction with r = 1
gives a larger family. The cases t = 2,...,14 were solved by Wilson ([30]).
Therefore the following theorem is a special case of Theorem 7.1, we formulate
it separately because it will be used later.

Theorem 1.7.2 (Frankl-Wilson) The largest t-intersecting family F C (f)
has (;_{) members if (k —t + 1)(t + 1) < n, otherwise it has more members.

Frankl and Firedi ([13]) proved Frankl’s conjecture (that is, the Ahlswede-
Khachatrian theorem) for ¢y/t/log(t + 1)(k — t + 1) < n.

Summarizing, a longstanding effort, for many decades was needed to solve
the problem. Why does the cycle method which proved to be very effective in
many cases fail when one of the conditions is the t-intersecting property with
2 < t7 Try the trivial generalization: determine the maximum number of {-
intersecting intervals of length k. It is easy to see that the answer is k — ¢ + 1
when k < 2=l The ratio selected /total number of intervals is much more
than in the case of all sets: (}_})/(})-

One has to find a “more dense” substructure rather than the intervals along
a cycle. A candidate is a Steiner system S(n, k, t), which is such a subfamily

of (),f ) that every t-element subset of X is contained in exactly one member.
Observe that
(1)

|S{n, k,¢)| = £~ (7.2)

(¥)
It is obvious that if F is a t-intersecting family of k-element subsets of X then
F and S(n, k,t) have at most one common member. This is true for the family
obtained from S(n, k,t) by permuting X. Consider the pairs (P, F') where P is
a permutation of X, F' € F and P brings F to a member of S (n,k,t). There
are k!(n — k)! permutations bringing a given F to a given S € S(n, k,t). Using
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(7.2) we obtain that the number of pairs in question is

|f|£z—)k!(n — k). (7.3)
(¢)
On the other hand, if P is fixed, there is at most one F by the above remark.

Therefore the number of pairs is at most n!, consequently (7.3) is < n!. This
inequality implies F < (}_1).

Theorem 1.7.3 (Frankl-Katona) If there is a Steiner system S(n, k,t) for
the given integers 2 <t < k <n and F C (:) is a t-intersecting family, then

' n-—t
F| < .
e (27
As the existence of Steiner systems is a difficult question, this result did not
seem to be very effective. This is why it was not published before except for a

short remark (k = 3,t = 2) in [21] (page 221). However, if it is combined with
Theorem 7.2 then we obtain a new proof of an old theorem of Tits ([29)):

Theorem 1.7.4 (Tits) In any non-trivial Steiner system S(n, k,t)

(k—t+1)(t+1)<n
holds.

Another attempt to generalize the cyclic method for more-intersecting families
can be found in [19]. For sake of simplicity we show the case t = 2, only.
Consider the group S, of all permutations of X. A subgroup I of S, is called
2-transitive if any ordered pair (z,,y,) of different elements can be mapped
into any other pair (z3,y,) (of different elements) by one of ¢ € I'. It is called
sharply 2-transitive if there is exactly one such ¢. If n is prime power then the
function az + b (a # 0) is a permutation on GF(n) for any a,b € GF(n). It is
easy to see that the group of these functions (for composition) is a sharply 2-
transitive subgroup of S,,. The number of elements of this subgroup is n(n—1).
Obviously, this must hold for any sharply 2-transitive subgroup I'. (Note that
the subgroup of cyclic shifts ¢;(i) = i + j mod n form a sharply 1-transitive
subgroup.) Consider the sets obtained from a given k-element A C X by
applying the permutations ¢ € T where I is a sharply 2-transitive subgroup:
$1(A), ..., dnn-1)(A). If we can prove that a 2-intersecting subfamily of this
family is of size at most k(k — 1) then the ratio of the selected subsets over the
total number of subsets is the same as in the family of all sets. Let us formulate
it as a theorem.

Theorem 1.7.5 (Howard—Kérolyi-Székely) A sharply 2-transitive group T’
acting on X 1is given. Let A C X,|A| = k. Suppose that any 2-intersecting
subfamily of {¢(A) : ¢ € T'} has at most k(k — 1) members. Then any 2-

intersecting family F € () satisfies | F| < G2k

In [19] the authors find an infinite class of integers n and k for which they are
able to use the above theorem to prove Theorem 7.1 in case of ¢ — 2.
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