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Abstract

Let k<n, p<g<m be positive integers. Suppose that the m x n matrix M satisfies the fol-
lowing two properties:

e for any choice of & distinct columns ¢y, ¢, ..., ¢, there are ¢ + 1 rows such that the number
of different entries in ¢; (1 <i<k — 1) in these rows is at most p, while all ¢ + 1 entries of
¢ in these rows are different;

e this is true for no choice of £ + 1 distinct columns.

We review results minimizing m, given n, p,q,k. Two of the results are new. The optimal

or nearly optimal constructions can be considered as n partitions of the m-element set sat-

isfying certain conditions. This version leads to the orthogonal double covers, also surveyed
here. (© 1998 Elsevier Science B.V. All rights reserved.
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Keywords: Relational Database; Design; Orthogonal double cover; Hamiltonian cycle

1. Introduction, motivation

The motivation of this study is the relational database model. Suppose, we want
to store data of students of R.C. Bose. For each individual we create a record that
contains certain fields, such as name, initials, year of birth, etc. We imagine this
written in a table, where rows correspond to individuals and columns to types of data,
as in Table 1. The types of data, the columns in our table are called attributes. The
set of attributes is usually denoted by 2. Some attributes determine the values of other
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Table 1

a b c d e f g h i

Last name Initials M or F Year of  Month of Day of  Age in Age in Age in
birth birth birth years months days

Srivastava JN.

Shrikhande S.S.

Rao C.R.

Ray-Chaudhuri D.K.

Connor W.S.

attributes, in our example we have the following implications (among others):

{d} —{qg}
{d.e} —{n} (and {g})
{d’e’ f} -2 {l} (and {gah})-

We shall give formal definitions of the concepts discussed here in the next section.
These types of implications, which are called functional dependencies play very impor-
tant role in the implementations of relational database models. For detailed explanation,
see Codd (1970), Demetrovics et al. (1992), Ullman (1989). However, there are other
types of determinations, for example if we know the value of d, then there can occur
at most twelwe different values of h. These types of dependencies are called branching
dependencies and were introduced in Demetrovics et al. (1992).

Armstrong observed that functional dependencies give rise to closure operations on
the set of attributes. He proved in Armstrong (1974) that in fact, all closure operations
can be derived from suitable relational database models. The question naturally arises
that for a given closure, which is the smallest database that yields it. We survey results
about this problem and show how these questions lead to the very interesting design-
theoretical concept of orthogonal double cover in Section 2.

Branching dependencies do not always yield closures, instead they give rise to
monotone-increasing set functions. In Demetrovics et al. (1992), the problem that
whether all monotone-increasing functions could be derived from relational database
models was raised, and partial results were presented. In Demetrovics et al. (1995), the
minimum representations of monotone-increasing set functions and closures by branch-
ing dependencies were studied. These problems also lead to nice design-theoretical
questions that are interesting for their own sake, as well. We discuss known results on
this topic and present two new theorems in Section 3. In Section 4 some intriguing
open problems are listed.

Finally, let us fix some notations. 2 always denotes the n-element set of columns
of a database matrix. Capital letters refer to subsets of 2, while elements of Q2 are
denoted by lower case letters.
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2. Functional dependency

A relational database system of the scheme R(A4;,4,...,4,) will be considered as a
matrix, where the columns correspond to the attributes A;’s (for example name, date
of birth, place of birth, etc.), while the rows are the n-tuples of the relation r. That
is, a row contains the data of a given individual. For the sake of convenience, it is
assumed that the rows of the matrix are pairwise distinct. Let Q denote the set of
attributes (the set of the columns of the matrix). Let 4 C Q and b€ Q. We say that b
(functionally) depends on A (see Armstrong (1974), Codd (1970)) if the data in the
columns of 4 determine the data of b, that is there exist no two rows which agree in
A but differ in 5. We denote this by 4 — b. A set function on the subsets of Q can be
defined with the help of functional dependency.

Definition 2.1. Let M be the matrix of a relational database. The function %, :2% —
2¢ is defined by

Gu(A)={b:beQ, A— b}

for any 4 C Q. We shall write % instead of %), if it does not cause confusion.
The function defined above has the following three properties.

Proposition 2.2,

(1) ACE(A),

(2) ACB=%(4)C €(B),

(3) €(€(4))=%(A).
Set functions satisfying properties (1)—(3) are called closure operations. Armstrong
proved that the above correspondence could be reversed.

Theorem 2.3 (Armstrong (1974)). For any given closure € there exists a matrix M
such that

by =¢.
It is evident that a matrix with a small number of rows cannot yield a complicated

closure. Furthermore, as closures and database matrices are equivalent by Armstrong’s
theorem, the following number is a measure of complexity of closures.

Definition 2.4. Let ¥ be a closure on Q. Then let

s(6)= min {number of rows in M}.
M:%y 6

It is very hard to determine s(%') for an arbitrary closure . However, there are nice
combinatorial results for certain closures.
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Definition 2.5. Let % denote the tollowing closure on (2

X if | X|<k
Q otherwise.

€ X)= {

The following lemma gives a general lower bound for s(%5).

Lemma 2.6 (Demetrovics and Katona (1981)).

s(6F) W
(%)= ()

Proof of Lemma 2.6. Suppose that M represents %* and let |4 =k — 1 be a subset
of Q, furthermore let b & 4. Then by the definition of (gn" , A/ b, ie., there is a pair
of rows 7 and j, such that they are identical in 4, but different in b. If there is another
(k — 1)-subset B of Q such that i and j are identical on B, as well, then 4 UB /4 b
would hold, but |4 U B| >k, so by the definition of %* this cannot happen. Thus, we
can assign distinct pairs of rows to distinct (k — 1)-subsets of columns. [J

The exact value of s(%/) is determined for certain values of k.

Theorem 2.7 (Demetrovics and Katona (1981)). The following equalities hold:
(a) 5(6,)=2,
() s(67)=[(1 + V1 +8n)/2],
(c) s(&~")=n,
d) s(6))=n+ 1.

We give the proof of Case (b) as an example.

Proof of Case(b) of Theorem 2.7. Let s =s(%?). Lemma 2.6 gives (3 )=n. Note that

the number of the right hand side of equality in Case (b) is the smallest s satisfying
the previous inequality. If s is such, then we construct a matrix M with s rows such
that %y, = %? as follows:

0 0 0 0 1 1 1 1
0 22 20 00 2
& -3 R 3B 3
M—=14 4 0 4 4 0 4 4
5 5 5 5 5% 0 5
s s s ... 0 s s s ... s

There is a pair of zeros in every column of M such that for different columns the
zeros are in different pairs of rows, which implies that every one-element subset of Q
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is closed. This can be done by the choice of s. On the other hand, no two rows agree
in more than one column, so if 4 C Q with |4|>1, then Gy (4)=0Q. O

Let us note that in Case (d) of Theorem 2.7 Lemma 2.6 yields only s(%)>+/2n,
hence some other tricks are needed to prove n + 1 as a lower bound.
Let us now consider the case k =3. From Lemma 2.6 we obtain that

s(62) _(n
)2 ()

hence s =s(%;)=n. Equality holds if we can construct an » x n matrix M such that:

(1) for any distinct a,b,c € Q there are two rows equal in columns a and b, but
different in c.

(2) for any distinct a, b, c € 2 there are no two rows equal in all of them.
Consider the dual problem. A column naturally determines a partition of the set ¥ of
rows, by the equalities of its entries. We say that a partition covers the pair («, f§)
(o,peY, a#p) iff o and f are in the same class of the partition. We can state the
previous two properties as follows.

Find n partitions of ¥ (|¥Y|=n) such that:

(1") for any two partitions there exists a pair (a, ) covered by both,

(2’) no pair (o, ) is covered by three different partitions.
However, the number of pairs of partitions is also () and different pairs of partitions
cannot cover the same pair of elements by (2’). Thus, we may conclude that (1’) and
(2’) (consequently (1) and (2)) are equivalent to:

(i) for any two partitions there is exactly one pair of elements, which is covered
by both,

(ii) each pair of elements is covered by exactly two different partitions.

Definition 2.8. A collection of partitions satisfying (i) and (ii) is called an orthogonal
double cover.

The following conjecture was formulated in Demetrovics et al. (1985). (It was posed
in other terms, since the notion of orthogonal double cover was introduced later, in
Ganter et al. (1994).)

Ex-Conjecture 1. There exists an orthogonal double cover of the n-element set by n
partitions provided n=17.

In the same paper they proved that Ex-Conjecture 1 is true for certain n’s.

Theorem 2.9 (Demetrovics et al. (1985)). Ex-Conjecture 1 is true if n=12r + 1 or
n=12r +4.
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In the proof they used a theorem of Hanani to construct special type of partitions,
namely each partition consisted of one 1-element class and 4r (4r+ 1, resp.) 3-element
classes. This motivated the following conjecture.

Ex-Conjecture 2 (Demetrovics et al. (1985)). If n=23r + 1, then there exists an
orthogonal double cover of the n-element set by n partitions that have one 1-element
class and r of the 3-element classes.

Note that the two conjectures are independent in the sense that the solution of one of
them does not imply the solution of the other. The first result about these conjectures
was negative. In 1987 (Rausche, 1987), Rausche observed that Ex-Conjecture 2 is not
true for n =10. However, that turned out to be the only ‘bad case’. Ganter and Gronau
and later Yeow Meng Chee (Preprint) independently proved the following.

Theorem 2.10 (Gronau and Ganter (1991)). Ex-Conjecture 2 is true for n>13.

The first conjecture was decided affirmatively, as well. Bennett and Wu proved the
following theorem.

Theorem 2.11 (Bennett and Lisheng Wu (1990)). Ex-Conjecture 1 is true.

If we have an orthogonal double cover by partitions, then we can define a graph
for each partition. The vertex set is the underlying set £, the edges are the pairs
covered by that partition. These graphs are unions of disjoint cliques. Furthermore,
in the case of Ex-Conjecture 2 these graphs are pairwise isomorphic, namely they
are unions of » K3’s and an isolated point. This observation motivated the following
definition.

Definition 2.12. A collection of n pairwise isomorphic graphs Gy, Gs,...,G, with the
same vertex set V, where |V|=n and G; = (V, E;), is called an orthogonal double cover
by graphs iff

(1) each edge of K, is contained in exactly two of the E;’s,

(2) |EiNEj| =1 for i# .

With this concept, Theorem 2.11 states that there exists a double cover by graphs
where the G;=K; + r * K3. Gronau et al. (1995) proved a conjecture of Chung
and West (1994) stating that there is an orthogonal double cover by graphs where
each G; has maximum degree at most two. A sharpening of this result was given by
Ganter et al.

Theorem 2.13 (Ganter et al. (1994)). For all n=24, n+ 8 there is an orthogonal double
cover by graphs where each G; consists of the isolated vertex i and a union of disjoint
cycles of length 3,4 or 5 only.
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Further results are obtained by Gronau et al. (Preprint), and Leck and Leck (Preprint)
for G; consisting of cycles, Gronau et al. (Preprint) for G; being certain trees, respec-
tively.

The exact value of s(%Y) is not known for k>3. However, if k is fixed, then its
asymptotic behaviour is known.

Theorem 2.14 (Demetrovics et al. (1985)). If k is fixed and n>ny(k), then

e1(n* D2 <s(Gf) < catyn™ 12,

The lower bound in Theorem 2.14 follows from Lemma 2.6. The upper bound is
proven by a construction involving polynomials over a finite field. Fiiredi proved some
bounds for the ‘other end’ of the range of k.

Theorem 2.15 (Fiiredi (1990)). If k is fixed and n>ny(k), then

e3(k)n DB < (6" ) < eq(h)nk.

The following concept allows us to find s(%) for infinitely many closures.

Definition 2.16. Let ¥ and /" be closures on the ground sets U and V, respectively,
with U NV =0. The direct product of ¥ and A" is the closure on the ground set
U UV defined by

(EXANNAD=LANUYUN(ANV) for ACU U V.

The size of a minimum representation of a direct product of closures can be calcu-
lated provided that the minimum representation known for the members of the product.

Theorem 2.17 (Demetrovics et al. (1985)).

S((g] X (52) =s((€1)+s((€2) — 1.

Theorem 2.17 provides an alternative proof for Case (d) of Theorem 2.7, one has
only to observe that 6 =%""| x €.

3. Branching dependencies

The general concept we shall study is the (p,q)-dependency (1< p<gq integers).

Definition 3.1. Let M be an m X n matrix, with column set Q. Let A CQ and be Q.
We say that b (p,q)-depends on A if there are no g + 1 rows of M such that they
contain at most p different values in each column of 4, but ¢+ 1 different values in b.
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The functional dependency discussed in the previous section is a special case, namely
it is the (1, 1)-dependency. For a given matrix M we define a function from the family
of subsets of Q into itself as follows.

Definition 3.2. Let M be the given matrix. Let us suppose, that 1< p<gq. Then the
mapping Jyp, : 29 — 29 is defined by

Tvipg(A)={b: 4 LR b}

We collect two important properties of the mapping Jy,, in the following proposi-
tion, see Demetrovics et al. (1992).

Proposition 3.3. Let r, Q, M, p and g as above. Furthermore, let A,BC Q. Then
(1) A C Jppe(A),
(2) A g B= JMpq(A) g JMpq(B)-

Definition 3.4. Set functions satisfying (i) and (ii) are called increasing-monotone
Junctions. We say that such an increasing-monotone function .4" is ( p, q)-representable
if there exists a matrix M such that A" =Jy,,.

It is not known yet whether any increasing-monotone function is ( p, g )-representable
for arbitrary 1< p<gq or not. The following is known about representability of general
monotone-increasing functions.

Theorem 3.5. If
(i) p=1, 1<q or
(iv) p=2, 3<q or
(V) 2<p, PP —p—-1<gq
then any A" is (p,q)-representable.

Let us note that it is neccessary to assume p<g if we want to (p,q)-represent a
general increasing-monotone function, because the following proposition was proved in
Demetrovics et al. (1992).

Proposition 3.6. For any matrix M, Jy,, is a closure operation.

A statement analogous to Theorem 2.3 holds for (2,2)-representation. However, if
p>2, then this analogy cannot be continued:

Proposition 3.7 (Demetrovics et al. (1992)). If n>6 and p>2, then 6?2 is not (p, p)-
representable.

Theorem 3.5 allows us to formulate the following definition.
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Definition 3.8. For an increasing-monotone function A" let 5,,(.4") denote the min-
imum number of rows of a matrix that (p,q)-represents A4". If A" is not (p,q)-
representable, then we put s,,(.4") = 00.

The following general upper bound can be proved.

Theorem 3.9 (Demetrovics et al. (1995)). Let A" be an increasing-monotone function
with A" (0)=0 and let (p,q) satisfy one of (iii)—(v) from Theorem 3.5. Then

Spg(AN)<q(n+ 1)2".

The above bound is quite coarse, which is caused by the lack of knowledge about the
structure of an increasing-monotone function. However, there is a nice structure theory
of closures (that are special increasing-monotone functions). A lemma analogous to
Lemma 2.6 can be proved in a similar way.

Lemma 3.10. Let us assume that %Y is (p,q)-representable. Then

s G\ o [ m
g+1 /T \k—-1.})"

The exact value of qu(‘gf; ) is known in a few cases only Demetrovics et al. (1995).
Theorem 3.11 (Demetrovics et al. (1995)).

spq(6))=q + 1,
s22(7) =2n,

. . — 1
Spp(%,; ) =min {v integer: (\ " )Bn}.

The proof of the last equality in Theorem 3.11 is based on a theorem of Lovész on
k-trees (Lovasz, 1979). We present two new theorems in the rest of the section. The
first one answers the Open Problem in Demetrovics et al. (1995).

Theorem 3.12.
33023 1 O(n'y <s535(63) < %nm + o(n??).
In order to prove Theorem 3.12 we need the following lemma.
Lemma 3.13. The point-line pairs (P,1) (P € 1) of the projective plane PG(2,q) can

be colored with q + 1 colors so that pairs with the same first or second coordinates
receive distinct colors.
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Proof of Lemma 3.13. Such a coloring corresponds to the complete 1-factorization of
the regular bipartite point-line incidence graph of PG(2,q). O

Proof of Theorem 3.12. The lower bound follows from Lemma 3.10. The upper bound
will be proved by a construction. We will construct a bipartite graph G(4, B, E)) with
color classes 4 and B (|4|+|B| =), where the set of edges E is a union of matchings
T, Ts,...,T;. Let V(T;) denote the set of vertices covered by 7;. G will satisfy the
following three properties:

(vi) V(T)NV(T;)#0 for any i,

(vii) ;NT;=0 for i#j (no edge is covered twice),

(viii) V€ € ("Y*)  (§) ZUT; (no triangle).

Suppose for a moment that G(4, B, E) is constructed. The r x ¢t matrix M showing
the upper bound is constructed as follows. The columns of M will be indexed by
the matchings, while the rows will be indexed by the points of the bipartite graph.
In a column indexed by some 7; we will have identical elements for the row pairs
determined by the edges of T}, different identical pairs for different edges, the other
elements will be pairwise distinct and distinct from these pairs. In other words, columns
of M correspond to partitions into two and one element classes. We claim, that this
matrix (2,2)-represents %;. Let T, denote the matching corresponding to column x
of M. Indeed, by property (vi) there exist three rows u,v,w for any pair (a,b) of
columns that contain at most two different entries in these columns. If there were a
third column ¢ also containing at most two distinct values in u,v and w, then by (vii)
the equal entries in a, b and ¢ must be in pairwise distinct pairs of rows. So, with
C = {u,v,w}, () € 7,U T, UT. would hold, that contradicts (viii). This proves that for
every two-element subset 4 CQ Jy2:(4)=A. The same argument shows that if D CQ
with |D|>2, then there exist no three rows containing at most two different entries
in each column from D, hence Jiy22(D)=Q. Jy2(0)=0 and Jy2n({a})={a} for all
a € 2 follows from (ii) of Proposition 3.3.

Now the only thing left is to construct G(4, B, E) with r ~ct*?. Let A be the point
set of PG(2,q) and let C ={1,2,...,g+1} be a ¢+ 1-element set. g> +¢+ 1 matchings
can be constructed using Lemma 3.13, as follows. The matching 7; will correspond
to line / of PG(2,qg), namely if P is a point incident to / and the color of (P,[)
is i, then 7; contains the edge (P,i), so |T;|=¢q + 1. The graph G(4,C,|JT,) satis-
fies (vii), which follows from Lemma 3.13. Finally, any bipartite graph satisfies (viii)
trivially.

If B is a union of k pairwise disjoint copies of C (C),Cs,...,C;) and the above
matchings from A are constructed for each copy C;, then it is not hard to see that the
graph G(4, B, |J T}) also satisfies (vi)—(viii). For example, V(7;) and V(7;) intersect
in A, because V(7T;)NA is a line of PG(2,q), for all i.

This G results in an »x¢ matrix M, where r = ¢*+q+1+k (g+1) and t =k (g*>+gq+1).
This gives r~3¢% and t ~2¢° if k=2¢q. O
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Theorem 3.14.

su(%,f) = min {s integer: (;) ;2n} S

provided n>452.

First we prove the lower bound in Theorem 3.14. Note, that Lemma 3.10 gives only
("2(;6)'3 )) =n. Suppose, that M is a matrix of m rows and n columns that (1, 2)-represents
fgf Each column of M determines a partition of the row set {1,2,...,m} according
to which entries are the same. The partition corresponding to column i is denoted by
IT;. A triplet {i,j,k} is an indicator for the partition (column) [I, if there is another
column u such that 7, j,k are in the same class of IT, but are in three different classes

(1,2)
in IT,. (That is, the triplet of rows shows that 1 /— u.) The following two facts hold.

Fact 1. A triplet can be an indicator for at most one column.

Fact 2. For any pair of columns t and u, there is an indicator triplet {i,j, k} for II;
such that i,j and k are in three different classes of I1,,.

Partition II, is called of first kind, iff there exist at least two different indicator
triplets for I1;. Otherwise, the partition is called of second kind.

Proposition 3.15. Let I1, be a partition of second kind. Then the elements i,j,k of
the indicator triple of 11, are all in different classes in any other partition IT,.

Proof of Proposition 3.15. If not all three elements were in different classes of IT,,
(1.2)
then another triplet should show that u /— ¢, so Il, would not be of second kind. [

As a corollary, we obtain that the indicator triplets of partitions of second kind form
an at most l-intersecting system. We need the following easy lemma.

Lemma 3.16. Let 7 ={T\,Ts,..., Ty} be an at most -intersecting system of triplets
of M. Then there exists a collection & of k triplets of M such that each member of
S 2-intersects at least one member of T .

Proof of Lemma 3.16. Let ¥, |¥|=s be the system of such triplets that 2-intersect
at least one member of 7. We use double counting, namely we count the number
of pairs (7,S), T€7, S€% and |SNT|=2. On one hand, counting by the 7’s, it
is 3k(m — 3). On the other hand, for each S there are at most 3(m — 3) T’s that
2-intersects, so s3(m — 3) is at least as large as the number to count, which imply
szk. O
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Now we are ready to prove the lower bound in Theorem 3.14.

Proof of Theorem 3.14. According to Fact 1 all indicator triplets are different. Parti-
tions of the first kind each use at least two of them. The indicator triplets of partitions
of the second kind can be matched with triplets of M so that matched pairs 2-intersect,
by Lemma 3.16 and Hall’s condition. These matched triplets cannot coincide with some
indicator triplet by Fact 2, so we have found two ‘own’ triplets for each partition of
second kind, as well. This proves (7)>2n.

We prove the upper bound in Theorem 3.14 via construction. In fact, we consider the
number of rows m to be given, and construct n= [(’;) /2] columns so that the (1,2)-
dependency in that matrix will be exactly %2. First the following technical theorem is
needed.

Theorem 3.17. Let Go=(V,Ey) and G\ = (V,E) be simple graphs on the same vertex
set |V|=N, such that EyNE, =0. The 4-tuple (x, y,z,v) is called an alternating cycle
if (x,y) and (z,v) are in Ey and (y,z) and (x,v) are in E|. Let r be the minimum
degree of Gy and let s be the maximum degree of G,. Suppose, that

2!'—8S27.§’71>N;

then there is a Hamiltonian cycle in Gy such that if (a,b) and (c,d) are both edges
of the cycle, then (a,b,c,d) is not an alternating cycle.

The proof of Theorem 3.17 is based on Dirac’s famous theorem (Dirac, 1952) on
sufficient condition for existence of a Hamiltonian cycle and on Lemma 3.19.

Theorem 3.18. If G is a simple graph on N points and all degrees of G are at least
N/2, then G has a Hamiltonian cycle.

Lemma 3.19. Let Gy, Gy, r,s and N satisfy the conditions of Theorem 3.17. Let us
assume that there is a Hamiltonian path from a to b in Gy. Then there exist ¢, ¢ #a,
and d, d # b, adjacent vertices along the path, such that c is between a and d on the
path, (a,d) € Ey, (b,c) € Eo,(a,d.b,c) is not an alternating cycle, and if (x,y) is an
edge of the path, then neither (a,d,x,y) nor (b,c,x,y) are alternating cycles.

Proof of Lemma 3.19. We call a vertex x € V' a-bad (b-bad) if there exist an edge
(¥,z) of the Hamiltonian path, such that (a,x, y,z) ((b,x, y,z), respectively) is an al-
ternating cycle. The statement of the lemma requires an edge (¢,d) of the Hamiltonian
path, such that a #£c¢,b#d,(a,d),(b,c) € Ey,c is not b-bad, d is not a-bad and c is be-
tween ¢ and 4 on the path, furthermore either (a,¢) & E; or (b,d) & E;. Thus, we call a
vertex x not a-good, if it is a neighbour of a along the path, or a-bad, or its neighbour
on the Hamiltonian path in the direction of @ is b-bad or (b,x) € E,. Similarly, y is
not b-good if it is a neighbour of b along the path, or A-bad or its neighbour on the
path in the direction of b is a-bad.
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Let 7, be the number of a-bad vertices and ¢, be that of the b-bad vertices. Now,
{; 1s bounded from above by the number of four-tuples (a,z, y,x) such that (y,z) is
an edge of the path and (a,z y,x) is an alternating cycle. This latter number can be
bounded from above by 2s?, because the number of possible z’s is at most s, then z
has 2 neighbours along the path, and the number of possible x’s is at most s, again.
Similarly, 7, <2s°.

The number of not a-good vertices is at most 7, + # + s, similarly the number of
not h-good vertices is at most 1, + t,. Now, a has at least » neighbours in Gy, so the
number of candidates for the required vertex d is at least » —2 —4s> —s (d # b and d
cannot be the neighbour of @ along the path, which yields the term —2). Similarly, the
number of possible ¢’s is at least » — 2 — 4s®. The condition 2 — 4 — 85> —s>N — 3
implies that there is a pair of candidates adjacent along the Hamiltonian path, as it is
required. [

Proof of Theorem 3.17. Let us suppose indirectly, that 2 — 85> — s — 1 >N, but the
required Hamiltonian cycle does not exist. Let K contains an alternating cycle mean
that there exists an alternating cycle whose Ey edges are edges of K, where K stands
for a path or a cycle in G.

If £, =0, then the condition of Dirac’s theorem holds for Gy, thus it contains a
Hamiltonian cycle, furthermore no alternating cycle could exist. So, we may assume that
£} is non-empty. Let us drop edges one-by-one from E; until a required Hamiltonian
cycle appears. Consider the last dropped edge (u,v). Dropping it, a Hamiltonian cycle
containing no alternating cycle appears. This means, that there was a Hamiltonian cycle
C in Gy before, which contained such alternating cycles only that used edge (u,v) € E;.
Let the neighbours of v along C be w and z. An alternating cycle using the edge (u,v)
must use either (w,v) or (z,v). Thus, the path of length N — | from w to z obtained
by deleting the vertex v from C contains no alternating cycle.

Lemma 3.19 can be applied for the Hamiltonian path obtained from C by delet-
ing the edge (z,v), taking a=v and b=z. Replacing the edges (c,d) (provided by
Lemma 3.19) and (z,v) with edges (v,d) and (z,¢) a new Hamiltonian cycle C’ is
obtained, which can contain an alternating cycle only if that alternating cycle uses the
edge (w,v). Now, a second application of Lemma 3.19 with a=w and b= gives a
Hamiltonian cycle C" containing no alternating cycle, even without dropping the edge
(u,v), a contradiction. 0O

Now we are able to prove the main tool for our construction.

Theorem 3.20. Let |X|=n and 2k>gq. The family of all g-subsets of X can be
partitioned into unordered pairs (except possibly one if (Z) is odd), so that paired
g-subsets are disjoint and if Ay, By and A>,B, are two such pairs with |4, NAx| =k,
then |B, N By| <k, provided n>ny(k,q).

Proof of Theorem 3.20. We construct graphs Go=(V, Eg) and G| = (V, E;) that satisfy
the requirements of Theorem 3.17. The vertex set V' consists of the g-subsets of X,
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|V]= (2) =N. Two g-subsets are adjacent in Gy if their intersection is empty, while
two g-subsets are adjacent in G if they intersect in at least £ elements. The minimum
degree of Gy is r = (";") and the maximum degree of Gy is s= 37, (3) (;:;’) It is
easy to check that 27 — 85 —s — 1>N = (7), provided n>no(k,q).

According to Theorem 3.17, there is a Hamiltonian cycle H in G, that does not
contain two disjoint edges that span an alternating cycle. Now the required partition of
the g-subsets into disjoint pairs can be obtained by going around H, every other edge
will form a good pair. [

Theorem 3.20 is used to prove the upper bound in Theorem 3.14.

Proof of the upper bound of Theorem 3.14. Let us suppose, that m is an integer that
satisfies (';') =>2n. A matrix with m rows and »n columns will be constructed that (1,2)-
represents %2. Let us denote the set of rows by X. Apply Theorem 3.20 with ¢ =3
and k =2 to obtain disjoint pairs of 3-subsets of X. There are [(7)/2], that is, at least
n such pairs. Choose n of them. We construct a column from such a pair, as follows.
Put 1’s in the rows indexed by the first 3-set, 2’s in the rows indexed by the second
one, and all different entries, that are at least 3, in the other positions.

If a and b are two distinct columns, then there are no 3 rows that agree in both a

and b, because we used all distinct 3-subsets of rows, hence {a,b} 2 Q. On the other

hand, if a is constructed from the pair of 3-subsets 4;,4, and b is constructed from

B\, B, then either |4 N'By| <2 or |4, N B2| <2, so there are 3 rows which contain all

(1,2)
identical entries in column g, but all distinct ones in column b, hence a ~—b. [

We note that for g=3 and k=2 the ny(k,q) of Theorem 3.17 can be calculated
exactly, namely ng(2,3)=452.

4. Open problems

There are two kinds of problems involving matrix representations of closures and
monotone-increasing functions. The first one is the question of representability. This
is completely solved by Armstrong (Theorem 2.3) for functional ((1,1)-) dependency.
However, Theorem 3.5 leaves the following question open.

Open Problem 1. Is every monotone-increasing function ( p,q)-representable if p<q?

We believe, but dare not put it as Conjecture that the answer is yes. The first open
case is p=2,9=3. However, if .4 is a closure, then it was proved in Demetro-
vics et al. (1992) that 4" is (p,q)-representable for p=2<gq and for p>2 and
g=((p+ 1)/2)%, so for closures the first open case is p=4,9=>5. We can state the
particular case of the previous question.
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Open Problem 2. Is every closure operation € ( p,q)-representable if p<q?

For p=g we have seen that the answer is negative. However, it is an interesting
question for which p is a closure ( p, p)-representable.

Open Problem 3. For which p’s is €* (p, p)-representable?

The answer is known for n>ng(k) and shows surprising facts Sali and Sali (sub-
mitted). If k=n then Theorem 3.11 gives the complete answer. However, nothing is
known for 2 <k <ny(k).

The other direction of investigations is to find the minimum representation, provided
a representation exists. One intriguing question is the maximum possible value of s(%)
if ¢ is a closure on an n-element set. Let us denote this number by s(n). We know
that (1/”2)(Ln7zj) <s(n) (Demeterovics and Gyepesi, 1983) and that S(H)S(Ln’/llj)' So
we propose the following:

Open Problem 4. Find the value of s(n).

Of course, we do not know the value of s5,,(6%) for other triplets p,q,k than the
ones in Theorems 3.11, 3.12 and 3.14.

Finally, we refer the interested reader to Demetrovics and Katona (1993), where
other problems concerning relational databases are presented.

We are indebted to the referees for their helpful suggestions.

References

Armstrong, W.W., 1974. Dependency structures of database relationships. Information Processing. 74 North-
Holland, Amsterdam, pp. 580-583.

Bennett, F.E., Lisheng Wu, 1990. On mimimum matrix representation of closure operations. Discrete Appl.
Math. 26, 25-40.

Chee, Y.M., Preprint. Design-theoretic problems in perfectly (n — 3)-error-correcting databases.

Chung, M.S., West, D.B., 1994. The p-intersection number of a complete bipartite graph and orthogonal
double coverings of a clique. Combinatorica 14, 453-461.

Codd, E.F., 1970. A relational model of data for large shared data banks. Comm. ACM 13, 377-387.

Demetrovics, J., Fiiredi, Z., Katona, G.O.H., 1985. Minimum matrix representation of closure operations.
Discrete Appl. Math. 11, 115-128.

Demeterovics, J., Gyepesi, Gy., 1983. A note on minimum matrix reperesentation of closure operations.
Combinatorica 3, 177-180.

Demetrovics, J., Katona, G.O.H., 1981. Extremal combinatorial problems in a relational database. In:
Fundamentals of Computation Theory 81, Proc. 1981 Int. FCT-Conf., Szeged, Hungary, 1981, Lecture
Notes in Computer Science, vol. 117. Springer, Berlin, pp. 110-119.

Demetrovics, J., Katona, G.O.H., 1993. A survey of some combinatorial results concerning functional
dependencies in database relations. Ann. Math. Artificial Intelligence 7, 63-82.

Demetrovics, J., Katona, G.O.H., Sali, A., 1992. The characterization of branching dependencies. Discrete
Appl. Math. 40, 139-153.

Demetrovics, J., Katona, G.O.H., Sali, A., 1995. Minimal Representations of Branching Dependencies. Acta
Sci. Math. (Szeged) 60, 213-223.

Dirac, G.A., 1952. Some theorems on abstract graphs. Proc. London Math. Soc. Ser. 3 (2), 69-81.



164

Fiiredi, Z., 1990. Perfect error-correcting databases. Discrete Appl. Math. 28, 171-176.

Gronau, H.-D.O.F., Ganter, B., 1991. On two conjectures of demetrovics, furedi and katona concerning
partitions. Discrete Math. 88, 149-155.

Ganter, B., Gronau, H.-D.O.F., Mullin, R.C., 1994. On orthogonal double covers of K,. Ars Combin. 37,
209-221.

Gronau, H.-D.O.F., Mullin, R.C., Schellenberg, P.J., 1995. On orthogonal double covers of K, and a
conjecture of Chung and West. J. Combin. Des. 3, 213-231.

Gronau, H.-D.O.F., Mullin, R.C., Schellenberg, P.J., Preprint. On orthogonal double covers of K.

Gronau, H.-D.O.F., Mullin, R.C., Rosa, A. Preprint.

Leck, U., Leck, V., Preprint. There is no ODC with all pages isomorphic to C4UC3 U C3Uv.

Lovasz, L., 1979. Toplogical and algebraic methods in graph theory. In: Graph Theory and Related Topics,
Proc. Conf. Univ. Waterloo, Ontario 1977, 1-14, Academic Press, NY.

Rausche, A, 1987. On the existence of special block designs. Rostock Math. Kollog. 35, 13-20.

Sali, A., Sr. Sali, A, submitted. Generalized Dependencies in Relational Databases. Discrete Appl. Math.

Ullman, J.D., 1989. Principles of Database and Knowledge-Base Systems. Computer Sci. Press, New York.



