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Abstract

Practical database applications give the impression that sets of constraints are rather small and
that large sets are unusual and are caused by bad design decisions. Theoretical investigations,
however, show that minimal constraint sets are potentially very large. Their size can be estimated
to be exponential in terms of the number of attributes. The gap between observation in practice
and theory results in the rejection of theoretical results. However, practice is related to average
cases and is not related to worst cases.

The theory used until now considered the worst-case complexity. This paper aims to develop
a theory for the average-case complexity. Several probabilistic models and asymptotics of cor-
responding probabilities are investigated for random databases formed by independent random
tuples with a common discrete distribution. Poisson approximations are studied for the distri-
butions of some characteristics for such databases where the number of tuples is sufficiently
large. We intend to prove that the exponential complexity of key sets and sets of functional
dependencies is rather unusual and almost all minimal keys in a relation have a length which
depends mainly on the size of the relation.

Keywords: Functional dependency; Keys; Minimal keys; Random database;
Bonferroni inequality; Poisson approximation

1. Introduction

The relational data model is one of the main database models and the basis for most
existing database management systems. In this model, the user’s data are expressed by
relations (relational matrices) whereby rows represent records and columns represent
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the domains or attributes, respectively. Records or tuples can be identified, recorded,
and searched by sets of attributes, the so-called keys, in a unique way. Generally,
a key is an attribute (or a combination of several attributes) that uniquely identifies
a particular record. A given set of attributes is a minimal key if its proper subsets
are not keys. The basis for a large variety of algorithms used in database technol-
ogy is the identification of tuples through keys, e.g., algorithms for selection, joining,
constructing, and maintaining tuples are as simple as search algorithms if key indexes
are used. Therefore, keys and minimal keys are absolutely fundamental to database
models. However, if this approach is used, at least the combinatorial behavior of key
sets should be known. For relations, keys are generalized to functional dependencies
which specify the relationship between two attribute sets. In a relation, the values of the
first set determine the values of the second set. Functional dependencies are used for
the normalization of database systems. If a database designer knows the complete set
of functional dependencies in a given application, then unpredictable behavior during
updates and update anomalies can be avoided. Therefore, the size of functional depen-
dency sets is of great interest. If this size is exponential in the number of attributes,
then the entire approach becomes unmanageable.

In practical applications, it is often the case that sets of keys, minimal keys, and
sets of functional dependencies are rather small. Based on this observation, practitioners
believe that those sets are small in most applications. If there is an application with a
large set of constraints, then this application is considered to be poorly designed. This
observation of engineers is in contrast with theoretical results. It can be proven that
in the worst case, key sets and sets of functional dependencies are indeed exponential.
Hence, the problem is deciding which case should be considered the normal one: the
observation of practitioners or the theory of theoreticians. The solution to this gap
between the observation of practitioners and the results of theoreticians can be given
by developing a theory of average-case complexity (cf. the average complexity setting
in theory of approximation and scientific computing, see, e.g., [15]). We use the notion
complexity for the cardinality of a minimal key set. There are cases in which the worst-
case complexity does occur. In most cases, as shown below, the worst-case complexity
is unlikely. Thus, for average-case considerations, the observation of practitioners is
well founded by the approach to be developed below.

The worst-case complexity has been investigated in a large number of papers (see,
e.g., [2,4,5,9,10,12,13] The number of minimal keys in a relation is determined
by the maximum number of elements in a Sperner set. More precisely, for a given
relational schema & =({D,,...,D,},0) with domains D,,...,D,, a relation # from
SAT (&) has at most

n
=Q(2" —-1/2
(L%J) @

different minimal keys. This estimate is precise, i.e., a relation can be constructed with
exactly this number of minimal keys. These considerations can be extended to sets of
functional dependencies (8,9, 14].
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Considering the worst-case behavior we observe that large key sets occur only when
the minimal keys are |%] or 131 in length. In our models a minimal key set is rather
small whenever the length of minimal keys is much larger or smaller and also depends
on the number of tuples in a relation. For instance, if minimal keys are not higher than
3 in length, then the cardinality of the set of all minimal keys can be bounded by o(n?),
i.e. the bound is polynomial and not exponential. Thus, we now consider a minimal
key probability, i.e., the probability for a given set of attributes to be a minimal key,
and a length of minimal, and in particular, shortest, key instead of the cardinality of
key sets. In this case we can analyze the behavior of key sets as well. In the paper it is
found that the distribution of the length of a shortest key in our models has relatively
little support. As the first and necessary step to estimate the mean characteristics of
the cardinality of key sets, it is necessary to evaluate minimal key probabilities for
different sets of attributes.

Some problems of discrete mathematics (e.g., nonredundant tests [2], the height
of binary digital trees [7, 11]) are similar to the corresponding problems for keys in
random databases in Section 3. We can directly apply our results to the following
database problems:

* Results of this paper can be directly applied to the heuristic support within database
design. If the size of relations is restricted by a certain function, then the size
of minimal keys can be considered in accordance with the expected length. This
approach has been used in the design system RADD [1].

* Database mining aims to discover semantics in real existing databases. If any pos-
sible constraint or even any possible key is checked, database mining is infeasible.
However, if we consider the probabilistic approach of this paper, we only have to
check the validity of a very small section of constraints, provided that the size of
the database is limited by certain bounds.

* Stochastic algorithms are often applied to the solving of difficult tasks in databases.
Algorithms of the Monte-Carlo type are more reliable if they can be applied to
databases with predictable constraint sets. Thus, our approach can be used to deter-
mine when such algorithms are useful and when they should not be applied.

This brief list of application areas for our results is not exhaustive. We feel that the

main application of our approach should be database design. This approach restricts

the considered set of constraints to those which are most likely.

1.1. Basic notation

Let R be a matrix with m rows (tuples) and » columns (attributes), and U = {1,...,n}
be the set of all attributes. For any set of attributes 4 C U, the corresponding part of
the jth tuple will be termed tj(4), j=1,...,m. Suppose all tuples take values in the
Cartesian product ]’LE vDi=D) x---xD,, where the domain D; is a finite integer set
for i=1,...,n. Denote by |S| the cardinality of a finite set S.

We consider some properties of R within a probabilistic framework. We say that
R is a random database if tuples #;(U), j=1,...,m, are independent and identically
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distributed random vectors with a given discrete distribution P{t(U)=k(U)}= p(k(U))
for k(U) € [[;cy Di- Let h(4) := > ica log, |D;| be the information function of A for
a given set of domains {D,,ic ACU }. We say that a random database R is a sran-
dard Bernoulli database if R is a binary matrix and (@), j=1,....,m, i=1,...,n, are
independent standard Bernoulli random variables with the equal probability outcomes
0 and 1, and whereby p(k(U))=2"". The random database R is a uniform random
database if all tuples have the discrete uniform distribution, i.c., plk(U))=2""V) For
sequences x(m) and y(m), m=1,2,..., we write x(m) =< y(m), if there exist positive
constants ¢; and c; such that ¢ y(m)<x(m)<c,y(m) for all m., We say that R is
uniform-type if p(k(U))=2-hU),

Further, a set of attributes 4 is said to be a key in a random database R if all ti(A4)
are different. We say a key 4 is minimal in R if the key property fails for any proper
subset BC A. Write Rl=4 if 4 is a key, and RE= i, A4 if 4 is a minimal key. Let
ACU and BC U\A. We say that B functionally depends on A if there are no tuples
in R with the same data in columns 4 but different in columns A. Denote this property
by 4 — B. Henceforth, we consider the asymptotic behavior of some characteristics of
random databases when the number of tuples m and the number of attributes » tend
to infinity. Let m be the main limit index. We drop the argument m for parameters,
when doing so causes no confusion.

The notion of ‘random database’ extends the usual notion. In database theory, rela-
tions are considered, i.c., sets of tuples. In a random database, tuples can be identical.
We treat a random database as a sequence of tuples (also referred to as zable). Hence,
the number of different tuples can be less than m. Note that the notions of key and
minimal key for random database correspond to those of test and nonredundant test,
respectively, widely used in discrete mathematics (e.g., in pattern recognition, see [2]).
We show that the main asymptotic results for keys and minimal keys are extended in
certain conditions to the case of a random relation, i.e., a database with different values
of tuples. On occasion we adopt the convention that the random relation is termed #
if it is the counterpart of R. Write # =4 if 4 is a key, and Z}=_. A if A is a minimal
key in #. Clearly, U is always a key in 4.

First we evaluate the functional dependency probability P{4 — B} for a uniform-
type random database. We derive asymptotic properties of keys and our main problem
of interest, namely, minimal keys, in Sections 3 and 4, respectively. An asymptotic
distribution of the length of a shortest key (i.e., a key with minimal length) is treated in
Section 3. These results and the similar arguments based on the Poisson approximation
technique (the Stein—-Chen method) allow to investigate the minimal key probability
P{ZR = in A} for random databases. As the first but an important step we consider
standard Bernoulli databases. For uniform random databases with different domains,
we investigate the case when the minimal key probability is asymptotically equivalent
to the corresponding key probability, i.e., almost all keys are minimal. We treat the
extensions of the results for keys and minimal keys in random relations in Sections
3 and 4, respectively. Section 5 gives evidence to support the statements made in the
previous sections.

min
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2. Functional dependencies in random databases

Let 4 and BC U\A be sets of attributes in R. Denote by N =N(4,B) the random
number of pairs of tuples in a database R when the functional dependency property fails,
ie., t(A)=1(4) and #(B) # #'(B). The distribution of N (4, B) characterizes the degree
of dependency between sets of attributes 4 and B. Clearly, P{4 — B} = P{N(4,B) = 0}.
Henceforth, in this section, write a =h(A), b=h(B), and M =m(m—1)/2. In particular,
if R is a standard Bernoulli database, then a = |4| and b= |B|.

Further, for any tuple #(U), denote by

P(k(A),k(B)) = P{t(4) = k(4),1(B) = k(B)},
P(k(A)/k(B)) = P{t(B) = k(B)/t(A) = k(4)};

i.e., p(k(A)/k(B)) is the conditional probability of the event #(B)=k(B) when HA)=
k(4). For such models, we denote the mean of N (4,B) by

A=MA4,B)=E[N(4,B)] =M M%(B) P(A))(L — p(k(B)/k(A4))) p(k(B), k(4))

=ME[p(t(4))(1 - p(«(B)/1(4)))],

where E[] is the mathematical expectation for the joint distribution {p(k(A),k(B))}.
As an example, for a uniform database, A=M2791-27b),

Theorem 1. Let R be a uniform-type database and p(k(B)/k(A))<é<1. Suppose
that 0 <i<ca; then

P{A—B}=¢"*(1+0(277)) as m— oo,

where 0<c<3In2 and y=1 —¢/In2>0.

Corollary 1. Let R be a uniform-type random database. If a—2 log, m — o« and b — f3,
where |a| < + oo and 1 << + oo, then

P{4— B} — exp{—2"(+)(] - 2P} as m— .

We can interpret this asymptotic result in the following way. The size of a database
very strongly indicates the length of possible candidates for left sides of functional
dependencies. Therefore, for a given database with m tuples there is a subset .#y(B) of
all possible functional dependencies & (B) with right side B which are likely. First of
all the set #(B) is determined by the value of the parameter 7, since the probability
P{4— B} ~e~* as m — co. This set is much smaller than #(B) and, with regard to
the average case, there is a high probability that a functional dependency from % (B)
which is valid in the random database, belongs to #(B). Thus, heuristic algorithms,
for example, which are used to check the validity of functional dependencies from
F(B), should begin with constraints from Zo(B). In this case, they succeed much
faster.
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Theorem 1 shows that a functional dependency for a random database with suffi-
ciently large m relates both with stochastic properties of an attribute set 4 and with
stochastic relationship between attribute values in 4 and B. Also, the distribution of
1(A4) defines the first factor, and the conditional distribution of t(B) with a given #(A4)
characterizes the latter.

3. Keys in random databases and relations

3.1. Random databases

The asymptotic results for the key probability P{R =4} are very similar to those for
the functional dependency probability when b=h(B)— oo as m — co. However, in the
case of a uniform random database there is also an explicit formula for P{R = A4}. Let
a=h(4) and M =m(m —1)/2 as above. We also introduce the random number of key
condition violations (cf. the functional dependency case), N=N(4) = {z:(4)=1;(4),
Lj=1,...,m,i<j}|. The distribution of N(4) characterizes the capability of 4 to dis-
tinguish tuples in R. Clearly, P{R = A} =P{N(4)=0} for a set of attributes 4 C U.
Denote also the mean number of key condition violations by A=AA)=E[NA)] =M

Ek( 4) p(k(A))zzME[p(t(A))], where E[-] is the mathematical expectation for the
distribution { p(k(4))}.

Theorem 2. Let R be a uniform-type database.
(1) If 0<A<ca, then

P{REA}=e*(1+0Q27)) as m— oo,

where 0<c<3iIn2 and y=1 - ¢/In2>0;
(it) If R is uniform then P{R|=A} = [1/2,'(1 — j27%)<e~*. If additionally, 0 <<
29C2=1B3 where 0 <y <2, then

P{REA}=e""(14+027)) as m— oo. (1)
In the uniform case, A=M27? we also formulate the following:

Corollary 2. Let R be a uniform-type random database. If a —2log, m — a, where
la| < + oo, then

P{REA}— exp{—27**D} 45 m— 0.

Remark. Let v=v(4) be the length of a shortest key in A, i.e. an integer ran-
dom variable, which equals the length of a minimal key subset B in 4. Therefore,
{Wd)<r}={RE4} if |A|=r. For a standard Bernoulli database, we have |4|=a.
Write a=a — 2log,m. It is a straightforward consequence of Theorem 2, that if
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«—x/In2 — 1, then
P{v(4)<a}=P{v(4) — 2log, m<a} — exp{—e~*} as m— oc. 2)

Thus, the normalized size of a shortest key in 4 has asymptotically the Gumbel (double
exponential) distribution and the values of the random variable v(4) concentrate near
2log, m (cf. [7, 11] for the height of a digital trees).

We observe that keys are more likely in a very small interval. Therefore, algorithms,
which search for keys in relations, are faster if these intervals are checked at first.

3.2. Random relations

Let R be a random database and % be the corresponding relation. By definition the
only difference between R and Z# is that the latter may have identical tuples. Write
u=h(U). Clearly, N(U)<N(A4) and, therefore,

P{2 = A} =P{N(4)=0/N(U) =0} = P{N(4) =0}/P{N(U) =0} (3)

It follows directly by definition that for uniform-type databases A(U )/A(A)=<29"% Now
the main results about asymptotic behavior of key probability can be formulated also
for random relations. Applying Theorem 2 and Eq. (3), and not striving for generality,
we obtain the following:

Theorem 3. Let R be a uniform-type and R be the corresponding random relation.
(i) If 0<A(A)<ca and 0 < A(U) < cu, then

P{Z A} = exp{—A(4)(1 — AU)/AAN}1 +O(277)) as m— oo,

where 0<c<3In2 and y=1 — ¢/In2>0;
(i1) If A(4)— Ao and u—a — co, then P{R |=A} —e=* as m — oo, where 0<lp<+
00;
(iii) If R is uniform, then P{R = A} = []}'(1 — j272)/(1 — j27*).
Applying the same arguments as in Theorem 3, clearly, (2) is also valid for random
relations if u —a— 00 as m — oco.

4. Minimal keys

In this section, we derive our main asymptotic results for the minimal key probability
P{RE=min A}, where 4 is a given set of attributes. For this extreme case in a sense,
first we consider a standard Bernoulli model. If D; = {0, l,....d},i=1,...,n,and d =2,
then the arguments are similar. By using the notation of the previous section we have
the following:
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Theorem 4. Let R be a standard Bernoulli database and 0 <lo<Ai<ca, where 0 <c <
%ln 2. Then, there exists y>0 such that for any sufficiently large iy,

PR i A} =¢ (1 = € ™)(1 +- 0(2°7)) as m— oo.

Now Theorem 4 allows to evaluate the asymptotic maximum value of the minimal key
probability.

Proposition 1. If 0 <1y <4, then

P{R =, A} =P(a) < Prax(a) ~e " 'J(a+ 1) as m— oo,
and also P(a)= Ppa(a) iff

2log, m — log, In(2log, m) — 1 + o(l)<a<2log,m—1,

ie, 2= In(a+ 1)(1 4+ o(1)) as m — oc.

This result can also now be compared with worst-case complexity of minimal key
systems. Thus, if m is small or large enough then minimal key systems can contain
only a very small number of minimal keys in average. Therefore, worst-case complexity
results are highly unlikely for these cases.

The result of Proposition 1 shows that the probability for a set of attributes A4 to be a
minimal key tends to be zero as a — oo and this property does not depend on relation-
ship between the number of tuples m and the size of A as in the case of key (cf. Theo-
rem 2). However, the following corollary shows that this relationship is important when
we consider the conditional minimal key probability P(a/K) =P{Rf=,,, A/R=A4}.

Corollary 3. Let m*=2*'(Ina+d), ie., A~ Ina+d, and d — x, where x| € + oo,
and also d > Jg — Ina, Ay > 0. Then

P(a/K)— exp{—e™*} as m— .
Now it follows directly that if A= Ina+d and d — + oo, then
P{RE A} ~P{REEA} ~e™* as m— oo. (4)

Furthermore, the main results about asymptotic behavior of minimal key probability
can be formulated for random relations too. 1t is evident, {R Fmnd} C{N(U)=0}
and, therefore,

P{R . A} =P{R Fmin A/N(U)=0} = P{R Fmin 4}/P{N(U)=0}. (5)
Applying Theorems 2 and 4 and Eq. (5) we obtain the following:

Theorem 5. Let R be a random relation and the conditions of Theorem 4 be valid.
Suppose u=n = log, m, where g <& < o00; then, there exists y>0 such that for
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any sufficiently large Ay >0,

P{R =AY =exp{—A(1 = 2°")}1 —e 1’1 + O(277)) as m — .

Remark. The asymptotic results of Proposition 1 are also valid for random relations if
n—a— oo as m-— oo.

Finally, let R now be a uniform random database and |D;| > 2, for i € A. The previous
asymptotic result (4) for P{R}=_, A} can be generalized for this case as well. Write
di=|Di| =220 for i€ A. Denote by m; =|A4|"'|{i:d; =k i€A}| for k=0,...,L,
where L =max;c4d; = 0. Note that Zi:o nx =1 and {nk}é is a distribution of values
d; for i€ A. Denote by g(z) the generating function for the distribution {m;}}5 and
whereby g(z):= Zi:ozk”k’ |z] < 1. In particular, for a standard Bernoulli database,
we have L=0,mp=1, and g(z)=1. Let A= Ina + d, where a=h(4). We introduce
the following condition:

ae~*g(e™")=e"g(e ¥/a) =0 as m— oo. l

Write Tmax = max; <k <z 7. Evidently, to ensure (6) it is sufficient, if d — + oo, since
lg(z)| <1 for |z| < 1; or if e max(mp, e ?Mmax/a) — 0 as m — oo.

Proposition 2. Let R be a uniform and (6) hold. If log,(L+2)=o0(a) as m— occ and
A <2%, where 0 <g < i, then (4) is valid,

In the following simple examples of nontrivial distributions we have L > 1.

Example 1 (Two-steps distribution). Let my =0, k=1,...,.L — 1 and mp + . =1, 7,
> 0. Then g(z) =ng+z*n;, and (6) holds iff e~¢ max(mp, n,e~?LM4) =0 as m — cc.

Example 2 (Binomial distribution). Let for any k=0,...,L, m = (7 ) p*¢" %, p(m)=
1 —g(m)>0. Then g(z)=(q + zp)*, and (6) holds iff LIn(g + e ?p/a) —d — —

as m — oQ.

5. Proofs

Let (©, #, P) be a standard probability space. For every B € #, denote by B:= Q\B.
Let N=3 L, where I, is the indicator of the event C, and P{l,=1}=P(C,),
a € I'. Write M = |I'|. There are classic limit theorems for independent indicator random
variables. In general, C,, « € I', are dependent and it needs a different technique. The
Stein—Chen method has been developed for establishing Poisson approximation for
sums of dependent indicator variables. We use one of the result of this approach
following [3].
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Denote by I =I"\{«}, and A= E[N]=Mg. Suppose that I} is partitioned into I?,
and I} such that I, and {/z; B€I}} are independent. Write my = |I7?|. The next propo-
sition follows directly from [3, Corollary 2.C.5.].

Proposition 3. Let N be the sum of indicators, g=P{l,=1}, and E[lds] <s for
el and BETY. Then

|P{N =0} — e™*| < /M (mo + 1 + mos/q?).

We use also the following elementary inequality

|In(1 +x)| <2x|, |x| <1 @)

5.1. Functional dependencies in random databases

Proof of Theorem 1. To apply the Stein—Chen method, note that in our case I'= {(i,)):

i,j=1,...,myi<j}, where |I'|=M =m(m — 1)/2. Further, write N(A,B)=3  crlu

where /, is the indicator of the event C, = C;; = {t;,(4) =1tj(A),t(B)# t(B)}. The ran-
dom variables I,, a €T, are identically distributed, but dependent. In addition, 1"3(O
={(,k), (1)) k#j,1#i}, and |[I2|=2(m — 1) for = (i, /). Moreover, P{l,=1} =g
and E[llg]=s for all @€ I' and B € I?. Now, Proposition 3 yields

IP{N =0} —e™*| S UM (2(m — 1) + 1 +2(m — 1)s/q*)=4i/m (L + 5/g%).
Since R is uniform-type, we have s =< g° and, therefore,
|P{N =0} — e™*| < C;A/m < Cre™* exp{A+Ini—}In2a}, (8)

where 0 < C), C; < oo, and the assertion follows. [J

Proof of Corollary 1. For a finite value of A, the assertion follows directly by
Theorem 1 and Eq. (8). If 4o=0 we can use the following estimate:

ij

If A9 = oo, then for every ¢ >0 and 4, > 0, we find m, such that m,(m, — 1)/2P{C),}
= Z¢. Then for every n>n,, A> J,, and m > m,, we get

P{A— B} =P{N =0} = p(m) < p(m,).
Applying now the assertion of the theorem, we obtain

P{A—BY< p(m)<e ™ +¢2<¢

for every m > m,. This completes the proof. [
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5.2. Keys in random databases and relations

The proofs in this section are similar to those we have for functional dependencies.
Applying the same notation as above we have N(A)=Zuer1a, where [, is the in-
dicator of the event C, = Cij={ti(4) =1j(4)}. Now the proofs of Theorem 2 (i) and
Corollary 2 repeat those of Theorem 1 and Corollary 1, respectively.

In the uniform case we use the following combinatorial argument. One can find
2% =], IDi| variants for the first row #(4) in R. For the second raw, there are 2% — |
variants and so on. There exist 2™ different matrices m x |4|, and whence,

1 m=l m—1 )
pm)=PREA} =22 T @ = =TT (1 -j27) <o~
¥ i J=

Applying now (7) yields e="» < e’ p(m) < 1, where

m—1 29—2a —2a =] 2
72 2 m=l 5 A

— < é.c )
b ,21_,-z—a 1—m2~a§,j Om

for some 0 < Cy < oo, and (ii) follows, since p(m)=e=4(1 + 8,), with |6, <1 —
e <L p, O

3.3. Minimal keys

Proof of Theorem 4. R be a standard Bernoulli database and whence |A| = a. Denote
by Ay =A\{k}, &k ={RI=A4;}, k=1,...,a, and o/ = {R}=A4}. Then it follows directly
by the definition of a minimal key that P{R |=_, A} can be represented in the following
form:

PR A} =P() - }f_l:l(—l)"_'(j)P(ﬁui--u%)- 9
=

In fact, {Ri=, A} ={REA}N_, {RE4;} =/ (\]_o/,. Therefore, P{RI=, A} =
P(.J)+P(U;.:| /), since ﬂ-ﬂdj =0 for j=1,...,a. Then (9) follows by using the
inclusion—exclusion formula.

For the proof of the theorem, first we apply the Poisson approximation technique to
evaluate the probability P(./ ...s#;); then the Bonferroni inequality yields the asser-
tion.

The events o, k=1,...,a, are strongly dependent. Hence, we represent the event
Ep=.5}2¢1 ..y as follows, E,=(;_;Dy, where D=/ D!, and D/ = {r,(4;)=
L(An}.

Lemma 1. Ler 1 < p<T and 0 <A < ca, where 1 <T < max(ca/i — 1,a) and 0 < ¢
< % In2. Then there exists y >0 such that

P ... aop))=e"PDY] £ O(e™™)) as m— co.
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Proof. Denote by /, the indicator of the event D, =Dy, a€l, and N(4) = Z;erlr
First consider P(D;;) = P(Dyy), i,j=1,...,m,i #j. We find P(D;») by using again the
inclusion—exclusion formula. Namely, |4;|=a — 1,

P(Diy)=P(Diy) = P{t)(41) = to(4; )} =27V,
If Iy #1; and k > 2, then D{,D'y = {1;(4) = t(4)} and, therefore,

P(Djy... D) = P(D,Df) = P{ti(A) = 1o(4)} =27, (10)
Thus, the inclusion—exclusion formula yields

P(Dyy) = ;P(Dia) — X P(DL,DR)+ - -

[](l}

p B 1 P\l Y E-AR
= . ] — —1)? s
201 (2)2a+(3)2a+ +(=D (p)za
2p+1—p 1 p+1
= — - (1 - P —

Qa ( 1) 2a 2a ’

and, therefore,
Ap=EN(A))=M(p+1)27%=(p+ 1)

To estimate the probability P(D,Ds) when Dg€eT?, we use again the inclusion—
exclusion formula for the events Cy =D, D!, for k,/=1,...,a. Then

P(DaDﬂ)=P(DuD|3)=P(HD’{ZD{Z) mP(HCH).
If k =/, then
P(D1,D13) = P{1(41) = ta(d1), (A1) = t3(d1)} = 51,
where 51 =272@=D_If k #/, then
P(D};D}) = P{ti(41) = (1), 11 (A2) = 13(42) }
=P{ti(dnn) =0(412), 1(412) = 13(412)}P{11(2) = ,(2), (1) = 15(1)}

=51,

where 4, =A\{k, !}, and, therefore,

TP Ch)= (P+2(p))sl = p?s;.
ki 2

Applying again (10) yields that if k =k, or I, =1, then P(Cy, ,Cs,. 1) =2"2a=D-1
=s1/2, otherwise P(Cy, ), Cy,,1,) =272 =5, /4. Let order the set {(k;,[;): (ki [;)#
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kil i)y ij=1,...,(5)}, and Ty =Cq ), i=1,...,(%). Hence,

p P’ p
ZP(TiTj)-—-EP(Ck.,l,Ck,J,)=2P( )51/2+(( )—ZP( ))51/4-
i<j i<j 2 2 2

Finally, we obtain

P(DIZDIS):'P(UCH) =(p—1)%s1/4 + pis, — p(p—1)s; < Cpls (1T)
ki

for some 0 < C < 0. Thus, from Proposition 3 and Eq. (11) we get
|P(Ep) —e™*| < Cy Ay /m,

where 2, =(p+1)A<(T+ 1)A<ca,and 0 < ¢ < % In2. The assertion follows now as
in Theorem 2(ii). [J

Further, we represent the asymptotic function in the following inclusion—exclusion
form

el — e =3 <1y (a) g LR,
/=0 J

Hence, the Bonferroni inequality (see, e.g., [6]) implies

IP{R Eip 4} — e™(1 — e7%)7]

< (;)(e-”+”*+P(Er))+ )y (”) =G+ — p(Ep)|

J<T \J

a a
<2( )e—(mm > (_)R,(m)
r J<T\J

=e 41 — e~4)o(y, +5)

for every T=1,...,a, First consider Ii. Let T be as in Lemma 1 and choose c1>0
such that 7=c¢a/d < [(ca/A —1)], and 2> Ao. Then, for a sufficiently large 4o, we
have T < a. Applying (7) and Stirling’s formula we obtain

Iy £ o¥ JT1e~% (] ~ ey g exp{TIn(a/T)+ T — AT + 2ae™*}
< Geexp{ac A~ In(A/e;) — acy + aci /A + 2ae™*}

< Gsexp{ac; 2o~ ' In Ao —cra+acy /iy + ae"“’} Le N9 (12)

for some y, and C; >0, i = 1,...,3, and sufficiently large 4 > 0.
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In the case of I, combining Lemma 1 and Eq. (7), we get
, a . fa . ;
L<(1—e™) e ™y e‘fi( ) < exp{—-ya—aln(l —e ")+ ae™"}
2 j

< exp{—ya+ 3ae ™} e 7, (13)

for some y, >0 and sufficiently large Ao. Now the assertion follows by (12) and
(13). O

Proof of Proposition 1. First, let A > 1o > 0, as in Theorem 4, then we have
P(a)~e™*(1 —e™*)* <e™'/(a + 1) =Pumla),

since the function f(x)=x(1—x)% x > 0, has the unique maximum point x = 1/(a+1),
ie. A=1In(a+ 1)+ o(1) as m — oo. Namely,

Sux=f(f(a+1)=1/(a+ 1)1 =@+ 1)) ~eYa+1) asa—oo.

If A>ca, then P(a) <e * <e . Finally, the asymptotic estimates in the assertion
can be easily checked. O

Proof of Corollary 3. If m> =2%"!(Ina + d), then m2~%% — oo and
A=M2"=(Ina+d)(1 +O(1/m))=Ina+c =4,

where ¢ =d(1 + O(e™ ")) as m — oo, A} > 0. The assertion follows now by applying
Theorems 2 and 4, since

P(a/K)=P{R|=,, A,R=A}/P{RE=A}=P{R|=_, A}/P{RI=4}. O

Proof of Proposition 2. Denote by p;(a)=P{R|=4;} and p(a)=P{R|=A} for i€ A.
By the definition of a minimal key as in the proof of (9) we obtain

p(a) = P(a) > p(a) — ZA pi(a)= p(a)(1 + o).
i€

To prove the assertion it is sufficient to verify that 6, =0 as m — oco. Write a; =a —
log, |D;| and A; =M2~% = J|D;| for i € A. By assumption,

m~ 422 £ 20@(+e) 22/3-v)a y>0,

where a;~a as m—oo. Thus, 4; <29%, 0<¢g < %, uniformly in i€ A. Hence, the
claims of Theorem 2 (ii) hold uniformly in i € 4. We observe that there exists yo >0
such that

pi(a)=e"H(1 +0(e7"%)) =e DAL + O(e7™%)),

pla)y=e"*(1+0(e"?)),
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as m — oo uniformly in i € 4. Finally,

1Om| =1/p(a) 3= pi(a) =(1 4+ O(e™"))e~* 3" e~%*

i€A i€A
L

~ae™t Y e M = ae *gle™*) = e ?gle™¥/a) >0 as m— oo,
k=0

and the assertion follows. [

6. Conclusion

Worst-case results on sets of minimal keys state that their sizes are exponential
according to the number of attributes. For instance, the worst-case number for sets
of minimal keys is O(2"n~!/?), where n is the number of attributes. It is of interest
whether these results are valid also for the average case. The proofs of worst case
results are based on the length of minimal keys or on the length of left sides of
functional dependencies. Thus, if we can prove for the average case that the length
is rather small compared with the number of attributes, then we can assume that the
numbers are not exponential. In this paper, tables are considered. Tables are sequences
of tuples. We could develop a theory of key length for tables. Relations are a special
case of tables where tuples are different. Our main results are applied on tables as
well as on relations. We have shown that depending on the size of relations almost
all minimal keys have a length which mainly depends on the size of the relation.
Otherwise, the minimal key length probability is exponentially small compared with
the number of minimal keys of the derived length. Thus, we have shown that for a
large variety of relations the exponential complexity of sets of minimal keys is rather
unusual. Further, if we have found a key in a relation and this key has the length
derived from the size of the relation, then this key is probably a minimal key. The
similar results can be shown for functional dependencies. Furthermore, our results show
that the size of the domains does not change the general picture. The presented research
is only the first step. There are several problems left open in this paper. One of the
main problems is the evaluation of the mean number of minimal keys. Relations on
n attributes can be grouped depending on their size. In this case, different scenarios
can be discussed according to the number of tuples in a relation and compared with
the number of attributes: keys in rather small relations, keys in rather large relations,
and keys in relations in the small spectrum of an exponential size of the number
of attributes. The first two cases are covered by our results. The last case leads to
large sets of minimal keys. Furthermore, we can group databases into such whose size
does not change too much and such whose size is changing to a larger extend. The
behavior of key systems in the case of the last group is another open problem. We
consider the uniform and uniform-type models, but our conjecture is that the main
results are also valid for more general probabilistic models. Statistical estimation of
database parameters for the developed models is the next stage of investigation.
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