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INTRODUCTION

Despite of the vast progress information theory has made in the
last decade, some problems important from the point of view of the very
foundations - to the authors’ knowledge - still lack a rigorous and sufficiently
general exposition, In this paper we attempt to fill some of these gaps,
concerning problems of the following type (precise definitions will be given in
Section 2):

(i) If the message symbols produced by an information source
are of different cost, the entropy per unit cost can be defined either as the
limit of the entropy of the message sequence of cumulative cost t divided by
t , or as the entropy per symbol (limit of the entropy of the first n symbols
divided by n ) divided by the average symbol cost. (Most frequently, the cost
of a symbol is its duration and entropy per unit cost is entropy per second. )
Dating back to Shannon’ s fundamental paper [16], in general the second
definition is adopted (see also [12], [15], etc.) but in heuristic reasonings it
is often implicitly assumed to be equivalent to the first one, In the literature
consideration is usually restricted to the simplest case that each symbol of
the source alphabet has some fixed cost (duration), but no proof of the
equivalence of the two possible definitions of entropy per second seems to have
been published even for that case. It should be noted that also the general case
has considerable interest, in particular if one looks at sources producing
message symbols at random times - according to some point process - and
"cost" is interpreted as the length of the time interval between two subsequent

symbols.
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(ii) For the interpretation of entropy as the measure of the
amount of information the so-called noiseless coding theorem is of basic
importance. It asserts, intuitively, that the greatest lower bound of the average
number L of code characters per symbol needed to encode in a uniquely
decipherable way the output of a source of entropy rate H equals

I.TgH—_sT , where s’ is the size of the coding alphabet. The "noiseless coding

2

theorem" is usually stated and proved, however, for rather special codes
only, namely for those defined by a fixed assignment of sequences of code
symbols to the letters of the source alphabet, or to sequences("blocks") of
fixed length of letters of the source alphabet (see e.g. Feinstein [9], Ash
(1], etc.). On the other hand, the theorem is expected to be true for "all
conceivable" codes and in order that it be really valuable from the
"foundations" point of view it should be proved for "arbitrary" codes,
including blockwise encodings with variable block length and the code mapping
varying from block to block, in dependence on the previously encoded message
symbols., The strongest results known in this direction are apparently those of
Billingsley [2]. Moreover, if the message symbols or the code characters or
both are of different cost, if H is interpreted as the entropy per unit cost,

L as the average cost dilation due to the encoding, and l.oc_:,2 s' is replaced

by the "capacity of the noiseless channel” as defined by Shannon [16], one may
infer that the statement still remains valid. In fact - for the case of fixed
symbol costs - this statement occurs already in [16], but, to the authors’
knowledge, no exact proof has been published so far, except for special
(Markovian) sources.

(iii) It is "intuitively clear" that uniquely decipherable coding
gives rise to a message of entropy (per symbol) -E— where H is the entropy

(per symbol) of the original message and is the average number of code
characters per message symbol, A rigorous proof of this assertion for finite-
-state Markovian sources and encodings performed by finite-state transducers
has been given by Sidelnikov [17], and for arbitrary sources and simple letter
codes by two of the present authors [10]. In case of symbols of different cost,
a similar relation is to be expected for the entropies per unit cost, In this
direction there seems nothing to have been published.

The problems listed under (i), (ii) and (iii) are very closely
related to each other. As a main tool for dealing with them we introduce the
concept of entropy rate with respect to a stochastic cost scale and establish a
theorem on the relation of entropy rates with respect to different cost scales
under general conditions. Applying this result, we obtain an apparently
satisfactory solution of problems (i)-(iii), for sources with finite alphabet; in
particular we prove the "principle of conservation of entropy" for a very wide
class of encoding procedures. Our method is straightforward and follows
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closely intuition. Our aim was to make familiar heuristic reasonings rigorous
rather than to replace them by ad hoc non-information-theoretic arguments,
in this respect, even for the particular cases of our results that have been
proved earlier, our proofs seem preferable to the existing ones.

§ 1. PRELIMINARIES

(A) Throughout this paper, the terms "random variable",
"discrete random variable" (= random variable with finite or countable state
space), "integer valued random variable"”, "almost surely” (= with probability
one), "uniformly integrable" and "if and only if" will be abbreviated as RV,
DRV, IRV, a.s., u.i. and iff, respectively.

All RV’ s will be assumed to be defined on the same probability
space (R,F,P) . RV’s will be denoted by greek letters, omitting, as a rule,
the argument w . Except ® and w (typical element of ® ), all greek letters
occurring in this paper denote RV’s, In case of families of RV’ s (= stochastic
processes) we shall write the parameter as an argument rather than as an
index; thus a typical element of a sequence of RV’ s will be denoted by %(n)
rather than by ¥, (of course, ¥(n) means really ¥(n,w) ).

If Ae¥, P(A)>0 , symbols with subscript A will refer to
the probability measure PA( «) = P(-1A); if P(A) =0, such symbols will be
meant tobe O . E.g., E{asgsb}h}) means E(yla<¥<b) if P(a<¥<b) >0
and O otherwise,

(B) By entropy (conditional entropy) of DRV’ s we shall always
mean entropy in the sense of Shannon:

(1. 1) H(§) == 3 P(¥=x)log,P(%}=x)
%

H(Elm) = %P(n:g)th}Q) =
(1.2)

== 5 P(M=y) P(¥=xIn=Y) log,P(F=xIn=y)
%,y

where x and y range over the state space of ¥ and m , respectively (eventual
undefined terms in (1, 1) and (1. 2) are considered as zeros).
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We shall need also the concept of information distance (of DRV’s)
(1.3) d(¥,m) = H(Elm)+ H(RLE)

and the mutual information (of DRV’ s with d('§.'q)< oo )

(1.4) 1(§,m) = H(E) - H(Elm) = Hm - H(qlE) .

1

The equality H(¥)-H(¥|m) = H(n) - H(n1¥) follows from (L. 5) below, if
dcf.*\) < o . For the purposes of this paper, we need not define I('g,rl) if
k)T

The well-known basic identities and inequalities concerning
entropies and conditional entropies (due essentially to Shannon [16], see also
e.g. [1], [9]) such as

(1.5) HOE,m) = HCE) + H(mlE) = H(m) + H(Ely)

(1.5) HOE,MIZ) = HOSIZ) + HMI§,3) = H(MIZ) + H(XIn, %)

(1. 6) O£ HIX|9, 5 < H(EIn) = H(E)

(1.7) 02 I(¥,n) < max(H(E),H)

(1. 8) 0<H(¥) = log, { number of possible values of ¥}

(1.8") 0< H(X!M) < E log, {number of possible values of § given 7}

will be used freely, without any further reference. We shall need also some
other simple but somewhat less standard inequalities summarized in the
following lemmas:
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LEMMA 1. 1. We have for arbitrary DRV’s

(1.9) d(%,m) +d(4,%)z2d(%,7)
(1. 10) THOE) - Hop L =dx,q)
(1. 11) FHGE M) - H(E,Im)1 € d (%, 50 + dln,,my)
(1. 12) 1 TCE, M) - 1%, M1 2 d (%, 5,0 + d(my M)

provided (in (1. 10)-(1. 12)) that the left hand side is meaningful,
REMARK 1, 1. This lemma means that the information-distance
is a metric in the space of DRV’ s with finite entrcpy and the different

information quantities are (uniformly) continuous functions with respect to it,

LEMMA L 2, If ¥ is an IRV with finite expectation then

(1. 13) Hgr s Efgl+log, 3
and
Rl
(1. 14) H(¥) < E log,(1§1+1)+ log, T—1) :

PROOF OF LEMMA 1. 1. The triangle inequality (1.9) follows
from

(1.15) HGEIM) + H(NIT) Z H(EIm,5) + H(mIE) = H(X,n1E) Z H (k1Y)

ana the corresponding inequality obtained by changing the role of ¥ and %
(1. 10) is an immediate consequence of (1. 5) and (1. 3). By obvious substitutions,
(1. 15) gives rise also to

FHCE ) -RCE A0 < dff,;?q_)

(1. 16)
[H(EIm ) -1 (Xin,) < dlnn,)
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whence (1. 11) directly follows:
PHCEy I - HCE,Imp)] € THEE ) - U, Im )+

+lH(§ "’\1)""(?11"11)‘ d(§1 1)+d(vl1)nz)

at last, from (1, 14), (1, 5) and the second inequality of (1. 16) we get
ITCE M) -1 ,,m = [HED - HIM) - KO, I+ Hy, 1 E,)] =
= H(E,In,) - Hingl ¥ - H(E, 1) + Hin, 1,0 = dnyumy) + d(F,,%,)

i.e. (1.12),

PROOF OF LEMMA 1.2. Set p = P(5=k) and q, = 1+ 2!

(k=0,t4,t2,...) . Then {qk} is a probability distribution and the well -known
inequality

Zpulea, g 20

gives rise to (1, 13).
(1. 14) can be proved in the same way, with the choice

C

2
T =3
e Taenz ety AL ol

(C) We shall have to do with three types of convergence of
RV’ s: convergence in probability (or stochastic concergence), almost sure
convergence (convergence with probability one) and convergence in L, -norm,

They will be denoted by _P_ , .S, and La , respectively.

LEMMA 1,3. Let ¥(1), t20 be a family of RV’ s and let

E(Y) e ¥, (t++0) . Then the conditions
a) §(t) is uniformly integrable (u.i.) for t+— o and
b) E1§(t)l — ElEl < (t —>o0)

are equivalent and imply E(t)El.f (¥ —c0) ; and conversely, E(t)‘i>§e L4
implies ¥(t) L k3 and both (a) and (b).
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Here condition (a) means that Lim S | T)P(dw) — 0
28 k —» +00 t—oo [¥()I2k

REMARK 1. 2. If there exists t,20 such that for every finite
%2 o the RV’'s ¥(t), t,<t< t, areu.i. then, obviously, condition (a) is

equivalent to saying that ¥(t) is u.i. for tzt,

.

PROOF. From %(%) h‘.,fe L4 obviously follows both ¥(t) 2. %

and (b). These, in turn, imply, on account of

Els(tHI-El¥l =
= [ Qewn-13)Pdo)+ § 131 PCde) = | | %) Pldw)
Alt,k) Alt,k) Alt, k)

(with  ACt,k) = {o:|¥()-Fl <k, 1¥1<k}, A(t,k) = @\AK,k), k>0

fixed) the relation

tn | lsieder < T | I151Ptde) = [ (§1PCde)

t = 1562 2k t =00 AltK) 51>k
(we used that {w:|¥(t)] 22k} c A(t,k) ) whence (a) directly follows.
Finally, E(t)ﬁ. ¥ and (a) obviously imply §(t) b1 completing the proof.

(D) If X ={x,,-..,xs} is an arbitrary finite set, we denote by

W(X) and U(X) the set of all finite and infinite sequences, respectively, of
elements of X . Here "sequence" means simply juxtaposition of elements
without commas. The void sequence u, will be also considered to belong to

UW(X), The set X will be called an alphabet iff identical sequences from

UW(X) U W(x) are elementwise identical, too, i.e. Xy Koo d: =X K L%y
174 tm )97 )2 In
implies n=m and Lkz jk (k=12,...,n), Xi iy = XjXj, oo

implies (,=j, (k=4,2,...) and U(X) and ﬁ(X) are disjoint, This condition
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means only that the elements of X are really "elementary"”, excluding e.g.
the possibility of x,=a., Xp=b, X,=ab OF % =a,x,= bc, %xz=ab, x,=¢

etc.

The elements of an alphabet will be referred to as letters. If

X is an alphabet and u = X Rig g € LX) then m , the length of the
m

sequence w , is uniquely determined by u ; it will be denoted by ll wll. Of

course, we set lugll= 0 and for wel(X) we set lull=+co , For

w,v e LX) U aex) we shall write w—~v iff || wli<lvll and the sequence of
the first m=1lull letters of v is identical with u . Obviously, — is a
partial order on U(X)U{(X). Subsets of (L(X) of form c(u)= {G: 8 >—uY(uellw)
will be referred to as cylinder sets; the smallest & -algebra of subsets of
U.(X) containing all cylinder sets will be denoted by #

(E) For the rest of this paper, it will be convenient to restrict

the use of certain letters, attaching them some specific meanings in a consistent
way. Our notational conventions will be the following ones:

X : finite alphabet

E(n) (n=1,2,...) sequence of DRV’ s with common state space X
X% abbreviation for the above sequence

F(Kk),ECk+1), ..., ¥(n) if k<n
EF(k,n)=
l the void sequence ug if k> n

7 (n) (n=1,2,.) sequence of nonnegative real RV’s, such that
3 a.s
% 1(n) 22 + o0 as n — o .

Z abbreviation for the above sequence

n
Bwy Th=1,3ea)s - winye 2 LTK) (t(0)=0)
k=1
v(t) (0<t<+o00) :number of n’s with T(n)<t

'r](‘t) (04t<+o0) : n(t):}('\,v(t))

(v(#) and n(t) are well-defined a. s., du€ to the assumption T(n)®:5;+e0).
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Processes #Z will be thought of as associated to processes (cf,
Definition 2. 1 below). Different ¥ processes will be distinguished by dashes;
different £ processes associated with the same % will be dashed in the same
way as £ , and they will be distinguished by indices. Given % and % , the
corresponding %’s, 3’s, t's, v’sand 7’s will be given the same
dashes and (or) indices as ¥ and Z.

Instead of ¥(n), Z(m), T(n), v(%) and n(t) we shall often
write simply ¥,7,v,v and w , if omitting the argument does not cause
ambiguity.

Observe that Z is uniquely defined both by the RV’s = and v ;
each non-decreasing sequence of nonnegative RV’s T(n) (n=4,2,...) with

t(m¥5 + 00 defines a sequence and so does each family of IRV’s v(t) 20
(0<%t < +o) with right-continuous sample functions tending to infinity as

{:—-w.

§ 2. INFORMATION SOURCES WITH
DIFFERENT COST SCALES;
COMPARISON OF TEE
CORRESPONDING ENTROPY RATES

DEFINITION 2. 1. An information source ¥ with finite alphabet

X 1is a sequence of DRV’S ¥(n) (n=1,2,...) having the finite alphabet
X as common state space. A cost scale X is a point process on [0, oo)
described in terms of %’s, <t’sand v’s, see Section 1 (E). A cost scale

v(t)

isu.i. for t—co,

Z will be called regular if

Intuitively, §(n) represents the n’th message symbol emitted
by the source, {(n) its cost, t(n) the cumulative cost of the first n message
symbols and v(t) the number of message symbols with cumulative cost just
not exceeding t . E.G. the "cost" may be time as in examples 2.2 and 2. 3
below; then T(n) represents the epoch at which the emission of the n’th
message symbol terminates and v(t) is the number of message symbols
emitted up to the epoch t

EXAMPLE 2, 1, The simplest cost scale is defined by

(2..1) Lin)=A, B = n - Unadils il i) s (1) (o€t ew) «
This cost scale will be referred to as the counting scale € .
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EXAMPLE 2.2, Let £(w) be a nonnegative valued function on
U(X) such that L(ug)=0 and u— v implies £(w)<llv) ., Then, for any source
¥ with alphabet X ,

(2.2) 4(m = L(EU, M) -L(¥U,n-1) , T = (¥ (4,n)) (n=1,2,..)

defines a cost scale £ . Cost scales of this type will be called strictly
intrinsic,

In particular, if

n
(2.3) Q(u):%@(xii) Cu= Ry 2oy )
the corresponding cost scale Z defined by
n
(2.4) {(n =L(¥nY), Tm= > LIk (n=1,2,...)

k=1

may be called a memoryless intrinsic cost scale; observe that L(x)=1 gives
rise to the counting scale € . E.g. L(x) may be the length or duration of the
symbol xeX . Then, if the symbols are emitted consecutively, without

n
intervals, T(n)=2_ L(%¥(k)) is the epoch at which the emission of the n’th
k=1

message symbol terminates.

EXAMPLE 2, 3. The cost of transmission may depend on random
outer disturbances independent of the symbols to be transmitted; in our model
this means that ¥ and Z are independent stochastic processes. The same
holds if the symbols are emitted at random epochs, independent of the symbols
themselves and "cost" means time,

EXAMPLE 2. 4, A cost scale may be defined by letting t(n)
denote the number of binary digits needed to encode the first n message
symbols when a particular method of encoding is used.

REMARK 2. 1. A cost scale % is trivially regular if ¥

is uniformly bounded; e.g. a strictly intrinsic cost scale (cf. example 2, 2) is

surely regular if T(u')

W

is bounded away from 0 (u#u,).
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If %X is a source, sequences of type ¥(1,n) will be called finite
messages of ¥ (for the notations cf, § 1, (E)). In particular, NI =¥, vty
is the message of cumulative cost just not exceeding t (with respect to the
cost scale £ ). E.g. if "cost" is time then n(t) is the message emitted in
the time interval [0,t] .

Obviously, n(t) is DRV; its possible "values" are finite
sequences belonging to W(X), including, possibly, the void sequence u,

The entropy of m(t)=% (1,v(%)) can be considered as the
average information content of a message of cost t (with respect to the given
cost scale). This suggests the following,
.
DEFINITION 2. 2. The entropy rate of the source ¥ with respect

to the cost scale Z is the limit

(2.5) HEENE) = lim L H(n(®)

t 00

provided that it exists, If the limit does not exist, we shall denote the limsup
and liminf of % H(n()) by H(%XNZ) and H(XIIZ) , respectively. (The
double bar is used in order to avoid confusion with conditional entropy. )

If the cost of each symbol is unity i.e. 2=¢ (cf. example 2, 1)

then m(t)=¥(4,t]) reduces to the usual definition of entropy per symbol

(2.6) H(®) = HCENe) = tim L pcga,ny) .

n— 00

The idea underlying definition 2. 2 is that the relevant in-
formation i$ carried by the message symbols i. e. by the process ¥ and not
by the process Z

In the sequel we shall omit the arguments t where doing so
does not cause ambiguity.

LEMMA 2. 1. For every regular cost scale
2.7) H(v(D) = o (1) (t —oc0)
holds. Furthermore, for two arbitrary cost scales £, and %,
(2.8) d(vyrvy) = 2Elvy-v,l+21l0g,3

- 111 -



thus if ia_(j);\?_a.(t)_ s I fe} , then (2. 7) holds or does not hold

simultaneously for Z, and £,

PROOF, If Z is regular i,e. if % is u.i, for t — oo then

EGH)=01)and E l.ogz(vM) < log, ElvsN) = log,,0%) = o (t) holds.
Furthermore, as

dy3v9) = HOy v ) # H(, 1 9)) = HOv= v, 19, )+ HGvy = vy I ) £ 2H (v - vy

the inequality (2. 8) is a consequence of lemma 1. 2. The last assertion follows
from (2. 8) and lemma 1, 1 ((1, 10)).

In this section we shall be interested in the relation of entropy
rates with respect to different cost scales of the same information source.
Let us remark that for memoryless intrinsic cost scales (2. 4), when
interpreting 2(x) as the length or duration of the symbol xe X , "Entropy per
second" is commonly defined (cf. [16], [12], etc,) as entropy per symbol
(2, 6) divided by the "average symbol length” L '"and not as in definition 2. 2;

in some reasonings, however, this H(L3€)

is implicitely replaced by our

HC(XNZ) . Our results will, in particular, provide a justification for such
reasonings under general conditions (cf. theorem 2, 4),

For an arbitrary real number r and k>0 we set
|+

Ir1Y 2 max (0, r), Irl"= = min(0,r), Irl=|rl*eirl”

(2.9)
\r\:—- min(Irlf k), el = minClrl5 k), Irl =min(irl k).
The following estimates will play fundamental role in the sequel.

THEOREM 2.1, Let %X be a source with alphabet X of size 4
and let 2.1 and Z, be two different cost scales for ¥ . Then

(2. 10) H(n,1m,) € H(v,1v,) + Log, 4 E 1vy-v,\"

and also, if A€ ¥ is such that on A=R\A we have v, - v, < kt ( where
k>0 is arbitrary)
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(2.11)  Hnyimy) £ 4+ PCAYHZ(1V,) +log, AE |v,-v,|  + P(AYH, () -

1' kt

PROOF. As v;=¥n;|l is uniquely determined by n;= ¥(1,v;)
(¢=1,2) , we have

(2.12)  Hln,Im,)) = Hvyy M lvg M) € Hvglvpd + Rin, vy, vy,m,) .

As for given v,,v, and 7m,=%(1v,) the number of possible "values" of m,=¥(4,v,)

+ +
is at most bh’"v‘\ , the last term in (2, 12) is = E(Logzbwrv’-‘ )

= log, AE lv1-v1\+ proving (2, 10), We may also write (setting =1 if weA
and «=0 otherwise), H(m,IM,)< H(x,m,1n,) = H) + P(AYHZ(q,\m,) +
+PC(AYHp(n,17m,) hence, applying (2. 10) to Hz (v,In,) and taking into account

(2.13) PCAYEZ V-V, 1" € Elv,-v,)

+
kt

and using the obvious inequalities H(at) <1, Hpln,in,) € Ha(n,) we obtain
(2. 11).

In order that the implications of theorem 2. 1 can be formulated
concisely, we introduce some definitions concerning cost scales.

If £ is an arbitrary cost scale and ¢>0 , we may define the

cost scale ¢cZ as the sequence of RV’s cZ(n) (n=4,2,..) . Let us denote
the <*’'s and v’s corresponding to the cost scale ¢Z by +® and v* , re-

spectively: T%(n) = ct(n), n=1,2,... s vE(E) = "(%7» 04t <coo .

DEFINITION 2.3. For two cost scales Z, and Z, we write
A A
(2. 14) 2, ~ %, (v -v,@) S o

If 2,~%,, we say that ‘%, is equivalentto Z, .

The cost scales Z; and Z, will be said te be quasi-equivalent

with quotient ¢,,=c>0 if %,~c%, , i.e. if
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(2. 15) Lo -vin = Lo -v(E)te o

Of course, in case of regular cost scales, the replacement of
L, -convergence by stochastic convergence in the above definitions (in (2. 14)

and (2, 15)) makes no difference.

Intuitively, £,~ %, means that the cost of one symbol is
essentially the same for both scales.

The equivalence and the quasi-equivalence are equivalence

relations, and the quotient c,, is uniquely determined by £, and %, ,
except for the trivial case Ewv (1) =o(t) ({=4,2). If 2£,,2, and %, are

quasi-equivalent cost scales, there obviously holds

1

(2. 16) 1= T
12

C12C23 =S4z €

THEOREM 2. Let Z, and Z, be two cost scales for a source
X with finite alphabet X , and let one of the entropy rates H(%I%,)
and H(XI%,) exist, If £, is quasi-equivalentto %, with quotient

Cp=c> 0 then

(2.17) HOEWZ,) = RCENZ,)

If the entropy rates in question do not exist, the assertion
remains true both for the lower and upper entropy rates.

PROOF. (2. 10) implies
(2. 18) d(m,,1%) £ d(vy,v7) +og, 5 E | v~ vi |

Hence, using (1. 10) and (2. 8), we obtain
[H(N ) -HNS)IL €02+ Log, 5) E|vy-v5 | +210g,3

what results by definition the desired statement
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HEENZE) = lim Lo ) = tum L uesen -

t>ot £t —=>co

. A A

I
t
(where m°(t) = ¥(1,vS(¢) =§(1;V(%)) '—“V\(E) 2.
In order to apply theorem 2, 2 to concrete problems it will be
convenient to establish some simple sufficient conditions of the relation ~

for different cost scales.

LEMMA 2.2, Let %, and %, be two regular cost scales and
let one of them have the property

(2. 19) bzf(m<p a.s. (0<b<B; n=1,2,...) .

Then each of the conditions

(2. 20) L i N
v bty T
1 p
(2.21) e,v,) Barso
(2.22) TTmen Becso

is equivalent to %,~cZ,, where c= % "

PROOF. For regular cost scales Z1~1?£2 means

1 P
(2.23) ¥(\:1(£)—v2(r-’c)) — 0
Without any loss of generality, let e.g. ¥, have the property

(2.19), i.e. 0<b<7,(n<B ; then [T v rt)s B s, thus the

equivalence of (2. 20) and (2. 23) is obvious. Furthermore, as by the definition
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of the ©’sand v’s the relation T,(v,(t)) =yt is equivalent to v,(t)<v,(yt)
(O<y<wo) , the relation (2.21) is equivalent to
(o) if y<r
Pv,(t) € vy(yt)) — L o)
1 if yo>r
and this, in turn, is equivalent to (2, 23), in view of the assumption
O<b< z'z(h) < B . Similarly, (2.28) is equivalent to
o if y<c
P(vy(4) £ v,(yt)) — (t —>oc0)
1 if y>c

i.e. to

0 i y'e
P(v(y't) € vy () — (¢t =)
1 if y' <r

which, again, is equivalent to (2. 23).

The following consequence of theorem 2, 2 and lemma 2, 2 is
worth being formulated as a new theorem.

THEOREM 2,3. Let ¥ be a source with finite alphabet and let
Z4 and Z, be two regular cost scales for ¥ such that one of them has the

property (2. 19). Then either of the three equivalent conditions (2. 20)-(2. 22)
implies

(2.24) HCENZE,) = rH(XENZ,)

(in the sense that if either side exists so does also the other and they are equal).
If the entropy rates in question do not exist, (2. 24) still holds both for the
lower and upper entropy rates.

The most important cost scales are those quasi-equivalent to
the counting scale € (cf. example 2. 1). By definition 1.3, a cost scale Z is
quasi-equivalent to the counting scale € iff there exists a constant ¢ >0

v(t) L, 1
Tt

such that e Of course, all cost scales quasi-equivalent to the

counting scale are regular (cf. Lemma 2, 1),
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It tor a given cost scale

_"___{th converges in probability to a

(finite) constant r , this r will be called the symbol rate of the source with
Tin)
n
to a (finite) constant ¢ , this ¢ will be called the average symbol cost (with

respect to the given cost scale).

respect to the given cost scale. Similarly, if

converges in probability

In view of lemma 2,2 (with Z,= Z,%,=¢€ ) a symbol rate
r>0 exists iff an average symbol cost ¢>0 exists (c = 1?) and these are
also necessary and sufficient conditions of £~c? for regular £ . Thus we
obtain, as a particular case of theorem 2, 3.
THEOREM 2. 4, If for a source ¥ with finite alphabet X and

with a regular cost scale £ a positive symbol rate r or, equivalently, a
positive symbol cost ¢ exists (cr= 1) then

(2.25) HCENZ) = rH(%):%H(:ﬁ)

if either of H(3) and H(XlZ) exists.

REMARK 2,2, If Z is a cost scale of (2, 4) (more general cost
scales do not seem to have been considered in the literature) and the source
% is a stationary ergodic source (i.e. ¥(1),%(2), ... is a stationary ergodic

sequence of DRV’ s), then

n
(2. 26) L T AT L e
" k=1

H{X)

In this case "entropy per unit cost'" is often defined as the ratio . By

theorem 2. 4 this definition is equivalent to (2. 5), provided that % is regular.
This is the case, in particular, if 2(x)>0 for all xe X , or if the message
symbols ¥(n) are independent and identically distributed (in the latter case,
E (v (L) 1

t Bl FTT
renewal theorem, and this ensures the regularity by lemma 1. 3.).

L=E7 (1) by the law of large numbers and by the

EXAMPLE 2.5. Let us be given a finite-state noiseless channel
as defined by Shannon [16]; such a channel is specified by the input alphabet
X , the set of states A , an assignment of subsets X(a) of X to each
o.e A and by a function G(x,a) defined for a € A, x € X(a) and taking its

-:FE7 =



values in A (X and A are finite sets). In each state o., the channel is
capable of transmitting letters from X(o.) only and if x & X(a) is transmitted,
the new state will be a'= G(x,a). Let an a; ¢ A be fixed as the initial state;

a sequence U= X{X;..x; € U(X) is transmissible iff % € X(aik-1) (k=1,..,n)

where @, is defined recursively by a = G("ikv e 1) (k=1,2,..,n)
denote the set of all transmissible sequences by U, . Let £(x,a)2 0,

(aeA, xeX(a)) be the cost of transmission of x at the state a ;

n
then L(w)= > E(x-;,k,flik ,) Tepresentes the cost of transmission of the
k=1 =

sequence W= x XX €U,. We make the usual assumptions that for each pair

of states a’,a"e A there exists u= Xig o Xy, o X € Ug such that

a; =a, a; = a’ , and that for all weU,with l|ull>m(say) {(w>0 . Let %

i
k
be a source transmissible by the channel (i.e. ¥(1)...¥(n) e W, a.s.

n=4,2,... ) and let the (regular) cost scale £ be defined by (2. 2), with
the present (u). Let N(t) denote the number of different sequences we U,

with €(w)<t and such that &(ux)>t for some xe X , with uxe U, ; we define the

channel capacity by

(2..27) T
C = lim T log, N(t) .

1
t+—+ 00
Then m() = ¥(4,v(t)) has at most N(t) possible values, implying

Hin(t) = log Nty , RCENZYSC  ; thusif T Loega,m Boy

we have, according to (2, 25),

(2.28) %ﬁ(ae:)sc ;

The inequality (2, 28), first appearing in Shannon’ s fundamental
paper [16] is often considered to be "obvious". However, its familiar
"justification" relays on the equivalence of the two possible definitions of entropy
per unit cost and can be made rigorous only on the basis of theorem 2. 4. The
existing rigorous proofs of (2. 28) concern stationary Markovian sources only
([7], [15]) or the case of one state ([5], [12]).

Let us now consider the inequality (2, 28) in the most general
form that still follows from theorem 2. 3.
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THEOREM 2.5. Let ¥ be a source with finite alphabet and
let Z4 and Z, two regular cost scales for X such that one of them has the

property (2. 19) and
—1—_:?2(\)1(’:)) P Lo .

If N(t) denotes the number of different possible values of M, () = ¥ (4,9,(%))
and

T A
C=Llim oy LogZN(’c)

t—=> oo

then

(2.29) HIENZ, % C .

o

L
In the original paper (cf. footnote 1) we proved (2.29) under
more general conditions which did not ensure the validity of (2. 24).

§ 3. THE PRINCIPLE OF
CONSERVATION OF
ENTROPY

Let %X and %' be two sources with finite alphabets X and X',
respectively. Let Z be a cost scale for ¥ and Z' a cost scale for ¥’ ; then
we define the rates

(3. 1) HOE, X WE,2') = lm 4 u(q), @)
tsoo t

(3.2) HOEIX' | 2,2') = Llim % H (q) | p'(H)
t - 00

(3.3) ICEXNZ,2) = lUm L I(n®),n1)
t—bwt

(3. 4) d(e. X' 12,2) = lim L dini), v (1)

t +o00
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provided that the limits exist ( m(t) and 7'(t) are defined as in § 1, (E); the
argument t will be often omitted). If the limits do not exist, one may consider
the corresponding upper and lower rates (upper and lower limits),

As an immediate consequence of theorem 2, 1, lemma 2. 1 and
lemma 1.1 we have

THEOREM 3. 1. All the rates (3. 1)-(3. 4), as well as the cor-
responding upper and lower rates, remains unchanged if either of 2 and Z'
is replaced by an equivalent cost scale,

In this section we shall apply the results of Section 2 to the
case that £' is obtained from X by encoding (or conversely), For this purpose
we define the codes in a very general sense,

DEFINITION 3.1, Let X and X' be finite alphabets. An arbi-
trary mapping § of W(X) into U(X") such that f(uy)=u, and

(3.5) u— v implies fow =< fon

will be called a code from X to X' .

The code of a sequence W =X, - X{ ~Wwe can write in the form

(3.6) fw = glxglugp glaglxg) . q(iin‘*(,l wxg )

Each code §{ from X to X' defines a mapping of infinite
sequences, too; in fact, for U= Lok, e W(X) we may write

f = gl lug) SIC T L B A TALE TR S I . Observe
that the definition 3. 1 does not exclude that the "code {(W) of some infinite
sequence W be finite. The set of those G eU(X) for which §(Q) is infinite, will

be denoted by f){ .
REMARK 3. 1. It is easy to see that 5;& B for any code § and

also, the mapping f:ﬁ* — U(X) is measurable with respect to the o -

-algebras B and B spanned by the cylinder sets. If § is a code, the mapping
¥ ]“5; — W may be called an infinite-code; clearly, the concept of

an infinite-code is much more restrictive than that of an arbitrary measurable
mapping W(X)— W(X')  (though all practically realizable mappings seem
to belong to this class). Two different codes {, and §, may give rise to the

same infinite-code. In this case we shall say that {, and f{, are equivalent

and write f;~ §, . Of course, each infinite-code may be identified with the
corresponding equivalence class of codes and vice-versa,

- 120 -



If { is a code from X to X' and u.:xhx,l-'z...y,tpe.U(X)

let k, =k, (u) denote the n’th point of increase of the sequence
(3.7) 0, NfCedh, -yl {(LH,.-.,me)\\ SN B IS TRER )

and k,=0 . For Ge (X)  we define k(W) in a similar way; in particular,

if ﬁeﬁs , then k_ (U) is well defined for n=0,1,2,...

EXAMPLE 3,1, If in (3. 6) g(xiw) =g, where g(x) is some
mapping of X into U(X) - {uo} , the resulting code will be called a simple
letter code. In this case we have

feury =gl ngleiy g ) (u=yx -

n Y4

X

. e W(x)

n

(3.8) '
Fei) = gl glag) .. (=g 2, e TOO) .

EXAMPLE 3.2. Let X and X' be finite alphabets, let A be a
finite set to be called the set of states, and let us be given two functions F
and G mapping the Cartesian product XxA into W(X') and A , respectively.
Let an initial state a. ,eA be specified, set f(u)=u, and for W=y Xy X
set

{0

3.9) Flwy = Flxg a0 Flxp,ay) - Flxg o anq)

where the states a, are defined, recursively by a, = G("'ik' oy _y)

Then § is a code in the sense of definition 3. 1; the encoder (X, X', A,
0,,F,G) will be called, following Shannon [16], a finite-state transducer
and § will be referred to as the code generated by this finite-state transducer.

DEFINITION 3.2, Let X be a source with finite alphabet X
and let § be a code from X to X' . We say that ¥ is encodable by { if
the IRV’ s
(3. 10) x(n) = k, (FCO¥2)...)

(%, has been defined in connection with (3. 7)) are well defined a.s. for
n=1, 2 y e ')

The encoding results in a new source %'s= {(%X) defined by

IHCHI UCPINIER JCIE UCH IR IR Y€ ICPE ICHIEHD I

- 121 -



If there is given a cost scale Z, for ¥ then we also define the

mapped cost scale Z,= §(%,) by
(3.11) v (1) = || O, e ||
or, equivalently, by

(3.12) Tim=t  iff [fn,&NN < n<Nfn, NI forall t'et .

REMARK 3. 2, If a source X is encodable by a code § , the
mapped cost scale §(%,) need not be regular, in general., In order that the

regularity of %, imply that of {(%,), a simple sufficient condition consits in
I1$cwll

fall
by finite-state transducers (cf. example 3. 2), this condition is trivially ful-
filled.

the boundedness of (u#uy) . In particular, for codes generated

In order that a code be of any practical value, it ought to be
possible, in some sense, to recover the original message from its encoded
form, We adopt the following

DEFINITION 3. 3. Let £ be a source with finite alphabet X
and let { be a code such that ¥ encodable by § . The encoding §:% — X'
will be said to be finite decodable if there exists a natural number d such
that to any u' there are at most d  u’s satisfying f(w) = u'.

THEOREM 3.2, Let ¥ be a source with a cost scale £, and

let X be encodable by a code { . Let further the encoding result in the source
X'= §(¥) and let Z' be a cost scale for ¥' . Then if the code §:¥ — %' is
finite decodable and if the mapped cost scale = §(%)) is quasi-

-equivalent to %' , i.e. Z:'\- c'Z ¢'>0, we have
(3.13) HOE'NZ) = c'HIXNZ,) -
PROOF, (3.11) implies (%) = §'(4,v,(8)) = {(»,+) and
thus H(ni(4)) < H(m, (1)  i.e.
(3. 14) HOELZY € REXNE,) -
On the other hand, since { is finite decodable,

H(n,Im}) < log,d = a(t)
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holds, Hence, using (1.5), the inequality

(3.15) HOE'LEL) = HCERE,)
follows. (3. 14) and (3. 15) give

(3. 16) HCE'IlZ)) = H(xNZ,) .
However, £, ~ ¢'%' , thus by theorem 2.2 we obtain

(3.17) H(x.'l\“t.’,)=ﬂ9u,‘—£)

Finally, (3. 16) and (3. 17) give the desired (3. 13).

The intuitive meaning of theorem 3. 2 is clear. (3. 13) represents
the "principle of conservation of entropy"”, i.e. that finite decodable encoding
does not change the entropy rate apart from a factor representing the quotient
of average costs after and before encoding. If the codmg is not decodable
from (3. 14) and (3. 17) we can obtain

HCX'NZD < H(XINZY)
which means that in the non-decodable case some information may get lost.

The following corollary of theorem 3. 2 is worth formulating as
a new theorem,

THEOREM 3.3. Let ¥ be a source with a given regular cost
scale Z, ; let X be encodable by a finite decodable code § and let Z' be a

cost scale for X'= §(X) such that

(3.18) b<Z'(n<B a,s., (n=12,..; 0<b<B).
Then if
(3.19) Lewgoeem Zrso
Nfcol
and the code § has the property that W is bounded, we have
w
(3.20) MEYE L LI
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PROOF. By remark 3. 2 the obtained cost scale %, = §(%,)

is regular, similarly, Z, also is regular trivially. Using lemma 2. 2 we

4

obtain that (3. 19) is equivalent to Z4~ —'1_— z' . Thus, theorem 3.2 leads to
(3. 20).

E.g. if X' has a memoryless intrinsic cost scale (cf. example
2.2) defined by fixed symbol costs (x") (x'e X') such that ¥'(n)= LCx'(n))
or somewhat more generally, if X' is to be transmitted by a finite-state
noiseless channel (cf. example 2. 5), the symbol costs may depend on the
"state of the channel"”, i.e. 7'(n) = L(E(n), L n-1)) where ol(k)
represents the state of the channel after the transmission of the k’th message
symbol. In these cases the condition (3. 18) is trivially fulfilled provided that
L(x") (or L(x'a) ) is strictly positive.

REMARK 3. 3. Theorem 3.3 is perhaps the most impressive
form of the "principle of conservation of entropy”. As t'(Il$(n, (%)l

is the cumulative cost of the code of a message of cumulative cost t (i.e. of
Ty l%) = 21(1,\;1&)) ) the condition (3. 19) requires the existence of an average

code cost r per unit message cost, in the sense of convergence in probability,
If both Z, and Z' are the counting scale € (3. 19) reduces to

(3.197) Liggammn 2 p

and the identity (3. 20) becomes

(3.20%) s H (30 )
F

This relation, dating back to Shannon [16], has often been
regarded as " obvious" but, to the authors’ knowledge, it has never been provec
in a rigorous way, for arbitrary sources and codes. For the case that § is a
simple letter code, a proof of (3.20") appears in [10]. The more general case
of codes generated by finite-state transducers (cf. example 3, 2) has been
considered by Sidel’nikov [17]; he however, restricted attention to Markovian
sources (though, as he has remarked, some of his results hold in more general
cases, too).

We conclude this section by exhibiting a general form of the
"noiseless coding theorem' as a consequence of theorem 3. 3. (In our original
paper we prove a more general form which is not such simple consequence
of theorem 3. 3.)

THEOREM 3. 4. Let X be a source with a given regular cost
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scale £, ; let ¥ be encodable by a finite decodable code §{ and let Z' be a

cost scale for 36':{-(‘.!-1) such that
b<{'tn<c B a.s., (n=%12,..; 0<b<B).

Denote by N(t) the number of different possible values of m'(t) = ¥ (1, v'(1))
and put

—— log, N(})
B T
t—>co t

Then if

{c'( I fm,etn) 2= L >0

1
and the code has the property that '\—ﬁl-(il}l is bounded, we have
(VE
(3.21) ___H(geé‘i) <L

PROOF, We have to observe only that by definition of C
H(n'(t)) < LogzN(t) and HCE'URD 2 C
hold, thus the statement follows from (3. 20).
REMARK 3. 4. (3.21) has been proved for the special case if
o= 8, ¥ is a memoryless intrinsic cost scale and the code is a simple

letter code. For the case of stationary ergodic sources with £,=€ for £'= ¢

and for general codes defined by him, Billingsley [2] has proved even a stronger
theorem than the corresponding particular case of theorem 3. 4. For more
general cases, to the authors’ knowledge, the assertion is, though "intuitively
‘obvious", as a mathematical theorem new.
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§ 4. CONCLUDING REMARKS

In this paper, we restricted ourselves to information sources
with finite alphabet; the finiteness assumption has been essential for our basic
estimations (2. 12) and (2. 13) (theorem 2, 1) and it remains an open problem,
under what conditions does the "entropy rate comparison theorem' (theorems
2.2 and 3. 2) hold for countable alphabets, too. Theorem 2.5, however, remains

log, s
unchanged also for countable X (except for the bound C < 92

). Observe.

too, that the theorems involving coding (theorems 3.2, 3.3, 3.4) can obviously
be extended to countable X (provided, in the case of the first two that X'
remains finite). A possible approach to problems concerning countable alphabets
in general would be to reduce them to the finite-alphabet case by an appropriate
encoding, using the above remark.

As to the generality of the concept of coding used in this paper
(definitions 3. 1 and 3. 2) one might make the objection that in some cases the
code sequence assigned to a (finite) message sequence may conceivably depend
not only on this sequence but on some subsequent letters, too. In all practical
cases, however, the encoding is "of finite delay"”, i.e. the code sequence
assigned to the first n letters of the message to be encoded is uniquely
determined by these letters and m subsequent ones, where m is fixed. Then
one may consider that the code sequence obtained in this way is actually assigned
to the first n+m letters of the message sequence (rather to the first n cases);
as m is constant, this change of viewpoint does not cause any change in the
results.

It would be very desirable, both from the theoretical and practical
points of view, to extend our results in order to include the case of information
transmission in the presence of noise. E.g., our results may conceivably be
useful in the theory of channels with error synchronisation, investigated by
Dobrusin [8]. A closer study of noisy channels with arbitrary cost scales,
however, is beyond the scope of the present paper.

In connection with the "noiseless coding theorem" (theorem 3, 5),

we did not tacle the problem whether the lower bound

H(ENZ)

C

appropriate encoding. In practically important cases, this question may be
answered in the affirmative using familiar methods, though in the most general
case there may arise some difficulties. Another problem we did not enter is
that of generalizing McMillan’ s theorem for sources with cost scales; this
problem, though of considerable interest, apparently requires different methods
than those used in this paper.

of L can be attained (or approximated to any specified degree) by an
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