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Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences

Budapest P.O.B. 127 H-1364 HUNGARY, ohkatona@renyi.hu

Rajiv Vohra
Department of Economics, Brown University

Providence, RI 02912, USA, Rajiv Vohra@brown.edu

March 4, 2008

∗AMS Subject classification Primary 05A05, Secondary 05B25, 05D05. Key-
words and phrases: extremal problems, regular family, balanced family

†The work of the second author was supported by the Hungarian National
Foundation for Scientific Research grant number T029255 and the UNESCO Venice
Office ROSTE, grant number 875.630.9



Abstract

Suppose that any t members (t ≥ 2) of a regular family on an n element set
have at least k common elements. It is proved that the largest member of the
family has at least k1/tn1−1/t elements. The same holds for balanced families,
which is a generalization of the regularity. The estimate is asymptotically
sharp.



0 Introduction

The notion of a balanced family of sets has played an important role in the
analysis of the core of a cooperative game, a concept which is central to
cooperative game theory and economics. Bondareva [2] , [3] and Shapley
[11] showed that a TU game possesses a non-empty core if and only if it is a
balanced game. A game is said to be balanced if a utility profile feasible for
every coalition belonging to a balanced family of coalitions is also feasible for
the grand coalition. Scarf [10] proved that every balanced NTU game has a
non-empty core. For further work in this area, see, for example, Ichiishi [4],
Ichiishi and Idzik [5] and Shapley [11]. Balanced families of sets have also
been useful in the study of other game theoretic solution concepts, such as
the bargaining set (see, for example, Maschler [8] and Vohra [13]) and the
kernel (Maschler, Peleg and Shapley [9]).

In studying the non-emptiness of the bargaining set, Vohra [12], [13]
emphasized the importance of balanced families with the additional property
that all pairs of sets in the family have at least two common elements. There,
this property was used to establish that every NTU game had a non-empty
bargaining set if objecting coalitions were restricted in size.

The present paper is concerned with a more systematic analysis of bal-
anced families which have intersecting sets. We show that if any t sets (t ≥ 2)
of a balanced family have at least k common elements (k ≥ 1), then the

largest set in this family has cardinality at least k
1
t n1− 1

t , where n is the car-
dinality of the sum of all sets in this family. We also show that this estimate
is asymptotically sharp.

The first result along these lines was a theorem of Lovász [7] proving that
if a regular intersecting family (k = 1) consists of sets of the same size l, then
l ≥

√
n. Babai [1] proved the following generalization: if any two sets (t = 2)

in a regular family have at least k elements in common, and all sets in the
family have the same size l, then l ≥

√
kn. Finally Vohra [12] observed that

if any two sets in a balanced family have at least two elements in common
(t = k = 2), then one of the members have size at least

√
2n.
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1 Preliminaries

Let 2[n] denote the family of all subsets of [n] = {1, ..., n} and Rn the n-
dimensional Euclidean space (R is the set of reals and R+ is the set of non-
negative reals). By N we denote the set of natural numbers and by |S| we
denote the cardinality of a subset S ⊂ N . For any S ∈ 2[n], let eS denote the
vector in Rn whose i-th coordinate is 1 if i ∈ S and 0 otherwise. We also use
the notation ei for e{i} and e for e[n].

Definition 1.1 A non-empty family B ⊂ 2[n] is balanced if there exist {λS}S∈B ⊂
R+, called balancing coefficients, such that

∑
S∈B λSeS = e (or equivalently,∑

S∈B:i∈S λS = 1 for every i ∈ [n]).

Definition 1.2 A family D = {S1, . . . , Sm} ⊂ 2[n] is d-regular (0 ≤ d ≤ m)
if for every l ∈ [n], |{j|l ∈ Sj}| = d.

Proposition 1.3 Every d-regular (1 ≤ d) family is balanced.

Proof. Observe that
∑m

i=1
1
d
eSi

= e. 2

Definition 1.4 A family F = {S1, . . . , Sm} is called t-wise k-intersecting
(m, t ≥ 2, k ≥ 1 are integers) if it satisfies the condition

(1.1) |Si1 ∩ . . . ∩ Sit| ≥ k for any t members of F .

2 Lower estimate on the largest member

Theorem 2.1 Let m, t ≥ 2, k ≥ 1 be integers. Assume that the balanced
family B = {S1, . . . , Sm} ⊂ 2[n] is t-wise k-intersecting. Then B contains a
member Sj such that

|Sj| ≥ k
1
t n1− 1

t . (2.1)

Proof. Let λj be the balancing coefficient of the the set Sj. Introduce
the notation s = max{|Sj| : Sj ∈ B}.

For i ∈ [n], let
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S(i) = {Sj ∈ B|i ∈ Sj},

di = |S(i)|,

λ(i) =
∑

{j|Sj∈S(i)}
λj.

Consider the matrix M whose j-th column is λjeSj
. Adding all the entries

in the ith row yields λ(i) = 1. Therefore the sum of all entries of M is n.
First adding the columns we obtain

m∑
j=1

λj|Sj| = n.

Clearly, s ≥ |Sj| for all j, hence we have

s
m∑

j=1

λj ≥ n

or

s ≥ n∑m
j=1 λj

. (2.2)

Now, consider all possible products of t entries in the same row of M ,
where repetition is allowed and the order of the entries does matter. Of
course, only those products are interesting which contain only non-zero fac-
tors. Denote the sum of all these products by A.

Determine the sum of the products in one row. We may suppose without
loss of generality that the non-zero entries in this row are λ1, . . . , λr(r ≤ m),
where

∑r
i=1 λi = 1. Our sum in question is∑

(j1,...,jt),1≤ji≤r

λj1 · · ·λjt = (λ1 + · · ·+ λr)
t = 1.

Therefore A = n.
On the other hand, classify the terms occuring in A according to the

sequences (u1, . . . , ut), 1 ≤ ui ≤ m. These classes are obviously disjoint.
They contain identical terms: λu1 · · ·λut . Let us see that the number of
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these terms is at least k. Since |Su1 ∩ . . . ∩ Sut| ≥ k holds, the matrix M
contains at least k rows where all t columns u1, . . . , ut are non-zero. Therefore

A ≥ k
∑

(u1,...,ut),1≤ui≤m

λu1 · · ·λut = k(λ1 + · · ·+ λm)t.

This proves the inequality

n ≥ k(λ1 + · · ·+ λm)t (2.3)

Substituting (2.3) in (2.2) we have

s ≥ k
1
t n1− 1

t

2

By Proposition 1.3 we obtain the following special case.

Corollary 2.2 Let m, t ≥ 2, k ≥ 1 be integers. Assume that the d-regular
(1 ≤ d) family D = {S1, . . . , Sm} ⊂ 2[n] is t-wise k-intersecting. Then D
contains a member Sj such that

|Sj| ≥ k
1
t n1− 1

t .

2

If t = 2 and |Si| = |Sj| for all i, j ∈ [n], Corollary 2.2 reduces to Lemma
3 of Babai [1].

Now we give an alternative proof for the regular case. This actually gives
an upper bound on the number of sets, too.

Theorem 2.3 Let m, t ≥ 2, k ≥ 1 be integers. Assume that the family
B = {S1, . . . , Sm} ⊂ 2[n] is t-wise k-intersecting. Let di = |{j|i ∈ Sj}| for
i ∈ [n]. Then

m ≤
(∑n

i=1 dt
i

k

) 1
t

(2.4)

and B contains a member Sj such that

|Sj| ≥ k
1
t

∑n
i=1 di

(
∑n

i=1 dt
i)

1
t

. (2.5)
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Proof. Consider the 0,1 matrix M ′ whose j-th column is eSj
. The

number of 1s in the i-th row is di. The total number of non-zero products of
t entries in the same row of M ′, where repetition is allowed and the order of
the entries does matter is

n∑
i=1

dt
i.

By the intersecting condition of the family, this is at least kmt. This inequal-
ity proves (2.4).

The total number of 1s in M ′ is
∑n

i=1 di, therefore there is a column
containing at least

∑n
i=1 di/m 1s. The substitution of (2.4) proves (2.5). 2

If d1 = . . . = dn = d that is the family is d-regular then (2.4) gives the
upper bound

m ≤ d
(

n

k

) 1
t

.

On the other hand, (2.5) leads to Corollary 2.2.

3 Constructions

Denote the minimum size of the largest member of a balanced t-wise k-
intersecting family on n elements by f(n, t, k). Theorem 2.1 states that

k
1
t n1− 1

t ≤ f(n, t, k).

In the present section we give an upper estimate on f(n, t, k).
Let q be a prime power, t ≥ 2 and PGt(q) a t-dimensional finite projective

geometry over the q-element finite field. The number of points in PGt(q) is
qt + · · · + q + 1 (see e.g. [6]). The size of a t − 1-dimensional hyperplane is
qt−1 + · · · + q + 1. The intersection of t such distinct hyperplanes is always
one point. Therefore we have a family of qt−1 + · · · + q + 1-element subsets
of the qt + · · · + q + 1-element set so that the intersection of any t distinct
ones has 1 element.

Replace each element in the above example by a k-element set. Then a
family of k(qt−1 + · · ·+ q + 1)-element subsets of a k(qt + · · ·+ q + 1) element
set is obtained so that the intersection of t distinct subsets has exactly k
elements. This proves

f(k(qt + · · ·+ q + 1), t, k) ≤ k(qt−1 + · · ·+ q + 1). (3.1)
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Using this idea, one can easily prove that the estimate of Theorem 2.1 is
asymptotically correct.

Theorem 3.1
f(n, t, k) ∼ k

1
t n1− 1

t

holds for fixed t and k when n tends to infinity.

To prove Theorem 3.1 we need the following two lemmas.

Lemma 3.2 For any 0 < ε < 1, positive k and t and sufficiently large n
there is a prime number q satisfying

(1− ε)n < k(qt + · · ·+ q + 1) ≤ n. (3.2)

Proof. Let us start with the well-known fact that, for fixed 0 < α < β
and sufficiently large n there is a prime number q such that αn < q < βn.
Apply this statement for the necessary constants and n

1
t : if n is large enough,

there is a prime number q such that

(1− ε)
1
t n

1
t

k
1
t

< q <
(1− ε

2
)

1
t n

1
t

k
1
t

.

This implies (3.2) for large n. 2

Lemma 3.3 Given the positive integers d ≤ a and u, one can find subsets
B1, . . . , Ba of the u-element set U so that every element of U is contained
in exactly d subsets, and |Bi| ≤ ddu

a
e(1 ≤ i ≤ a). The subsets Bi are not

necessary different.

Proof. Define b and r by du by a: du = ab + r, 0 ≤ r < a. It is easy
to see that one can find sets with sizes |B1| = · · · = |Ba−r| = b, |Ba−r+1| =
· · · = |Ba| = b + 1 in such a way that the elements of U are contained in the
same number of sets. The sum of the degrees is equal to the sum of the sizes:
(a − r)b + r(b + 1) = ab + r = du. Hence it follows that the degrees are all
d. 2

Proof of Theorem 3.1 Choose q according to Lemma 3.2. Follow the
above geometric construction with a slight modification. Replace each point
of PGt(q) by a k-element set. The new underlying set K has k(qt+· · ·+q+1)
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elements. The t−1-dimensional hyperplanes of PGt(q) are enlarged, too, each
of these enlarged sets has k(qt−1 + · · · + q + 1) elements. Denote them by
Hi (1 ≤ i ≤ qt + · · · + q + 1). This family on K is t-wise k-intersecting and
regular of degree qt−1 + · · · + q + 1. Let 0 ≤ u = n − k(qt + · · · + q + 1)
and take a u-element set U disjointly to K. Apply Lemma 3.3 with a =
qt + · · ·+ q + 1, d = qt−1 + · · ·+ q + 1 and u. Using (3.2) we obtain that the
sizes of the Bs are at most⌈

du

a

⌉
≤
⌈

(qt−1 + · · ·+ q + 1)εn

qt + · · · q + 1

⌉
≤ kε

1− ε
(qt−1 + · · ·+ q + 1). (3.3)

The family Hi∪Bi (1 ≤ i ≤ qt + · · ·+ q + 1) on the n-element underlying set
K∪U is obviously t-wise k-intersecting and regular (of degree qt−1+· · ·+q+1).
The sizes can be upperbounded using (3.2) and (3.3):

|Hi ∪Bi| ≤ (1 +
ε

1− ε
)k(qt−1 + · · ·+ q + 1)

≤ (1 +
ε

1− ε
)k(q + 1)t−1 ≤ (1 +

ε

1− ε
)k

1
t (k(q + 1)t)

t−1
t .

Here k(q + 1)t < k(1 + ε)(qt + · · · + q + 1) ≤ (1 + ε)n holds for large ns.
Therefore

|Hi ∪Bi| < (1 +
ε

1− ε
)k

1
t (1 + ε)

t−1
t n

t−1
t .

We have proved

f(n, t, k) ≤ (1 +
ε

1− ε
)(1 + ε)

t−1
t k

1
t n

t−1
t

for sufficiently large ns. This inequality, combined with Theorem 2.1 finishes
the proof. 2

The case t = 2, k = 1, n = q2 + q + 1 is much easier.

Theorem 3.4 f(q2 + q + 1, 2, 1) = q + 1.

Proof. Theorem 2.1 gives f(q2+q+1, 2, 1) ≥ d
√

q2 + q + 1e. The obvious
q2 < q2 + q + 1 < (q + 1)2 proves d

√
q2 + q + 1e = q + 1. (3.1) completes the

proof. 2

Theorem 3.4 was proved by Lovász [7] in the special case when the sizes
of the sets in the family are all equal, i.e. for uniform d-regular families.
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4 Further questions

The degree of the regular family in our construction is relatively large, its
order of magnitude is d ∼ k

1
t
−1n1− 1

t . The obvious question arises whether the
size of the largest set in the family increases when the degree (of regularity)
is fixed to be small. Let f(n, t, k, d) be the minimum (for families) of the size
of the largest member in a t-wise k-intersecting regular family of degree d on
an n-element underlying set.

The above definition makes sense at all when t ≤ d. This is why studying
f(n, t, k, t) is a good starting point.

Theorem 4.1

f

(
k

(
l + t− 1

t

)
, t, k, t

)
= k

(
l + t− 2

t− 1

)

holds for all integers t ≥ 2, k ≥ 1, l ≥ 1.

Proof. Let us start with the construction for the case k = 1. The
underlying set of the family will consist of all t-element subsets of [l + t− 1],
that is, the t-element subsets will play the role of elements. Let the family
D(t, l) = {S1, . . . , Sm} be defined by Si = {A|i ∈ A, |A| = l + t − 2}(1 ≤
i ≤ m = l + t − 1). It is easy to see that Si1 ∩ . . . ∩ Sit = {{i1, . . . it}}, i.e.
|Si1 ∩ . . .∩ Sit| = 1 holds for distinct i1, . . . , it. {i1, . . . it} is an element of Si

iff i = i1, . . . , it, that is, the degree of each element of the underlying set is t.
Finally, |Si| =

(
l+t−2
t−1

)
proves

f

((
l + t− 1

t

)
, t, 1, t

)
≤
(
l + t− 2

t− 1

)
.

If the elements of the underlying set are replaced by finite sets, the new
family will be t-wise intersecting of degree t, again, only the sizes of the
members will become larger. Denote the class of these modified families by
∆(t, l). Given a family F on [n] we say that two elements 1 ≤ i, j ≤ n are
equivalent if i ∈ F and j ∈ F hold for the same members F ∈ F . The set
of equivalent elements is called an atom. It is easy to see that each atom of
D(t, l) has one element. On the other hand the elements obtained from one
element when making another family D ∈ ∆(t, l) from D(t, l) form an atom.
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The family D ∈ ∆(t, l) with atoms of size k serves as a construction
proving

f

(
k

(
l + t− 1

t

)
, t, k, t

)
≤ k

(
l + t− 2

t− 1

)
.

Before proving the other direction we will show a lemma stating that
these are the only constructions. Let k ≥ 1, t ≥ 2, l ≥ 1 be integers. The set
of families D consisting of l+t−1 sets, being t-wise k-intersecting and regular
of degree t is denoted by ∆∗(t, l, k), moreover ∪∞k=1∆

∗(t, l, k) = ∆∗(t, l).

Lemma 4.2 The elements of ∆∗(t, l) differ only in the sizes of the atoms
and the permutation of the elements.

Proof. Use induction on t and l. If l = 1, t is arbitrary then the degree
condition ensures that the family D ∈ ∆∗(t, 1, k) consists of t identical sets.
The statement is trivial for this case.

Let t = 2, l > 1 and suppose that the lemma is true for t = 2, l − 1.
Take a family D ∈ ∆∗(2, l, k). Its members are denoted by D1, . . . Dl+1. The
intersections D1 ∩ Di (2 ≤ i ≤ l + 1) must form a partition of D1. Here
|D1 ∩ Di| ≥ k. On the other hand Di − D1 (2 ≤ i ≤ l + 1) is a family
of l sets, it is 2-wise k-intersecting and regular of degree 2, that is, it is in
∆∗(2, l − 1). By the induction hypothesis it is uniquely determined in the
given sense. The statement is proved for this case.

Suppose that t > 2, l > 1 and the statement is true for t − 1 with all
values of l and for t with l − 1. Choose a family D ∈ ∆∗(t, l, k). The t− 1-
wise intersections of D1 ∩Di (2 ≤ i ≤ l + t− 1) form a partition of D1 with
classes of size at least k. Therefore the family D1 ∩ Di (2 ≤ i ≤ l + t − 1)
is in ∆∗(t − 1, l − 1, k), by the induction, it is uniquely determined (in the
give sense). On the other hand Di − D1 (2 ≤ i ≤ l + t − 1) is a family of
l + t− 2 sets, it is t-wise k-intersecting and regular of degree t, that is, it is
in ∆∗(t, l − 1, k). By the induction hypothesis it is uniquely determined in
the given sense. 2

Corollary 4.3 ∆∗(t, l) = ∆(t, l).

Proof. It is easy to check that D(t, l) ∈ ∆∗(t, l). Lemma 4.2 completes
the proof. 2
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Now return to the proof of Theorem 4.1. By the corollary above, it is
enough to consider the members of ∆(t, l). So, suppose that D ∈ ∆(t, l) has
atoms of size k ≤ ai where

k

(
l + t− 1

t

)
≤ n (4.1)

and ∑
ai = n (4.2)

hold. Denote the members of D by T1, . . . Tl+t−1. The regularity of D and
(4.2) imply

l+t−1∑
i=1

|Ti| =
∑

ajt = nt.

Hence there exist an i satisfying⌈
nt

l + t− 1

⌉
≤ |Ti|. (4.3)

On the other hand, if the sizes of the atoms are chosen nearly equal, then
this inequality is sharp. The result is a monotone function of l, therefore
we have to choose l the largest possible, satisfying (4.1). By this, the value
of f(n, t, k, t) is determined for all values of n. In the special case of the

theorem when n = k
(

l+t−1
t

)
the left hand side of (4.3) is really k

(
l+t−2
t−1

)
. 2

It is easy to deduce the following result from Theorem 4.1.

Corollary 4.4 For fixed t and k and sufficiently large n

f(n, t, k, t) ∼ t

(t!)
1
t

k
1
t n1− 1

t

holds.

It is surprising that the order of magnitude of the largest set is almost the
same under this strong condition on the degree as in the case of unlimited
degree (Theorem 3.1).
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6 Notes added on February 5, 2000

1. Noga Alon remarked that a family is balanced iff (non-negative integral)
multiplicities can be associated with the members in such a way that the
so obtained “multi-family” is regular. (It is easy to see that the balancing
coefficients in Definition 1.1 can be chosen rational. Multiply the equation
with the lowest common multiple d of the denominators of these rational
numbers. We obtain

∑
S∈B lSeS = (d, . . . , d).) The proof of Theorem 2.3 is

valid for multi-families, therefore it gives an alternative proof also for the
general case of balanced families.

2. π-balanced families are generalizations of balanced families (see e.g.
[5] or [11] for the definition. Unfortunatelly, our theorems are no longer true
for this class of families as the “star” consisting of two-element sets shows.
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