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Abstract

One unknown element of an n-element set is sought by asking if it is contained in given
subsets. It is supposed that the question sets are of size at most k& and all the questions are
decided in advance, the choice of the next question cannot depend on previous answers. At most
! of the answers can be incorrect. The minimum number of such questions is determined when
the order of magnitude of k is n* with a«<1. The problem can be formulated as determination
of the maximum sized /-error-correcting code (of length n) in which the number of ones in a
given position is at most k. (©) 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Let X be a finite set of n elements, say X ={1,2,...,n}, and x, 1 <x <n an
unknown element. We want to find x by asking questions of type “is x € 4?” where
4 is a subset of X with at most £ elements. However some of the answers can be
false. It is supposed that the number of incorrect answers is at most /. The unknown
x should be found uniquely under these informations. There are two different models,
the adaptive model, when the choice of the next question may depend on the previous
answers and the non-adaptive model when all the questions are decided in advance.
In the present paper only the latter one is considered. Of course, we want to find the
minimum number f(n,k,[) of questions sufficient to find x. (An excellent survey of
search problems with lies is Hill, 1995.)

In other words, our aim is to find the minimum number f(n,k, ) of subsets A C
X, |4| < k of the n-element X such that the answers for the questions “is x € 4” uniquely
determine x even if at most [ of these answers are incorrect.

* The work was supported by the Hungarian National Foundation for Scientific Research grant numbers
T016389, T016524, the European Communities (Cooperation in Science and Technology with Central and
Eastern European Countries) contract number CIPACT930113.

E-mail address: ohkatona@math-inst.hu (G.O.H. Katona).
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Let the characteristic vector of 4 be a 0,1 vector a whose jth component is 1 iff
j€A. Let our question sets be 4;,4,,...,4y, then define the mxn matrix M by the
TOWS d1,ay,...,a,. Obviously, if the unknown element x is j, then the correct answer
for the ith question is “yes” iff the jth component a;; of @; is 1. The sequence of correct
answers can be identified with the jth column of M. However, at most / components
are changed to obtain the actual answers. It is easy to see that the element x, that is,
any column can be uniquely identified from the actual answers iff these columns differ
in at least 2/+ 1 components, in other words their Hamming distance is at least 2/ + 1.
Therefore f(n,k, 1) is the minimum of such m’s that there is an mxn 0,1 matrix with
at most £ 1’s in each row and with Hamming distance at least 2/ + 1 between any
two columns.

Taking the complement of a set 4;, or interchanging the role of 0’s and 1’s in one
row of M preserves the required property, therefore it can and will be supposed that
k<n/2.

The dual problem can be formulated in terms of error-correcting codes, too. The
columns of the matrix are the code words. Their set is an [-error-correcting code. The
typical problem of coding theory is to find the largest (here n) code for given m and
[. The only (in coding theory) unusual condition is that at most & of the codewords
may have 1 at each fixed position.

Introduce the notation f(n,k,0)= f(n,k). The value of f(n, k) is more or less known
(see Katona, 1966; Wegener, 1979; Luzgin, 1980). In Section 2 we give, however,
some improvements.

In Section 3 we give a lower estimate, while Section 4 contains some constructions,
fairly good when £ is small relative to n.

The concept of entropy will be used in the paper. Let & be a random variable taking
on (finitely many) distinct values with probabilities pi, ps,..., py,0 < pi, Efio pi=1.
Its entropy is defined by

N
H({)=~ z%)Pi log pi,
s

where (and in the entire paper) log means log of base 2 and 0log0 is 0. If a pair
(&,n) of random variables is given, then the entropy H(&,n) of the pair is defined in
the same way, by the (so called joint) probabilities of the pairs of values (£, #) can
take on. The following inequality is well known (see e.g. Csiszar and Kémer, 1981 or
Feinstein, 1958):

H(&n) < H(E) + H(n) with equality iff ¢ and # are independent. It can be easily
extended for more random variables by induction:

H(Eiss o5 Em) S HED) 4+ - +H{ER): (1.1)

We will use the following notation: A(y)=— ylog y— (1 — y)log (1 — y). This function
is monotonically increasing in the interval [0, 1/2], symmetric about the middle in [0, 1]
and h(1/2)=1 (see e.g. Csiszar and Korner, 1981 or Feinstein, 1958).
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2. Improvements for the case of zero lies

Let () denote the polynomial (x(x —1)---(x — i+ 1))/i!. The following theorem
gives an algorithmic solution for f(n, k).

Theorem 2.1 (Katona, 1966). Let 2 < k<n/2 be integers. The inequality system

xk+r§(r—i) (x)—rn=0, 2.1)
i=0 j

l

r—1 X r X
2 ( )<n<2( ) (22)
=0 \ i =0 \ i

has a unique solution in (r,x) supposing that r is a positive integer, x is real and
r—1 < x holds. Then

f(nk)=[x].

The following lower and upper estimates are known.
Theorem 2.2 (Katona, 1966; Luzgin, 1980; Wegener, 1979).

logn
s | (1=

logn
log [n/k]

The lower estimate was proved in Katona (1966). A somewhat weaker (than the
present one) upper estimate was deduced in Katona (1966) from Theorem 2.1. How-
ever, it was not pointed out that this upper estimate was only a byproduct and some
readers might have thought that Theorem 2.1 was needed mainly for proving this es-
timate. Luzgin (1980) and Wegener (1979) published the direct construction proving
the present, somewhat improved bound. The aim of this section is to demonstrate that
Theorem 2.1 provides good approximate solutions, too.

< f(nk) < [

Theorem 2.3. Let the integer 2 < R and the real number

R
K= W (23)
be fixed. Then
f(nkn' =Ry =R L O(1), (2.4)
where 7y is the only real solution of the equation
R
'
rcy+R—!fR+l (2.5)

and O(1) does not depend on n, but may depend on R and k. On the other
hand, if

R
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holds then
f(n,xn' Ry = gn'/R +0(1) (2.7)

is the approximate solution.

Proof. Case A: Suppose that (2.3) holds with strict inequality.

We will see that the pair (R + 1,yn'/®) is an asymptotic solution of system (2.1),
(2.2), in the below described sense.

Let

; r—1 X
Pyx)=nn'""x + E(F-f)( ) —rn,
i=0 i

that is, the polynomial on the left hand side of (2.1) with our actual value of k.
It is easy to see that

Rl 1Ry _ ... (yn' /)R 1R\R—1y _ 1
Pn (pn7)=xyn+ 7l +O0((yn")"" ) = (R+ Dn.
Eq. (2.5) implies
PR 'Ry = O(n! —VR), (2.8)

Lemma 2.4. Let p(x) be a polynomial of order r — 1 whose coefficients may depend
on n and suppose that it satisfies the following conditions:

(2yx)Y 2 xn' V% for r —2 <, (2.9)

(ph(xo(n)))=0 for some r — 2 < xo(n), (2.10)

(pL(x1(n))=0n"""RY " for some r — 2 < xi(n). (2.11)
Then

[xo(n) — xi(n)] <0 (2.12)

holds where 6 does not depend on n.

Proof. By Rolle’s theorem

Pn(xo(n)) — p,(x1(n))
xo(n) —x1(n)

is equal to p/(x)" for some value x in the interval determined by xo(n) and x(n).
Therefore, by (2.9), it is at least kn' ~'/R. Hence, we have

| Ph(xo(n)) — ph(xi(n))| 3 O(n'~V/R)
Kkn'—1/R iy
by (2.10) and (2.11). The last ratio can be bounded by a constant 6. O

Ixo(n) — x1(n)| <
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Let us check that our pj(x) satisfies the conditions of the lemma.

(X*I—Q—]) ‘+x<~v(x—i+2)>

it il

i=0

is monotonically increasing for » — 2 < x, therefore it is enough to prove (2.9) at
x=r —2, which is trivial since all the terms of the sum are non-negative at x =r — 2.
It is easy to see that p/(r — 2))<0 if n is large enough. On the other hand, the
function is monotone for » — 2 < x, therefore p’(x)=0 has exactly one real solution
r —2<xy(n). This proves the validity of condition (2.10). Condition (2.11) holds for
xi(n)=yn"®, when r =R+ 1. The lemma can be used for pf+!(x): |xo(n) — x1(n)| is
bounded by a ¢ independent of n. It remained to verify that

f (xo(ﬂ)) <n<'f§ (xo(.n))‘
i=0 i=o0 1

The stronger

ZR:(XI(’II)_+6)\’1 _i(x](nz—(s)

will be proved, instead. The largest term of the left hand side is smaller than

R 1R R R
(Jn(n}ﬂ—ké) _Gn R;f-é) :%n+0(n1—1/k),

which is smaller than 1 if y® <R!, and this is a consequence of the strong form of
(2.3) and (2.5). We have seen that if (R + 1,x;(n)) is an asymptotic solution of (2.1)
and (2.2) then there is an exact solution (R + 1,x¢(n)) where xo(n) and x(n) differ
only by a 4.

Case B: Suppose that (2.6) holds. Then the asymptotic solution is (R,(R/x)n'/R).
Indeed,

PR ((R/<)n®) = Rn + O((nVR)R=1y — Rn = O(n'~ V),

The lemma can be used as before, this time for pR(x): |xo(n) — x;(n)| is bounded
by a d independent of n where x;(n) = (R/k)n'/R.
The inequalities

sz:l (xo('n)) <”<i (xo(.n))
i=0 L i=0 1

can be proved as in Case A.
Case C:
_ R
~ RIWR

Both (R,R!"/fn'/R) and (R + 1,R!"Rn'/R) are asymptotic solutions of (2.1) and (2.2),
since y =R/k is a solution of (2.5) in this case.
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A more precise notation is needed here: let x%(n) and xR“(n) denote the real solution
(=R —2,R— 1, resp.) of the equations pX(x)=0 and pf*'(x)=0, respectively. By

the lemma we have
lx§(n) — xi(n)] and |xX''(n) — x1(n)| <0 (2.13)

We want to show that either (R,x%(n)) or (R+1 xR“(n)) is the solution of (2.1) and
(2.2). The inequalities

R—1 xR n R+1 xR+l n
E(O(.)) <n and n<z(° .() (2.14)
i=0 1 i=0 i
can be proved as earlier. If, moreover
R { xB(n
ol i (2.15)
i=0 4

holds then (2.14) implies that (R,x5(n)) is the solution, while
R xR (n
3 ( 0 ‘( )) <n (2.16)

implies the same for (R + 1,x%(n)). An indirect way will be used to prove that either
(2.15) or (2.16) must hold. Suppose

R+l
s (x{f(n)) cpey ( (")), (2.17)
i=0 l i=0 i

(}) is monotonically increasing for i — 1 < x, on the other hand R — 1 < x{ R(n), xo+ L(n)
holds for large n, therefore (2.17) yields

xp<xf ., (2.18)

Consider

i=0

—xk+Rz_jl(Rz)()f) Rty (x) s> (x) —~ A,
i=0 1 i=0 i i=0 1

Replacing x by x{'!(n) in the above equality
R+!( )
0= phr(x; +'("))+z —n
i

is obtained. Eq. (2.17) implies pf(x§"') < 0 and this contradicts (2.18). O

R*‘(x)—xk+Z(R+1—:)( ) —(R+1)n

Remark 2.5. Theorem 2.2 ensures that the order of magnitude of f(n,kn'~R) is n'/k,
however, it gives only that the constant is between R/k and R/xk + 1. One can easily
see that the y in Theorem 2.3 is between these numbers.
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Remark 2.6. There is a somewhat incorrect statement in the proof of Lemma 5 in
Katona (1966): for a given r (2.1) has exactly one non-negative real solution. The
correct version is: for a given » (2.1) has at most one real solution r — 2 < x¢. This
modification does not cause too much trouble in the proof of Theorem 2.1 (that is,
Theorem 3 in Katona, 1966). One must only check that Lemmas 3 and 4 lead to
a solution (r,xp) of (2.1) and (2.2) satisfying » — 1 < xy, starting from the trivial
m=n—1l,sp=1,s1=n—1,50=---=5,=0.

3. A lower estimate

Theorem 3.1. m = f(n,k, 1) always satisfies the inequality

m m
logn+10g(l+(1)+---+([))ém. 3.1)

However,

2nl
< ;
T L (3.2)

implies the stronger

orcta{ie (7)o (7))

Proof. Let & be a randomly chosen column of M with probability 1/a. On the other
hand, n is a random subset of rows of M where the probability of choosing a set is
/(1 +(7)+ -+ (7)) if the size of the set is at most /, otherwise 0, ¢ and # are
independent (1 plays the role of the set of false answers.) & is the ith entry in the
column ¢ if i €  and the complement (interchanging the role of 0 and 1) of it if i € 1.

The Hamming distance between & and (&y,..., &y, ) is at most /. As the Hamming dis-
tance between the columns is at least 2/ + 1 therefore the column closest to (&y,...,En)
is &. That is, (&;,...,&,) uniquely determines &.

On the other hand, the set of positions where & and (&4,...,¢&,) differ is exactly #.
The conclusion is that (£,...,&,) uniquely determines the pair (&, 7). This implies

N

n m

mh (E+i). t3:3)

H(E ) < iH(@-) (3.4)

by (1.1). As & and 5 are independent,

H(f,n)_H(z)+H(n):1ogn+1og(1 + (T) et (7)) (3.5)

holds. As &; can take on only two distinct values, 0 and 1, we have H(&)=h(P(&)=1)
< 1. This fact, (3.4) and (3.5) prove inequality (3.1) in the theorem.
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To obtain a stronger estimate we need an upper estimate on H(¢;). First the proba-
bility P(&;=1) will be estimated.
P(Ci=1)=P(&=1li gmP(i & n)+ P& =1lien)P(icn)

_ 14l IAI

-, PG ¢ m+ —Pien)

:@(lP(iEn))+( 4 'I)P(zen)

A; k .
< % +P(ien) < = + P(ien). (3.6)

The number of possible choices of # containing i is

m—1 m—1
1 I —1

therefore

(ml) (m—l)
1+ et
1 l—1
P(ien)= - - :
1+( )+..‘+( )
1 /

This cannot exceed //m as

i [
=< —
m m m
holds for all 0 <i < /. Hence we have P(i €n) < I/n. (3.6) implies
k I
Pl&=1 € —4 — (3.7)
n m

If this right hand side is at most % then we can use the monotonity of A(y) on
the interval [0, 2] The inequality k/n 4+ I/m < 1/2 is equivalent to (3.2). Under this

condition (3.7) implies
k1
H(E) < h (— T —),
nom
consequently (3.4) and (3.5) lead to (3.3). O

Remark 3.2. Eq. (3.1) is nothing else but the so-called sphere packing bound (if
expressed for n) well known in coding theory (see e.g. Csiszar and Korer, 1981).
If k=n/2 then, on one hand, (3.2) cannot be satisfied, on the other hand, the condi-
tion on the size of the question sets A; is empty. Therefore, cannot expect anything else
but an inequality expressing that the columns of M form an /-error-correcting code.
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Remark 3.3. Suppose that n and & tend to infinity and k/n — x. Eq. (3.1) implies
that m also tends to infinity. Assume that //m — A (that is, the probability of a lie
asymptotically does not exceed A). If k + A <1/2 then (3) holds for large n’s, so (4)
also holds. It is well known that

1ngf:0 ( ’:1 )
—— > h(4
m

in this case, so (4) leads to

)

logn
—_— Y < m.
h(x + 4) — h(4)

4. Constructions

Let Y be a set of m elements. A Steiner system S(m,r,u) is a family of r-element
subsets of Y, such that every u-element subset of ¥ is contained in exactly one member
of the family. It is obvious that the number of members is

m
(%)

N
(2
Let # be a family of subsets of Y. The degree of the family & at y € ¥ is the number

of members F of # such that y € F. A family is almost regular if the difference of
the degree of the family at different elements y is at most one:

N= (4.1)

|[F: yyeFeEF|—|F: y;eFEF| <1 (y,m€Y).

The family % is building-regular (shortly buildreg) if the members F,F5,...,Fy of
# can be listed in such a way that the family Fy,F,...,F  is almost regular for
all j(1 <j<N). On the other hand, it is storing-regular (shortly storereg) if one
can choose j members of F so that the family F;,F},,...,F i, is almost regular for all
Jj(1 <j < N). Obviously, if # is buildreg then it is storereg, too.

A Steiner system S(m,r,u) is called resolvable if it can be decomposed into partitions
of the underlying set. This can happen only when r is a divisor of m. It is easy to see
that a resolvable Steiner system is buildreg, therefore it is storereg, too.

Let S(m,r,r — I) be a storereg Steiner system, and suppose that

(5)

n<

4.2)
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Define the matrix M with the help of S(m,r,» — I): the columns of the matrix are the
characteristic (zero—one) vectors of the first # members of S(m,r,r —1), in the order of
the definition of a storereg family. It is easy to see that the Hamming distance between
any two columns is at least 2/ + 1. (Actually, it is at least 2/ 4 2.) On the other hand,
the number of ones in any given row is at most [ar/m]. That is, if n satisfies (4.2), k
satisfies

[E} <k (4.3)
m
then

f k1) <m (4.4)
holds.

Lemma 4.1. Suppose that n,k,1 are given and
nr
k<
(nr!/INYe=D 4 r — |

{k”’ﬂ <m (4.6)

hold with some integer I <r. Then (4.2) and (4.3) also hold.

+1 (4.5)

and

Proof. Suppose that (4.6) holds. Then we have

nr nr nr

— | < < =k - 1<k

H [(nr/(k = 1” Lr/(k = I)W b
On the other hand, (4.5) implies the following inequality:

nr! nr =it
e —(r - .
n (k - v [))

Hence, by using (4.6), we obtain

nr ~In i !
nﬁ(k_l(rl)) ﬁé(mf(rfl)) o

(%)

Theorem 4.2. If n,k and | satisfy (4.5) with some positive integer r(I <r) and there
is a storereq Steiner family S(m,r,r¥ — 1) where m satisfies (4.6) then

f(n k1) < m.

< m(m — l)...(mA(rAl)+1)§:

This lemma and (4.4) result in
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Of course, the ideal case is when m = [nr/(k — 1)], otherwise one should choose the
smallest possible m.
The following theorem is an asymptotic consequence of the above results.

Theorem 4.3. Suppose that | <R are fixed, n tends to infinity,
kwk‘n'_”(R_"), 4.7)

then

R—21 k1
R=2 timing L2250 (4.8)

holds. On the other hand, if

T 1/(R=1)
k<R (R') (4.9)

and there is an infinite series of such pairs (n,k) which satisfy (4.7) with some
R(I<R) and there is a storereq Steiner family S(m,R,R — 1) where

nR R
[k = 11 S mr

then

.. S kD) R

completes (4.9).

Proof. A weakened form of (3.3) will be used to prove (4.8):

k1
logn < mh (;4-%) (4.11)
It will be shown that if
"s (R - C) i (4.12)

holds with some 0<¢ (and £ satisfies (4.7)) then (4.11) cannot hold.
The trivial inequality

—2x<log(l —x) (0<x< %)
implies
h(x)=—xlogx — (1 —x)log(1l —x) < —xlogx + 2x(1 — x). (4.13)

This inequality will be applied for x =k/n + [/m where k and m are determined by
(4.7) and (4.12), respectively, ! is fixed.
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It is easy to see that

/
5, ViR~ —1/(R—1)
St (K+(Rg2l)/x—s) + oz )
therefore
—xlogx + 2x(1 — x)
< —1/(R=1)] 1/(R—D)
R—I(K+(R2l)/x—s)n agal og)

holds. By (4.13) this is an upper estimate on A(x) too. Egs. (4.11) and (4.12) lead to
a contradiction since

R—21 1 . / o1
( X _S)R-I(K (R—2[)/K—s)

can be easily checked. The first part of the theorem is proved.

Suppose now that (n,k) and S(m,R,R — [) are chosen according to the second part
of the theorem and prove (4.10). It is easy to see that (4.5) hold with » = R. Therefore
Theorem 4.2 can be applied:

f(n1k9 l) < mN—fEn]/(R*I)- 0
K

If k <c\/n we have a somewhat improved construction. Suppose that / + 1 divides
m and Y is an m-element set. The family N(m, [ +2,2)={Ay,..., Amji41),B1,..., By}
of subsets of Y is called a nearly Kirkman system if the A’s have size [ + 1,
{41,...,Apj141)} forms a partition of Y, the B’s have size / + 2 and every 2-element
subset of Y is contained in exactly one member of the family. A nearly Kirkman sys-
tem is resolvable (buildreg, storereg) if the subsystem of B’s is resolvable (builddreg,
storereg). Very little is known about the existence of such systems. However, the case
of /=1 was settled, mainly in Kotzig and Rosa (1974). Papers Baker and Wilson
(1977), Brouwer (1978), Rees and Stinton (1987) completed it with the small cases.

Theorem 4.4. (Kotzig and Rosa, 1974; Baker and Wilson, 1977; Brouwer, 1978;
Rees and Stinton, 1987). If 6 divides m then there is a resolvable nearly Kirkman
triple system.

These nearly Kirkman systems can be analogously used for our purposes, like the
Steiner systems earlier. Suppose
e [
k+1/(1+1)

The columns of the mx»n matrix M will be the characteristic vectors of the first #
members of N(m, [ + 2,2), starting with the A’s and then in order of the definition
of the storereg family. It is easy to see that the Hamming distance between any two
columns is at least 2/ + 1, we have to verify only that the number of 1’s in every row
is at most k.

I+ 1|m, { (4.14)
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This is trivially true when n < m/(/ 4+ 1) and 1 < k. Therefore n>m/(/ + 1) can be
supposed. Then each column, except the first m/(! + 1) ones, contains exactly / + 2
1’s. The total number of 1’s is n(/+2)—m/(I + 1). The storereg property implies that
the number of 1°s in a row is at most

n(l+2)—m/(I+1)] "n(l—i-Z) 1
m B m _l+1—"

(4.15)

By (4.14) we have

MI42)
m [+1

and hence (4.15) is at most k, proving the other important property of M.

Of course, this construction works only when n does not exceed the number
m/({ + 1) + N of the members of N(m,! + 2,2). N can be determined from the
equality

()5 (2)+(2)

Therefore, we have to prove the following inequality:

<M L m2+m
& S A
I+1 T+20+1)

We claim that this holds when

1+2 1
k€ yf——y/n——0.
YT T

Indeed, the latter inequality implies

2
1 I+2
k——) <232,
( T 1) 1"
Hence, by (4.14) n(I +2)(I + 1) < m? is obtained, proving (4.16).

It is somewhat surprising that this construction is the best possible under the given
condition on k.

(4.16)

Theorem 4.5. If k</[(1+2)/(I+ 1)]\/n— 1/(I + 1),
n(l+2)
m=|—————1.
k+1/(1+1)
is divisible by | + 1 and there is a nearly Kirkman system N(m,[+ 2,2) then

B n(l+2)
o= |

Proof. Let M be an mxn 0,1 matrix, in which the Hamming distances of columns are
at least 2/ + 1 and the number of 1’s in each row is at most k. Denote the number
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of columns containing i 1’s by s; (0 <i < m). We give now a lower estimate on the
total number of 1’s in M:

m 142 m 42 i+2 m
Siisi=>isi+ Y iz YU+ — > (U+2—Dsi+ D, (I+2)s;
i=0 i=0 i=1+3 i=0 i=0 i=I+3

m E2 1+2
=0 +s - S (U +2—i)si=n(l+2)— S (1 +2 — i)s;.
i=0 i=0 i=0

Comparing it with the trivial upper estimate km, the following inequality is obtained:
n(l+2)—l_+zz(l+2—i)sfskm. (4.17)
It is easy to see tl_lat
2”41 (4.18)

holds by the distance condition for the columns.

Some cases will be distinguished.

Case A: Zl{:o s; =0. Two columns containing exactly /+ 1 1’s cannot have a com-
mon 1, therefore s;,y < m/(/ + 1). Eq. (4.17) becomes

ng+m—f%ggm (4.19)
proving the statement for this case.

Case B: s; =1 for some j (0 < j < [). A sharpening of (4.17) will be used in this
case. It can be supposed, without loss of generality, that the first column contains j 1°s
and they stand in the first j rows. Let s,, denote the number of columns containing u
1’s in the first j rows and v 1’s in the rest of the rows. First, give an upper bound on
the number of 1’s in the matrix formed by the last # — 1 columns of M:

Y (u + 0)s < Gk — 1)) +k(m — j)=hkm — . (4.20)
(To be precise, one should write s, for the submatrix.) Let us give a lower estimate
on the left hand side, analogous to (4.17):
n(l+2)— 5> (I+2—u—0)8 <D (Uu+ ).
utv<i+2
Combine this inequality with (4.20).
nl+2)— Y (U+2—u—v)sy, <km (4.21)

u+v<i+2
Case BA: j=1, that is, s; = 1. It is sufficient to consider the term with u+v=1/7+1
on the left hand side of (4.21). All other terms are 0. However, s,, is zero for all
v<[/+ 1 because of the distance condition between the columns. For the same reason
S0.1+1 < (m— j)/(I+1). Eq. (4.21) leads to
m— 1
I+2)— —— < km.
n(l+2) Tl m

This inequlity is stronger than (4.19), proving the statement in this case.
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Case BB: j<I. All terms in the sum on the left hand side of (4.21) are zero,
including so ;1. The so obtained inequality

n(l +2) < km

implies (4.19), completing the proof. [

The above constructions are good when & is relatively small. The next construction is
trivial and rather week, but works for all values of the parameters. Let C(m*,2/+1) a
binary code, that is, a set of n binary sequences of length m*, with pairwise Hamming
distance at least 2/ + 1. Consider them as columns of a matrix. It “almost™ satisfies
the conditions of our problem, the “only” missing condition is that the number of
1’s may exceed k. Cutting the matrix into parts of width £ and making these [n/k]
parts “disjoint” by “pulling” the matrix vertically [n/k|-times longer, the so obtained
matrix will satisfy all the conditions if m*[n/k] < m. This trivial construction can be
somewhat improved if we exploit the fact that the large Hamming distance ensures a
large number of 0’s.

Theorem 4.6. Let A(m*,2] + 1) be the maximum number of codewords in a binary
code of length m* with pairwise Hamming distance at least 21+ 1. Then

* 1
fnk 1) < % + 5 VP = 2mn(n = @I+ 1) + (4.22)

where m* is the smallest integer such that

n < A(m*, 21+ 1). (4.23)

Proof. By (4.23) there exists an m*xn 0,1 matrix M such that the pairwise Hamming
distance of its columns are at least 2/ + 1. Denote the number of 1’s in the ith row by
a; (1 <i < m*). Replace the first row of M by [a,/k] new rows, obtained by cutting
the first row into parts containing at most k 1’s, that is, the ith of these new rows
contains a 1 in the jth position iff the first row of M contains a 1 here and it is the
(i— Dk +1st or ... or ikth 1 in the first row. Denote the so obtained matrix by M'. It
is obvious that the pairwise Hamming distance between the columns of M’ is at least
2] + 1 again.

Repeating this step with all of the rows of M we arrive at a matrix M; having at
most

zr

—— T (4.24)

rows, n columns and the Hamming distance is not less than before.
Counting the number of (0,1)-pairs in the same rows of M, the following inequality
can be obtained:

(;)(214— 1) < %Ea,»(nfa,-).
i=1
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Apply the Cauchy—Schwarz inequality for the right hand side:

§- z 2 m Y
_El"i” -ya< nza,- - QL-;L“'L_
=

i=1 i=1 m

The last two inequalities lead to

m* m* o
(;) QI+1)<ny a; - (Z:i:—lm)._
=1

m*

Solve this quadratic ineqality for 3" a;:

*

3

1 1
a; < 5nm* + 5\/n2(m*)2 —2m*n(n — 1)(21 + 1).
1

Substituting this in (4.24), the right hand side of (4.22) is obtained. [

Remark 4.7. Suppose that n and & tend to infinity and k/n — x, moreover //m tends to
/. The asymptotic Varshamov—Gilbert bound (see e.g. MacWilliams and Sloane, 1977)
gives
logA(m*,21 + 1)

m*
when //m* — A* < 1/4. Use the minimality of m*:

1 — h(22*) < lim

A(m™ — 1,21 + 1) <n.

These two inequalities imply
. logn
ST T

Use a weakened version of (4.22):

+ o(log n).

nm*
2k

m< — +m". (4.25)

Then

logn 1
<———— | — +1 1 .
m 1—h(2&*)(2x+)+0(0gn) (4.26)

is obtained. Eq. (4.25) also implies
LN e T
m* 2k 2K
Hence we have
oL mt TR
Azllm; =11m? hm; =>4 1/—2K+—1,
that is,

1
A< —+1).
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Substitute this in (4.26):
logn
1—-h(22(1/2c+ 1))

if A(1/2x + 1) < 1/4. Using (4.22) in its full power, a somewhat stronger, but more
complicated form can be obtained.

f(nk 1) <

(% + 1) + o(logn) (4.27)

5. Further remarks and questions

1. Let us illustrate the difference among the resolvability, buildreg and storereg prop-
erties on the family of all r-element subsets of an m-element set. The family can be
resolvable only when r divides m. The celebrated theorem of Baranyai (1975) states
that it is really resolvable in this case.

It is easy to see that the first m/gcd(m,r) sets of a buildreg family covers X exactly
r/ged(m,r) times, and so on, the system splits into (" )ged(m, r)/m subfamilies, each
of which covers X r/ged(m,r) times, and they can be obtained from each other by
permuting the elements of X. This is an equivalent formulation of the definition of
buidreg property for the present case. It was only conjectured by Baranyai and the
present author (see e.g. Katona, 1991) that the family of all r-element sets of an
m-element set possesses the latter property.

However, the storereg property of the same family is proved as an easy lemma in
Katona (1966).

2. Suppose that a family is regular, that is, every element of the underlying set is
contained in the same number of subsets. It is easy to see that this does not imply even
the storereg property even for the case r = 2: the vertex-disjoint union of two odd cycles
with j=n/2 gives a counterexample. A finite projective geometry is another obvious
counterexample.

Problem 5.1. Find a sufficient condition for a regular family to make it storereg.

3. The storereg property is not indispensable for Theorem 4.3 What is really needed
is that the degrees of the elements in the subfamily differ in a relatively small number.
This serves as a motivation for the following problem. Let % = {F L Fa,...,Fy} be
a family of r-element subsets of an m-element set. Let p(%) denote the difference
between the maximum and minimum degrees of the family ¥ at the elements. o(#,j)
is defined as the minimum of p(%) for all j-member subfamilies ¥ of . Further, let
o(#)=max, <;<y o(F, ).

Problem 5.2. Prove that there is a Steiner system S(m,r,u) whose o is small, where
“small’ is a function of m,r and u.

On the other hand, it would also be interesting to determine max o(# ) for different
classes of families.
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4. Our results are good only in the case when & is small, namely, if its order of
magnitude is #* where o< 1. If £ is near to n, then the problem becomes “real” coding
theory. The lower estimate in Remark 3.3 can be probably improved by the linear
programming method, as it was suggested by Linial (1998). The good constructions
must be similar to the codes known from the theory of error-correcting codes.

Problem 5.3. Find good lower and upper estimates on f(n,k,1) when k=xn and | is
fixed.

Problem 5.4. Find good lower and upper estimates on f(n,k,1) when k=xn and
[ =Jm. (The last condition might make more sense in the form [ < im.)

Remarks 3.3 and 4.7 show that the order of magnitude in this case is constant times
log n, however both the lower and upper estimates can be improved, (4.27) is especially
weak and is valid only for the case when A is less than half of k.
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