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FUNCTIONAL DEPENDENCIES IN RANDOM DATABASES
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0. SELEZNJEV and B. THALHEIM

To the memory of Alfréd Rényi

1. Introduction

A database can be considered as a matrix, where the rows contain the
data of one individual (object, etc.) and the columns contain the data of the
same type: last name, first name, date of birth, etc. The types of data are
called attributes. These data are sometimes logically dependent. Consider
the following example, where the attributes are the last name (denoted by
a), the first name (b), the year of the birth (¢), the month of the birth (d),
the day of the birth (e), the age in years (f), the age in months (g) and the
age in days (h). It is obvious that ¢ determines f. On the other hand, the
pair {c,d} determines both f and g, finally the set {c,d, e} determines all of
f, g and h.

This is formalized in the following way. Let R be an m x n matrix with
different rows and € denote the set of its columns, that is, || =n. Suppose
that ACQ,be Q. We say that b functionally depends on A and write A — b
if R contains no two rows containing equal entries in the columns belonging
to A and different entries in b.

In most of the database theory it is supposed that the functional depen-
dencies A — b are a priori known by the logic of the data, as in the above
example. Our way of looking at the situation is different. We suppose that
we have to find the functional dependencies in a large database (both m and
n are large). If nothing is known about R, it is natural to assume that the
entries are independently chosen. The question is: what the typical size of
the minimal sets A such that A — b is.

Thus the first mathematical question is the following. Choose the entries
of the matrix R totally independently, following the probability distribution
(q1,-..,qq). What is the minimum size { of A such that A — b holds with
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_high probability for any set A C Q,|A| 21 and any column b € Q7 The answer
is
2mn
—log,(qf ++-+q3)’

as it is given precisely in Corollary 1. Theorem 2 generalizes this result for
the case when the entries have different distributions in the different columns.

Section 2 develops a sieve method for estimating the probability of the
event that all the outcomes of a many times repeated experiment are dif-
ferent. This result is applied for the rows of a random matrix in Section 3:
Theorem 1 determines the asymptotic probability of the event that the rows
of the random matrix are different. This theorem is of crucial importance in
proving Theorem 2.

If A is larger than the above critical size then A — b holds with high
probability for any given b. However, it will not be true for each element b of
a large set ). Theorem 3 determines the asymptotic size of the A’s satisfying
A

The method of the present paper is combinatorial. Paper [2] of the
same authors contains similar (but not identical) results. The method of
that paper is probabilistic, and uses the so-called Poisson approximation
technique (Stein-Chen method, see [1]).

2. A sequence of experiments with different outcomes

We may obtain a counterexample for A — b if the entries of two rows
in the submatrix determined by A are equal. So the critical situation is
when all these rows are different. This is why this section is devoted to the
probability of the event that all the outcomes of a repeated experiment are
different.

Let Ei, ..., E, be mutually exclusive events with respective probabilities
p1,...,ps, where 37, p; = 1. The distribution is denoted by p. Choose
independently, m times, from these events with this distribution. That is,
P(¢ = E;) =p; is supposed for all 1 <i<m and 1< j < s. Moreover, the {’s
are totally independent. Let P(u,m) be the probability of the event that
&, ..., &y are all different.

Lemma 3 is the main result of the section giving good estimates on
P(u,m).

For an arbitrary sequence of outcomes a trivial graph can be defined.
The outcomes are the vertices and two vertices are adjacent if they have
the same value. This is why we consider the following graphs. Our goal is
actually to estimate the probability that this graph is empty.

The vertex-disjoint union of complete graphs with m,,...,m,, resp.,
vertices is denoted by G(my,...,m,). A graph consisting of vertex-disjoint
edges is a matching. The vertex-disjoint union of a matching and a path
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consisting of two edges is called a V-matching. Finally, the vertex-disjoint
union of a matching and a path consisting of three edges is an N-matching.

LEMMA 1. Let my,...,m, (0<7r) be non-negative integers. Then
(1) > ¥+ > 1+ > 120,
matching of j edges V-matching N-matching

where the matchings, V-matchings and N-matchings are arbitrary subgraphs

of G(my,ma,...,m,).

PROOF. 2<m; (1 £i<r) can be supposed. Two cases will be distin-
guished.

(i) miy=mgo=---=m, =2. The number of matchings of j edges in
G(2,.. ) therefore the left-hand side of (1) is
T r
> (7).
=0 M

which is 0 if 0<r and 1 if r=0

(ii) One of the m’s > 2. An injection will be given from the set of all
negative terms into a set of some positive terms in (1). Actually the injection
will be defined on sets of subgraphs of G(mi, ma,...,m;). A negative term
is generated by a matching M of j edges, where j is odd. Suppose that there
are at least two edges of M in one of the components of G(my, ma,...,m;).
Join any two endpoints of these two edges by a new edge. The injection
assigns this N-matching to M.

Suppose that no component of G(my,msa,...,m,) contains at least two
edges of M but there is a component with at least 3 vertices and containing
exactly one edge of M. Then this edge will be replaced by a pair of adjacent
edges in the same component. As the number of such pairs is 2 the number
of edges in a complete graph on = 3 vertices, this can be defined as a part
of an injection. (Actually the assignment can be made in such a way that
the pair contains the edge, however, this fact is not needed and its proof is
somewhat more difficult.)

The only remaining case is when all components with at least three
vertices are disjoint to M. Then add an edge of this component to M. This
matching contains an even number of edges therefore it generates 1 in (1).

It is easy to see that the function defined above is an injection and it
assigns positive terms to negative terms, proving (1). O

LEMMA 2. Let my,...,m, (0<r) be non-negative integers, at least one
of them is 22. Then

(2) > =+ Y (-n+ ) (-1E0,

matching of 7 edges V-matching of N-matching
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where the matchings, V-matchings and N-matchings are subgraphs of
G(my,ma,...,m;).

PROOF. The proof is analogous to the previous one. The only difference
is that here the injection assigns a negative term to a positive term generated

by a matching of even number of edges. O
LEMMA 3.
L5 ; s :
=~ (=1) fm\ [m —2 m—275+2 —~ 9\J
2= 2 ) P (Zp) -
J=1 i=1
L% ) 1 /m\/m-=3\/m-—5 m—25—1 - J
_ — B ik 1T i 2 ) e
a0 () ()& &)
) 1 /m\ /m-—4\/m—6 m— 2] u J
= ! T PPl P Rl 2
j!(él)( 2 )( 2 ( )(Z‘”)(Zf’l) =
g

) <P(ju,m) €
1 S () () (T )
SE )G
ST I EAE

PROOF. P(u,m) is the probability of the event that &;,&a,. .., &n are all
different, that is, one minus the sum of the probabilities

(4) P(¢y = By, if u€ Cy),
where Cy, Cs, ..., Cy is a partition of {1,2,...,m} with at least one C having
more than one elem(’nt, and vy, vy, ...,V are dlfferen‘r elements of {1,2,...,s}.

Such partitions will be called non- elementary

P(u,m) contains the probabilities in (4) with zero weight, therefore if
they are counted with the weight given in (1) then it leads to an upper
estimate. Consider the sum

S 3 i+ > 1+ > 1] x

partition \ matching of j edges V-matching N-matching
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(5) XP(£u=Ey, if u€Cy).

If the partition is the elementary one, then the inner sums are empty with one
exception, the empty matching. This leads to the sum of the probabilities
where all £’s are different. Therefore (5) is the sum in which the probabilities
of the events, where all £’s are different stand with weight 1, while the other

probabilities stand with a non-negative weight. Consequently, (5) is an upper
estimate on P(p, m).

Change the order of sums in (5).

¥ (=1 Y P(bu=E,, ifueCy)+

matching of 7 edges partition

(6) : + > > Plu=E, ifueC)+

V-matching partition

+ Y. Y. P(u=E, ifucCy),
N-matching partition
where those partitions are taken for which the given matching is a subgraph
of the graph generated by the partition. Consider

> P(u=E, ifuecCy)
partition
for a given matching of j edges. This is nothing else but the probability of
the event that the {’s adjacent in the matching are equal:

(=)

The number of matchings with j edges is

-2

This gives the fifth row of (3). The second and third rows of (6) lead, in a
similar manner, to the sixth and seventh rows of (3), resp.
The lower estimate is proved in the same way. &

3. Random matrix with different rows

The Lemma 3 will be used for random matrices. Let R be a random
matrix with m rows and z columns, where the entries of the jth column
can have d; different values with probabilities g;1,. .., gja;, respectively. All
the entries are chosen totally independently. Then the probability of the
occurrence of a certain row in R is qi;,q2i, - - qzi., Where i; is arbitrary
between 1 and dj. The probability distribution of these sequences will be
denoted by m,. The following trivial observation will be used later.
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LEMMA 4. If m <m' then P(m,,m) 2 P(m.,m').

We want to study the probability of the event that the rows of the above
matrix are different. Therefore the probabilities g1, g2, - - - gzi. will be taken

as p’s in Lemma 3. Consider 7, pf for these probabilities:

k k. _k k
Z (91619215 42i.)" = Z Wiy 921y * " Gz,
1<i1Edy,,.., 150 <d: 1561 Edy,.., 1 i Sd-
(7) :
k k
= H(qil F ¢ o2 ggir ),
i=1

Our investigations will be of asymptotic nature. From now on it is sup-
posed that m tends to the infinity and the other parameters depend on m:
z=2z(m),d; = d;(m), q;j = q;;(m). Our asymptotic assumption on them will
be such that the first non-trivial term in the Lemma 3, that is,

s Z
(8) m? pr =m? H(qgl Nl qﬁli)
=1 1=1

tends to a non-zero constant. It will be done in a logarithmic way, therefore
the quantities log(q% +---+ q?d,-) will play an important role.(log will always
mean log of base 2.) Denote the distribution (g;1,...,qq4;) by ki. Rényi
[3] introduced the so-called entropy of order a. For =2 it is Ha(k) =
—log(@?+---+q2) if k= (q1,--,qa)-

LEMMA 5. If

(9) 2logm — Z Hy(ki)—a

i=1

when m — oo then

(10) 1+
tends to

for the distribution .

ProOOF. Consider the limit of one term for a fixed j.

SeyRlersy
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can be replaced by _
m?

2

(Z?}?)j o el HRls)
i=1

follows by the definition of the entropy of order 2 and (7). Therefore the
limit of the jth term in (10) is the same as the limit of

On the other hand

(11) (_1) 2_}(2logm Z - Ha(ki)—1)
3! ’
that is, A
(L) gila=1)
7l

(9) implies that the sum of (11) and therefore (10) are uniformly convergent,
hence the limit of (10) is equal to the infinite sum of the limits of its terms,

that is,
Z

=0

_9a—1
2"“ D=e 2.

O

We want to show that the other terms in the lower and upper estimates
of (3) tend to zero under condition (9). Before proving that some other
lemmas are needed.

LEMMA 6. Ifk=(q1,...,qq) is a probability distribution, where € < q1,q2
(0<e<l) then
d |
(E)

(12) =—3§1—4"
(Z2)

Proor. Consider the difference of the denominator and the numerator:

qu+3zq"q-7+squqj+6 Z (ILq]qk: Z(]1+2quqj 3

<] 1<J i<j<k 1<J

I'Mn.

2 (S dl?+d dla} -2 dldd | +2) (¢iq + i) =

i<j i< 1< 1<j
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_quq[ qz+q_j Z(hqj +22(15qj+(17Q7 g

1< 1<j
2 2q1q5 + 291 q3) 2 4<°.
Using the fact that the denominator is at most 1, (12) easily follows. O

LEMMA 7. If k= (qi,...,qaq) is a probability distribution, where € < q1, ¢2
(0<e< i) then

(13) =L <1-2"

PROOF. The proof is similar but easier than the previous one:

d
S a2l - > di=
=1

=1 1<j

:Qquqj 24 qz - Lol
i<j

LEMMA 8. If (9) and
. 1
(14) € < qi1, g2 hold for all i with a fized € (0 LEsE 5)

then the second and third rows of (3) tend to zero.

PROOF. The jth term of the second row of (3) can be upperbounded by

z z \j
; . o X
(15) ( Tl + ot qf:l,>) ( [+ +))
1=1

=1

The second factor tends to ‘
9j(a—1)

3!
as we have seen in the proof of Lemma 5. (9) implies

Z
(16) m? [[(gh + - +ay,) = 2°
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therefore the first factor of (15) can be expressed as

d;
3
z z d; 2, z{qgj
3 3 : : : j=
) w [l +orad) = T d) | T
=1 i=1 =1 i:l( : 2,)3
2 9ij
J=1

The first factor of (17) tends to 93¢ while Lemma 6 gives the upper bound
(1 —4€%)3 for the second factor.

The conditions of the lemma imply — log(2¢?) gfa(h;,;) thus (9) results
in z — 0o when m — oo. (1 —4€%)7 and consequently (17) tend to zero. By
the uniform convergence, the infinite sum of (15) and the second row of (3)
also tend to zero.

The convergence of the third row can be proved in the same way, using
Lemma 7. O

THEOREM 1. Let R be a random matriz with m rows and z columns,
where the entries of the jth column can have dj different values with proba-
bilities qj1, .- - qjd;» respectively. All the entries are chosen totally indepen-
dently. ‘Supposc that (14) holds. Then the probability of the event that the
rows of R are all different satisfies
( z
0, if 2logm — 5 Ha(ki) = 400,

i=1
ga—1 . &
P(m,.m)— e, if2logm — ) Ha(ki) —a,
o

A

1, if 2logm — " Ha(ki) = —00.
\ i=1
PROOF. The middle row of the statement follows by Lemmas 3 and 8.
The first and third rows are consequences of Lemma 4. O

In [4) Rényi proved a theorem on random matrices in connection with
search theory (see also [5] and [6]). It is basically equivalent to the special
case of the above theorem when ;’s are the same. His method was different.

REMARK. The condition that each distribution contains two "large”
probabilities (¢ < gi1,¢i2) was important in the proof. This is shown by
Ehe)following example. Let k; = (}E '2'}5’ s —2717) Then the left-hand side of

12) 1s

! 2m 1 m—1
(m+1)? m2+m )’

which is not bounded from 1. Take z =logm. As Ha(k;) =2, (9) holds with
zero. However, the second factor of (17) does not tend to zero. (3) cannot
be used.
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Another example is k; = (%, ;,—tj.;«, sk & #) We do not know, however, if
the statement of the theorem holds for these and similar distributions. ]

4. Typical sizes of functional dependencies and minimal keys

Let P(u,m, k) denote the probability of the event that exactly & pairs
of £1,..., &y, are equal to each other and all other pairs are different. (More
precisely: there are 2k distinct indices #y,...,4; and j;,..., 5 such that
&, =&, for all 1<I<E, but &, #¢;,, for all L #m, ¢ #&, and & #¢&;, if
R U PRI PO TIP3 B

LEMMA 9. Suppose that k is fized, m tends to infinity and (14) holds.
Then

o -
P(‘frz,'m,,k:)—>E2k(“'_l)e_z l, if2logm—ZH2(Hi)—>a.

t=1

PROOF. There are

i m\ [m—2 m—2k+2
k'\ 2 2 2

ways to choose the set {iy,...,%,J1,...,jk}. Suppose thati; =1,5;=2,...,
iy = 2k — 1,7 = 2k and determine the probability of the event that & =
§2,...,&k—1 = &. The probabilities for the other choices of pairs will be
the same. It is easy to see that

z di

PE=6)=]]> 4

i=1 j=1

We need the kth power of this expression. Finally, &;,&3,...,&p%_1,
Eok+1,&2k+2, - ... &n must be all different. The probability of this event is
P(m,,m—k).

P(r,, m,k)
z d; &
(18) 1 fm\ fm—2 m—2k+2 .
=z () ((Z ) ) pem-n
- i=1  j=I

The last factor is asymptotically equal to P(m,,m) since logm — log(m — k)
— 0. Therefore Theorem 1 gives its limit. The limit of the product of the
other factors of (18) was determined in the proof of Lemma 5:

1

= ok(a—1)
k! 2 ' =
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LEMMA 10. If (9) and (14) hold then the probability of the event that
there are three equal £’s tends to zero.

PrROOF. The sum of the probabilities in Lemma 9 tends to 1. a

Let Q denote the set of columns of the matrix R. Suppose A C Q,b€
Q2 — A. We say that b functionally depends on A if R contains no two rows
equal in the columns belonging to A and different in 6. In notation: A —b.
For sake of simplicity b is supposed to be the bth column.

THEOREM 2. Let R be a random matriz with m rows and n = n(m)
columns with the distribution described above ((14) holds, again). Suppose
that A, is a set of z=z(m) columns of R and b is a column not in A,.

4

0, if 2logm — ‘2 Hy(k;) = +00,

t=1

P(A, —b,m)— 62('71(24{"’(”’)‘1), if 2logm — 2 Hs(k;) — a,
i=1

B if 2logm— 3 Ha(ki) = —oc.

i=1

ProOOF. Consider the restrictions of the rows of R within A,. These
rows of length z define a random partition v = (my,...,m,) of m, where one
class consists of the equal rows. Suppose (my 2 ...2m,). Start with the
well known equation
(19)

P(A,—bm)= > P(A:—=bly=(mi,...,m))P(y=(my,...,my)).

MY ey Ty

The right-hand side of (19) will be divided into two parts: (i) m; <2, (ii)
m1 = 3. For case (ii) the following trivial inequality is needed:

Z P(A, = bm|ly=(my,...,m))P(y=(my,...,my))

my23,ma,...,myr

< Z P(y=(mi,...,m;)) =P(there are 3 equal &’s).

my23.ma,..., 1y

(20)

The last quantity tends to zero under condition (9) therefore case (i) should
only be considered. More precisely, if (9) holds then the limit of P(A. — b,m)
is equal to the limit of

Z P(A, = bmly=(my,...,m))P(y=(m1,...,my)).

my S2,ma,...,my
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This expression can be rewritten in the form
Z P(A, = b,m|y=(2,...,1) (the number of 2’s is k))
k

(21) xP(y=(2,...,1) (the number of 2’s is k))
= Z P(A,—b,m|y=(2,...,1) (the number of 2s is k))P(m,, m, k).
k

Here

db

Sk
P(A.—=b,m|ly=(2,...,1) (the number of 2's isk)) = (Z qu) = 9~ kHz(ki)
J=1

On the other hand, the limit of P(m,, m, k) is given by Lemma 9. Therefore
the limit of (21) is

e | k Hoy(xy)

=24 - (a—1)—H2(kyp) _ e~ 12— Halmp) )

e Z a (2 ) =e ;
k=0

The middle row of the statement is proved. The first and third rows are

consequences of the inequality P(A, = b,m)2P(A, = b,m') form<m'. O

COROLLARY 1. Let R be a random matriz with m rows and n =n(m)
columns, where the entries are chosen totally independently with probabilities
q1,.--,q4- Suppose that A, is a set of z = z(m) columns of R and b is a

d
column not in A,. Use the notation Hy=—log Y q?. Then
i=1
( 2logm
0, ] — 2z — 400,
if T z
gaHy—=1(9—Hy 5 2log 1
P(A,—b,m)— < e? f2=1(2 "'_L), if og™m _ z—a,
H,
2logm.
1, ] — B—% —0d:
\ lf H2

The main content of the latter statement is that if A is a set of columns
of size definitely larger than %ém, then A — b holds with high probability

for any b.

We say, in general, that B functionally depends on A and write A —
B(A,BCQ) if A— b holds for each element b of B. Theorem 2 can be easily
generalized for this case. We only have to imagine the set of columns in B
as one column. It is worth supposing that AN B =(. Then H;(xp) can be
replaced by Ho(kp)= > Ha(ry).

beB



FUNCTIONAL DEPENDENCIES IN RANDOM DATABASES 139

Let us turn back to the case when k; does not depend on . If the size of
B is finite, say u, then the Consequence can be generalized for A — B, only
—Hj should be multiplied by u. However, if |B| tends to infinity, then the
middle probability becomes simply e~ 2427

We say that ACQ is a key if A — Q (or equivalently A —  — A) holds.

A is a minimal key if it is a key and no proper subset is a key. The above
reasoning proves the following statement.

THEOREM 3. Let R be a random matriz with m rows and n = n(m)
columns, where the entries are chosen totally independently following the
distribution k. Suppose that n — ZB™ tends to infinity and A, is a set of

H(k)
columns of R. Then 1
( 2logm
0, i g oo,
[ o o 21 -
P(A, is a key) > { e 2 famt oy k- KL,
o H.2 7
1 ; 2logm y
3 if ——— —z— —o0.
k : , T

It can be briefly said that the sets A of size somewhat larger than él—}’{iﬂ
are keys with high probability.
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