The Average Length
of Keys and
Functional Dependencies
in (Random) Databases

J. Demetrovics*, G.O.H. Katona? ,D. Miklos?
O. Seleznjev:= B. Thalheim*

! Comp. & Autom. Inst., Hungarian Academy, Kende u. 13-17, H-1111 Budapest
? Mathematical Inst., Hungarian Academy, POBox 127, H-1364 Budapest
3 Moscow State University, Dept. of Mathematics and Mechanics, RU-119 899, Moscow
4 Cottbus Technical University, Computer Science Inst., POBox 101344, D-03013 Cottbus
h935dem@ella.hu, h1164kat@ella.hu, h1162mik@ella.hu, seleznev@compnet.msu.su,
thalheim@informatik.tu-cottbus.de

Abstract. Practical database applications engender the impression that sets
of constraints are rather small and that large sets are unusual and caused by
bad design decisions. Theoretical investigations show, however, that minimal
constraint sets are potentially very large. Their size can be estimated to be
exponential in terms of the number of attributes. The gap between belief
and theory causes non-acceptance of theoretical results. However, beliefs are
related to average cases.

The theory known so far considered worst case complexity. This paper aims
at developing a theory of average case complezity. Several statistic models
and asymptotics of corresponding probabilities are investigated for random
databases. We show that exponential complexity of independent key sets and
independent sets of functional dependencies is rather unusual. Depending on
the size of relations almost all minimal keys have a length which mainly
depends on the size. The number of minimal keys of other length is expo-
nentially small compared with the number of minimal keys of the derived
length. Further, if a key is valid in a relation then it is probably the minimal
key. The same results hold for functional dependencies. L

1 Average Length of Keys

In databases keys play an important role. Records or tuples can be identified, record-
ed and searched in a unique way. Generally, a key is an attribute (or a combination
of several attributes) that uniquely identifies a particular record. Keys are used ev-
erywhere in the database to serve as references to tuples identified by values. Keys

* Supported by the Hungarian National Foundation of Scientific Research, Grant No. 2575.
** Supported by the German Natural Science Research Council, contract BB-11-B1-3141-
211(94).



267

are generalized to functional dependencies. Those specify the relationship between
two attribute sets. In a relation the values of the first set determine the values of the
second set. Functional dependencies are used for normalization of database systems.
If a database designer knows the complete set of functional dependencies in a given
application then unpredictable behavior during updates and update anomalies can
be avoided. Therefore, the size of functional dependency and key sets is of great in-
terest. If this size is exponential in the number of attributes then the entire approach
becomes unmanageable.

In practical applications it is often the case that sets of keys and sets of functional
dependencies are rather small. Based on this observation practioners believe that
those sets are small in most applications. If there is an application with a large set
of constraints then this application is considered to be poorly designed. This belief
of engineers is opposed by theoretical results. It can be proven that key sets and sets
of functional dependencies are indeed exponential. Hence the problem which case
should be considered the normal one: the observation of practioners or the theory of
theoreticians. The solution to this gap between beliefs of practioners and results of
theoreticians can be given by developing a theory of average case complexity. There
are cases in which worst case complexity really occurs. In most cases, as shown
below, worst case complexity is unlikely. Thus, for average case considerations, the
observation of practioners is well-founded by the approach to be developed below.

There are several reasons why complexity bounds are of interest. Firstly, most
of the known algorithms, e.g. for normalization, depend on the set of all minimal
keys or nonredundant sets of dependencies. Therefore, their algorithmic complexity
depends on the cardinality of these sets. Secondly, the maintenance complexity of
a database depends on the number of integrity constraints are under consideration.
Therefore, if the cardinality of constraint sets is large then maintenance becomes
infeasible. Furthermore, cardinality gives an indication whether algorithms are of
interest for practical purposes since the complexity of most known algorithms is
measured by the input length. For instance, algorithms for the construction of a
minimal key are bounded by the maximal number of minimal keys. The decision
problem whether there is a minimal key with at most k attributes is NP-complete.
The decision problem whether two sets of functional dependencies are equivalent is
polynomial in the size of the two sets and hence exponential.

Two different approaches can be used for specification of key set behavior:

1. The worst case size is considered.

2. The average case complexity is considered.

Although the second approach is more reliable only very few results are known (Thal-
heim (1991)). In almost all relations with m tuples on domains with | dom(A;) |=
2 (1 < i< n) the average length av,(m,2) of minimal keys is bounded by

Jlog,m| £ ava(m,2) < 2[log,m| .

The worst case complexity has been investigated in a large number of papers
(see, for example, Beeri, Dowd, Fagin, Statman (1984), Bekessy, Demetrovics, Han-
nak, Frankl, Katona (1980), Demetrovics, Katona (1983), Mannila, Raiha (1992),
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Thalheim (1992)). The number of keys and minimal keys for Bernoulli databases is
investigated in Andreev (1982). Some of his results are close to those presented in
sections 3 and 4. However, his techniques use rather complicated graph technique
and are not directly generalizable. The number of keys of a relation is determined by
the maximal number of elements in a Sperner set. More precisely, given a relational
schema R = ({B,..., Bn}, ) and a relation r from SAT(R). Then r has at most

different minimal keys. This estimate is sharp, i.e a relation can be constructed with
exactly this number of minimal keys.

For the solution, we now use the following approach. We consider random data-
bases of a limited size with a constant number of attributes and restricted domains.
Then we derive the likelihood of constraint validity. Next, we show how to estimate
probabilities. Based on these results conditions for constraint sets can be derived.
The validity of constraints for which the conditions are violated is highly unlikely
in the databases under consideration. Finally, the limitations can be omitted and
general conditions can be developed.

We can directly apply the results below to the solution of several database prob-
lems. Some of them are the following:

Results of this paper can be directly applied to heuristic support for database
design. If the size of relations is restricted by a certain function then the size of min-
imal keys can be considered in accordance to the expected length. This approach
has been used in the design system RAD (Albrecht et al. (1994)).

Database mining aims at discovering semantics in real existing databases. If any
possible constraint or even any possible key is checked database mining is infeasible.
However, if we consider the statistic-based approach of this paper we only have to
check the validity of a very small portion of constraints provided the size of the
database is limited by certain bounds.

Often stochastic algorithms are applied to solving dlﬂ’:cult tasks in databases.
Algorithms of the Monte-Carlo or of the Las-Vegas type are more reliable if they can
be applied to databases with predictable constraint sets. Thus, our approach can be
used to determine in which case such algorithms are useful and in which case they
should not be applied.

This short list of apphcatlon arcas for our results is not exhaustive. We feel that the
main application of our approach should be database design. The approach restricts
the set of constraints to be considered to those which are more likely.

Section 2 discusses the behavior of functional dependencies in random databases
after presenting basic notions in Section 2. Sections 4 and 5 are devoted to keys in
random databases. Section 6 discusses some extensions of the approach. Proofs of
results are given in Seleznjev, Thalheim (1994) and Demetrovics J., Katona G.O.H.,
and Miklos (1994) and are omitted due to space limitations.
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2 Basic notions

We use some definitions of the theory of relational databases. Given sets Dy, ..., D,
call domains, an n-ary relation R defined over Dy, ..., D, is a subset of the cartesian
product Dy x...x Dy,. An attributeis a name assigned to a domaihof a relation. Any
value associated with an attribute is called attribute value. The attributes names
must be distinct. The symbol U will be used to denote the set of all n attribute
of R. We assume in sequel that U = {I,...,n}. A set of attributes A, A C U, is
called key of R, if for every n-tuple of R the values of attributes in A uniquely
determine the values of the attributes in U, i.e. for any 4,7 = 1,...,m,i # j tuples
ti(A) # t;(A), where m denotes the number of tuples in a relation R. Write in sequel
M = m(m —1)/2. A key A is called a minimal key if no any proper subset of A is
a key. Consider a relation (or database) R as a matrix with m rows (tuples) and n
columns (attributes). Note that this definition of a database implies that some of
the tuples can be identical. Let A C U, B C U \ A. Following Armstrong (1974), we
say that A determines B (or B functionally depends on A), if there are no tuples in
R with the same data in columns A but different in columns B. Denote functional
dependency B on A by A — B. We say that R is a random database, if tuples
t:;(U),i = 1,...,m, are independent and identically distributed random vectors.
Assume also that domains D;,i = 1,...,m, be a finite integer sets and distribu-
tion of ¢(U) is defined by probabilities P{t(1) = k(1),...,t(n) = k(n)} = p(k(U)),
k(U) = (k(1),...,k(n)), k(i) € D;,i = 1,...,n. In further considerations we sup-
pose that distribution p(k(U)) are given. We call a random database R standard
Bernoulli database, if Dy = {1,0} and ¢(i),7 = 1,...,n are standard Bernoulli ran-
dom variables P{t(i) = 0} = P{t(i) = 0} = 1, and therefore p(k(U)) = 27".
Say R is a uniform random database, if (i), = 1,...,n are independent and
P{() = k@)} = |Di| Hi=1,...,n, ie p(k(4) = H;eUlDi|_la where for any
finite set A, |A| denotes its cardinality.

Based on information about distribution p(k(A)) we study some probability prob-
lems of database theory. At first we estimated the probability of existence of func-
tional dependency in a random database. Some more general problems connected
with functional dependency and keys are investigated as well. We consider Poisson
approximation to the distribution of random number of cases N, when functional
dependency fails. Analogously we investigate an asymptotic distribution for a ran-
dom number of coincidences for a set of attributes X when a(n) — oo as n — oo.
Similar results for arbitrary random databases with some uniformity condition for a
distribution p(k(X)) = [;cx |Di|™* are obtained. Asymptotic distribution of a size
of a minimal key and mean number of keys in standard Bernoulli database are also
investigated. We consider for a set of attributes A in a standard Bernoulli database
probability that A is a minimal key. In more general case of arbitrary uniform ran-
dom database some asymptotic results for this probability can be obtained. Some of
the problems in discrete mathematics (i.e. selection of a base for a boolean algebra
(Sachkov (1982)), a random strategy of search (Ahlswede, Wegener (1979)) are close
to asymptotic results for keys in random databases discussed in Section 4.
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3 Functional dependencies in random databases

In some cases a set B functionally depends on a set of attributes A deterministically,
e.g. if t(i) = fi(t(4)),i € B, then clearly P{A — B} = 1. But in random databases
this property connected also with joint distribution of ¢(A) and ¢(B). It is of interest
that even for statistically independent random vectors t(A4) and ¢(B) the probability
of functional dependency A — B may be close to 1. We can call this case artificial
dependency.

The notion of functional dependency can be generalized in the following way. We
call that a set of attributes A almost determines a set of attributes B, B C U\ A4, if the
number of tuples with functional independency condition, i.e. t(A) = t'(A),¢(B) #
t'(B), is a finite number N = N(n), say. Let m = m(n) - ocoasn — oo,nis a
number of attributes in R.

Consider at first the case of a uniform random database. Denote by

1 1

a=a(n) =y log |Dil,b=b(n) = |B| 2 L,A(n) = M7 (1= ).

icA
For a standard Bernoulli database we have a(n) = |A|. The following theorem allows
to estimate the distribution function of number of functional independencies N.

Theorem 1 Let R be a uniform random database, ¢ == < A(n) < cor2L. where
a(n) Ina(n)

0<ep < 6_2%111 2,c1 > 0. Then there ezists v > 0 such that

a(n

P{N = s} = A—(Eﬁe"‘("’(l £ O™ TRSt))

a(n)
Ina(n)’

We can interpret the assertion of Theorem 1 as following. The number of func-
tional independencies has asymptotically Poisson distribution with parameter A(n).
~ Clearly that the.case of functional dependency simply follows by Theorem 1 since
P{A — B} = P{N = 0}.

as n — 00, uniformly in 0 <s < co

Corollary 1 Let R be a uniform random database and the conditions of Theorem
1 are valid. Then there exists v > 0 such that

P{A — B} = e ")(1 + O(e™TR4T)) as n — oo.

To formulate the next corollary we introduce some additional denotations. Write

0, if @ = —o0,
pla, B) = § exp{—27(=*es}, if |a] < oo,
: 1, if @ = +o0,
h
where e if = oo,
@=11-2"8, if 1< 8 < +oo.

Denote by a(n) = ¥_;¢ 4 logs | Di| — 2logy; m. And if A(n) = X,0 € Ag £ +o00, le.
a(n) = ag, |ag| £ 0, as n = oo, we obtain the following corollary.
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Corollary 2 Let R be a uniform random database. Let b(n) — § > 1 and a(n) —

ag, asn — oo, |ag] < 0o. Then P{A — B} — p(ag, B) as n — oo. Moreover if
|ag| < o0, then for any s =0,1,..,,

AS
P{N =s} =+ —?e“)“’ asn— 00, Ap =2 (@otlle,
s! ‘

Thus the number of functional independencies N converges in distribution to a
Poisson random variable with parameter Ag.

small databases
)\0’1 = .10

large databases
Aoz = 20
very large databases
/\0'3 = 50

[ -] e S T X 1 i
| | | | :
] Aop =10 Ao,z = 20 Xo,3 =50

Fig. 1. Poisson distribution of Independencies in Different Databases with Different Pa-
rameters

Different distributions are shown in Figure 1. The parameter A restricts the
length of left sides in functional dependencies. Therefore, the size of the database
very stongly indicates the length of possible candidates for left sides of functional
dependencies. If the database is small then Ag; is small and only sets A with a
length in this small interval are likely to be left sides. If the database is large then
Xo,3 is large. The interval is determined by some small portion of possible candi-
dates. Therefore, there exists a subset Fo(B) of all possible functional dependencies
F(B) with right side B which is likely. This set is much smaller than F(B) and,
for the average case, a functional dependency from F(B) which is valid in the ran-
dom database belongs with high probability to Fo(B). Thus, for example, heuristic
algorithms which are used to check validity of functional dependencies from F(B)
should begin with constraints from Fo(B). In this case, they succeed much faster.

The high in curves depend upon the size of B. If B is smaller then the curves
are zoomed up. In this case the intervall with the most probable candidates gets
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smaller. If B is large then the intervall gets larger. We shall return to these curves
during consideration of keys.
In the case of general random database R we introduce some additional denota-
tions. For any tuple t(U) write 7
p(k(A), k(B)) = P{t(A) = k(A),1(B) = k(B)},
p(k

(A)/k(B)) = P{(B) = k(B)/t(A) = k(A)},
i.e. p(k(A)/k(B)) is a conditional probability of the event ¢(B) = k(B) when t(A) =
k(A), k(A) € [Tiea Di, k(B) € [;ep Ds, with cartesian product of domains. Write
m(m — 1)

Aln) = ——— > p(k(A)(1 = p(k(B)/k(A))p(k(B), k(4)) =

k(A)k(B)
ME[p(t(A))(1 - p(t(B)/t(A)))]).
where M = m(m — 1)/2. Introduce the following uniformity condition. There exist
K; > 0,i=1,2,3, such that for any k(A) € [T;c 4 Ds, k(B) € [L;ep Dis
K, Ky
© 9a(n) a(n)’
where a(n) = 3 ;¢ 4 logy | Dil.
Theorem 2 Let R be a random database with a given distribution p(k(A), k(B))-

Let the assumptions of Theorem I and (1) hold. Then the assertion of Theorem 1
for the number of functional independencies N = N(n) is valid.

<p(k(4)) £

p(k(B)/k(A)) < K3 < 1, (1)

(o]

Clearly the analogous corollaries to Corollaries 1 and 2 can be formulated for the
case of general random database too. ‘

Corollary 3 Let R be a random database with given distribution p(k(A), k(B)). Let
the assumptions of Corollary 1 and (1) hold. Then the assertion of Corollary I for
P{A— B} is valid.

Corollary 4 Let R be a random database with a given distribution p(k(A), k(B)
and (1) hold. Let A(n) — A¢ asn — 00,0 < Ao < +00. Then P{A — B} —

e~ gs n — oo. Moreover for |Ag| < 00, and for any s =0,1,...,

AS

P{N =s} — s—?e‘“ as n — 0.
The results of Theorem 2 explain that the property of functional dependency for a
random database with increasing number of tuples m is related to two main factors:

— determination of an attribute set A ( probability p(k(A))),
— correlation between attribute values in A and B (conditional probability

p(k(B)/k(A)))-

Therefore, in the case that the values in dom(A;) are not uniformly distributed
the results presented in Theorem 1 are valid.
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4 Keys in random databases

The asymptotic results and corresponding proofs for probability for a set of at-
tributes A to be a key are very close to the problem of functional dependency when
b(n) = ep |Dil = 00 as n — co. But in the case of an uniform random database
there is an exact expression for the corresponding probability P{R |= A}. Write as
beforehand a = a(n) = 3 ;¢ 4 logz |D;]. For a standard Bernoulli database we have
a(n) = |A].

The notion of a key can be generalized in the following way. We call that a set of
attributes A a key with a finite number of exceptions, if the number of tuples with
t(A) =t/(A) is a finite random variable N = N(n}, say. Then P{R |z A} = P{N =
0}. A random number N for a database R means a number of tuples with coincident
values for a set of attributes A. Let m = m(n) — oo as n — oo, n is a number of
attributes in R.

Consider at first the case of a uniform random database with A(n ) M2-a)
and a(n) = a(n) — 2log, m.

Theorem 3 Let R be a uniform random database and m < 2¢(n), Then the following
statements are valid:

() PIRE A} = 175 (1 - j275),
(i) if m < 202~ "’)“(" /3,0 <7vy<2, then
P{RE A} = e (1 4 027 7™)) as n — oo,
(iii) if A(n) = Xo,0 € Ao < 00, .. a(n) = g, asn — 00, |aq| < o0, then

P{REA} = e = exp{—27(*1)} g5 n — o0,

(iv) if A(n) = Ag as n — 00,0 < Ao < 00, then for any s =0,1,...,
Ad_—a
P{N =s} = —e™"° as n = o0,
s!

(v) if cl—(—-5 < Mn) £ cofraray, where 0 < co < 1e7?In2,¢c; > 0. Then there
exists v > 0 such that

P{N =s}=

=M1 4 O(e ™))

a(n)

Ina(n)’

as n — oo uniformly in0 < s < co
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Therefore, worst case complexity results are highly unlikely. In the remaining
cases, if m, n and the size of domains fulfill the conditions (iv) or (v) then we ob-
serve the same behavior as shown in Figure 1.

Consider now a general random database R with a given distribution of a tuple

P{1(4) = K(A)} = p(k(A)), K(4) € ] Dr.
IEA
Denote by
7 = 1) 5™ plk(A))* = MBIp(1(A)

k(a)

A(n) =

and introduce also the following condition (cf. (1)) There exist I{; > 0,7 = 1, 2, such
that for any k(A) € [T;eq Ds,

20(n) ' (2)

Theorem 4 Let R be a random database with a given distribution p(k(A)) and for
an attribute set A condition (2) hold. Let A(n) = Ao as n — oo. Then asserlions
(111)-(v) of Theorem 3 are valid.

The assertion of Theorem 4 can be interpreted in a different way. Denote by
v, an integer random variable which equals size of a minimal subset B in a set of
attributes A, when B is a key, i.e. the size of a minimal key in A, [A| = ¢(n). Then

Plvg € e(n)} = P{R 4, |4]| = c(n)}-
Corollary 5 Let (2) hold and A(n) = Ao as n = 00,0 < Ap < 00. Then
P{va <c(n)} = e asn — oo.

For a standard Bernoulli database we have ¢(n) = a(n) = |A| = a(n) 4+ 2log, m.
Therefore, if a(n) = ag as n — 00 |ag| < 00, then

P{vn < a(n)} = P{vn —2log;m < a(n)} = exp{—2"(2*1} as n — co.

Thus in the case of a standard Bernoulli database shifted size of a minimal key
fin = Un — 2 log, m has asymptaotically double exponential distribution and values of
random variable v, concentrates near 2log, m as displayed in Figure 1.

We observe that keys are more likely in a very small interval. Therefore, algo-
rithms which search for keys in relations are faster if first this interval is checked.

It means that for large values of a(n) = |A| the random variable v, — 2log, m
has an asymptotical double exponential distribution, i.e. F(z) = exp(—exp(—cz)),
|z] < oo where ¢ =1n2. The number v, — 2log, m expresses the shifted minimal
key length.

Consider now a standard Bernoulli database R and attributes U, |U| = n. As-
sume that we choose a set of attributes A and include an attribute in a set A with
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probability p = p(n) = 1 = ¢(n) < 1, after some random experiment. Denote a ran-
dom set of attributes by A. Then by Theorem 3(i) P{R |= A/|Al=k} =p(n, k) =
[1751 (1~ j272(")) and we obtain

n n
‘ n
PIRE A} =3 P(RE A/IAI= KIP(IAL= B = 3 o(n, 4) () e
k=0 k=0
Denote the standard Gaussian distribution function by

z

B(z) = (277)—%/ e~V 2gy.
-0
Theorem 5 Let R be a standard Bernoulli database with a set of attributes U,n =
U]
(i)Let n = 2log,m + a(n) and a(n) — ap as n — 00, |ag| £ co. If ng(n) —
7,0 £ 7 < oo, then P{R | A} — Elexp=2 " **" a5 n - co, where 0 .is a
Poisson random variable with parameter .

1
(i) Let n = flogz m-i-ﬁ(n)('—‘f) " ng(n) = 00,9(n) = go > 0 as n — o,
and additionally , f(n) — By as n — oo, [Bo| < o0, then P{R | A} — @(fo)
as n — co. :

We can interpret these results in the following way. Let Rbe a standard Bernoulli
database and K, say, be a number of keys in L selected independently sets A;,i =
1,..., L. Then every set of attributes A;,i = 1,...,L, is a key with a probability
P{R = A;} and we obtain

L
K=3%"I  E[K]=LP{REA,},

where J; is a indicator function of the event {R = A;} and E[K] is a mean number
of keys in a sample of L sets.

" When L =2" and p = ¢ = 3, a random number of keys K can be represented
also in the following form. For any set of attribute A; denote by J; the indicator
function of the event {R |z A4;},i=1,...,2". Then K = S°X i, P{R | A;} =
p(n, k), |A| = k, and

7

. n - 2o/ 1 5 B
E[R]=)" (k>p(n,k) =285 (L) 77P(n k) =2"P{R | A}.
k=0 k=0
Applying Theorem 5 we have the following asymptotic for 2 mean number of keys
E[K].

Corollary 6 Let R be a standard Bernoulli database with a set of attributes U, |U| =
n,n = 2log,m+ a(n) and p = q = %, n = 4log, m + ﬁ(n)n%,ﬁ(n) — By asn —
00, |fo] < 0o. Then

E[K] ~ 2"®(Fo) as n — oo.
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2logm

Fig.2. Mean number of Keys Depending on Length

Further, the expectation that K is a key can be displayed as shown in Figure 2.
This figure displays the mean number of key depending of the number of attributes
and the size m of relations.

Based on this corollary we can show that Monte-Carlo algorithms can be used
for checking keys in relations. Randomly attributes are added until the set reaches
the size specified by a(n) and m. Then we get keys with a probability 1 — (3)* for
k trials with .the Monte-Carlo algorithm.

5 Minimal keys

The methods and results of the previous section can be applied also to the inves-
tigation of the probability of the event that a set of attributes A,|A| = a, is 2
minimal key in a random database R. Let R be a standard Bernoulli database with
D; = {0,1},i=1,...,n, the case when D; = {0,1,...,d},i=1,...,n, can be con-
sidered in a similar way. Denote by K(R) and Kmin(R) the sets of keys and minimal
keys in R respectively. Write Ay = A\ {k}, Ax = {Ax € K(R)}, k = 1,...,q,
and A = {A € K(R)} = {R [ A}. Then it follows directly by the definition of
a minimal key and Bonferroni inequality (see e.g. Feller (1968), Bender (1974)) for
any 1,1 =0, - M,

P = -2 (T ) sl (] JEe ()

j<t
that P{A € Kmin(R)} can be represented in the following form.

Proposition 1 Let R be a standard Bernoulli database. Then
W (1)
;- ajn
P{AE€ Kmin(R)} = P(A) = _ (-1) 1( y )P(Al i)
=1

Denote by. A = A(n) = M279(?),



277

Theorem 6 Let R be a standard Bernoulli database and A(n) > Inlna(n) + Ao.
Then there exists v > 0 such that for any sufficiently large Ag > 0

a(n)

P{A € Kmin(R)} = e=X™(1 — e=2)* ™)1 4 0(e=TRED)) as n — oo

The assumption about lower bound for A(n) in Theorem 6 has a technical char-
acter. In the more general case A(n) > Ag > 0 we obtain only the following estimate
for P{A € Knin(R)}.

Proposition 2 If A(n) > Ao > 0 then there erists v > 0 such that

(n)

P{A€ Knin(R)} < e~*™(1 - e’)‘("))b (1+ 0(3‘“1::;(“ )) asn— co,

where b(n) = bg%{%}l—),bo > 0.

Theorem 6 and Proposition 2 can be used to estimate the asymptotic maximum
value of P{A € Knin(R)}.

Proposition 3 If A(n) > Ag > 0 then

e—1

PAA € Kmin(R)} = P(a) < Puse(e) = o5y

(14 0(1)) as n — oo,

and also P(a) = Pnax(a) if and only if A(n) = In(a(n) + 1)(1 + o(1)) as n — co.

The result of Proposition 3 shows that the probability for a set of attributes A to
be a minimal key becomes small as @ — oo and this property does not depend on the
relation between number of tuples m and the size of A as in the case of key (cf. The-
orem 3). But the following corollary shows that this dependence is important when
we consider the conditional probability P(a/K) = P{A € Knin(R)/A € K(R)}.

Corollary 7 Let m® = 2¢(")*(Ina(n) + b(n)) and b(n) = B as n — oo, |B] < oo,
and also b(n) > Inlna(n) —Ina(n) + Ag, Ao > 0, then

0, if f = —o0,
Pa/K) = { expl—e=P}, i |6] < oo,
1, if B = +o0,

as 1 —r o0.

This result can be now compared with worst case complexity of key systems.
It means that if m is small or too large then key systems can contain only a very
small number of minimal keys. Therefore, worst case complexity results are highly
unlikely.

As a straightforward corollary to the previous result we have that if A(n) =
Ina(n) + b(n) and b(n) = +00 as n — oo, then

P{A € Knin(R)} ~ P{A € K(R)} ~ ™™ as n — co. (4)
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Therefore, if 8 is unbounded then it is highly unlikely that a set of this size is a key.

This corollary states now the following surprising result:
For any bounded behavior of 3 , if a set of length A(n) is a key then this set is with
high probability also a minimal key.

6 Concluding Remarks

We assumed in previous sections that the initial distribution of tuples in random
database R is approximately given. Often a distribution of tuples is unknown. We can
generalize the above discussed results to statistical problems for statistical analysis
of databases:

(1) to test of homogeneity of data in R,

(i1) to test independency of tuples and attributes in a tuple,

(iii) to fit a distribution of tuples.

For the first problem we can use for example clustering methods (see e.g. Tou,
Gonsales (1974)). Then we can further investigate selected homogeneous clusters. It
is possible to use for clusterization some attributes in database or its functionals. For
example, a bank database keeps information about residuals in accounts for a long
period. Assume that large and active in some sense accounts have different statistical
characteristics than small ones. Then we can use as features for clusterization instead
of full information the following functionals of attributes:

— mean residual for accounts for a period,
— mean residual for accounts with large residuals (greater than a given level),
— mean absolute values of differences (current and next days).

The independency of different tuples and attributes in R can be verified by some
statistical goodness-of-fit tests. To estimate a distribution of a tuple we can use
parametric and nonparametric models. The simplest model is a uniform random
database. For dependent attributes it is possible to use polynomial or multidimen-
sional Gaussian distribution or histograms, kernel density estimates etc.. For Gaus-
sian distribution we have to modify some previous definitions, e.g., say, t(4) = t'(A)
if [t(k) —t'(k)] < 6,6 > 0,k € A. To estimate mean characteristics we can use
analogous empirical ones, e.g. for s(n) = E[p(t(A))] the statistic

X 1
5(n) = G| > Lu(ay=t;(ans
iJES

where S is a sample of homogeneous tuples and /¢ is an indicator function of the
event C. The estimate 3(n) is a standard and optimal in definite sense estimate of
5(n). Then we can apply some previous theoretical results with corresponding inves-
tigation of statistical errors.
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