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Abstract. A new type of dependencies in a relational database model is
investigated. If b is an attribute, A is a set of attributes then it is said that

b(p, g)-depends on A, in notation A (p_,q) b, in a database r if there are no ¢+ 1

relations in r such that they have at most p different values in A, but ¢ + 1
different values in b. (1,1)-dependency is the classical functional dependency.
Let J(A) denote the set {b s 49 b}. Using some characterization of the

set function J(A) we give estimates for the minimum number of records in a
database system that results the set functions J(A).

1. Introduction

A relational databases system of the scheme R(A;, A,,..., A,) can be con-
sidered as a matrix, where the columns correspond to the attributes A;’s (for ex-
ample name, date of birth, place of birth etc.), while the rows are the n-tuples of
the relation r. That is, a row contains the data of a given individual. Let Q denote
the set of attributes (the set of the columns of the matrix). Let A C Q and b € Q.
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We say that b (functionally) depends on A (see [1,2]) if the data in the columns of
A determine the data of b, that is there exist no two rows which agree in A but
different in b. We denote this by A — b.

Functional dependencies have turned out to be very useful. All existing data
base managing systems are based on this concept. Let us consider the following
example. Suppose that Q@ = {A;, As, A3, A4} and 4; — A, and A3 — Ay
hold. If we store the whole matrix in the memory of a computer, then it requires
4Ny N3 registers in the worst case, where N;1(N3) denotes the number of possible
different values of 4;(A3). Indeed, A; and A3 can take values independently, but
they determine A; and Ay, respectively. Thus, the number of different rows is at
most Ny N3. However, using the given functional dependencies, we can save a lot of
memory. Indeed, it is enough to store the matrix consisting of the columns A; and
As (2N1 N3 registers) together with two little matrices each having two columns.
One contains values of A; and A3 in the first and second columns, respectively.
The first column contains all possible values of A;, while the second one contains
the values determined by the dependency 4; — A,. The other small matrix is
built up from As and A4 in the same way. The number of stored values is at most
2Ny N3 + 2(Na + N4), which is usually significantly smaller than 4N, Ns.

In the present paper we investigate a more general (weaker) dependency, than
the functional introduced in [5]. We illustrate it first a very particular case, then
we show the usefulness of the concept. Let A C Q and b € 2, we say that b(1,2)-
depends on A if the values in A determine the values in b in a ”two-valued” way.
That is, there exist no three rows same in A but having three different values in

b. We denote it by A =e b. Similarly, A g b if there exist no ¢ + 1 rows each

having the same values in columns of A, but containing ¢ + 1 different values in
the column b.

Let us suppose that the database consists of the rips of an international trans-
port truck, more precisely, the names of the countries the truck enters. For the
sake of simplicity, let us suppose that the truck goes through exactly four countries
in each trip, (counting the strat and endpoints, too) and does not enter a country
twice during one trip. Suppose furthermore, that there are 30 possible countries
and one country has at most five neighbours. Let Ay, Ay, A3, A4 denote the first,
second, third and fourth country as attributes. It is easy to see that

MY 4, (41,4390 4, and  {Ag, 4g)} &Y 4,

Now, we cannot decrease the size of the stored matrix, as in the case of functional
((1,1)—) dependency, but we can decrease the range of the elements of the matrix.
The range of each element of the original matrix consists of 30 values, names of
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countries or some codes of them (5 bits each, at least). Let us store a little table
(30 x5 x 5 = 750 bits) that contains a numbering of the neighbours of each country,
which assignes to them the numbers 0, 1, 2, 3, 4 in some order. Now we can replace
attribute Az by these numbers (A3}), because the values of A; gives the starting
country and the value of A} determines the second country with the help of the
little table. The same holds for the attribute Az, but we can decrease the number
of possible values even further, if we give a table of numbering the possible third
countries for each A; A; pair. In this case, the attribute A} can take only 4 different
values. The same holds for A4, too. That is, while each element of the original
matrix could be encoded by 5 bits, now for the cost of two little auxiliary tables
we could decrease the lengh of the elements in the second column to 3 bits, and
that of the elements in the third and fourth columns to 2 bits.

It is easy to see, that the same idea can be applied in each case when we store
the paths of a graph, whose maximal degree is much less than the number of its
vertices or when we want to store the sequence of states of a process, where the
number of all possible states is much langer, than the number of possible successing
states of a state or in any case when there hold many (1, ¢)-dependencies, where g
1s small.

The general concept we shall study is the (p,¢)-dependency (1 < p < ¢
integers).

Definition 1.1. Let a relational database system of the scheme R(A1, As,..., A,)
be given. Let A C Q and b € Q. We say that b (p, q)-depends on A if there are no
q+ 1 rows (n-tuples) of r such that they contain at most p different values in each
column (attribute) of A, but ¢ + 1 different values in &.

For a given relation r (or its matrix M) we define a function from the family
of subsets of {2 into itself as follows.

Definition 1.2. Let M be the matrix of the given relation ». Let us suppose, that
1 < p < g. Then the mapping J pp: 27 — 29 is defined by

I tpq(A) = {b ; A0 b} .

We collect two important properties of the mapping Jasp, in the following
proposition, see [5].
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Proposition 1.3. Let r,Q, M,p and q as above. Furthermore, let A,B C Q. Then
(i) AL JMPG‘(A)
(i) A C B => Jmpe(A) C Impe(B).

Definition 1.4. Set functions satisfying (i) and (ii) are called increasing-monotone
functions. We say that such an increasing-monotone function N is (p,q)-
representable if there exists a matrix M such that N = Jpp,.

The aim of this paper is to generalize theorems on minimal representations
valid for functional dependencies to (p, ¢)-dependencies. There arise several very
interesting combinatorial problems in this context.

2. Minimal representations

In this section we investigate the minimum number of rows of a matrix M
that (p, g)-represents a given increasing-monotone set function A, provided such
representations exists. We always assume that p < q.

Definition 2.1. For an increasing-monotone function A let s,,(A) denote the min-
imum number of rows of a matrix that (p, g)-represents M. If A is not (p,q)-
representable, then we put spq(N) = co.

Let us note that in the case of p > 2 we have examples of the latter equality
occuring.

It was proved in [5] that an increasing-monotone function A~ with N (@) = 0
is (p, q)-representable if (i) 1 = p < ¢, (ii) p = 2 and 3 < ¢q or (iii) 2 < p and
p> — p—1 < q. From the proof one can easily deduct the following general upper
bound.

Theorem 2.2. Let N be an increasing-monotone function with N(0) = 0 and let
(p, q) satisfy one of (i) - (iii) above. Then

spg(N) < g(n +1)27.

The above bound is quite coarse, which is caused by the lack of knowledge
about the structure of an increasing-monotone function. However, there is a nice
structure theory of closures (that are special increasing-monotone functions), fur-
thermore, it is shown in [4] that for p = g the resulting set function is indeed a
closure.
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Definition 2.3. An increasing-monotone function A satisfying
N(N(A)) = N(4A) YVACQ
is called a closure.

In the rest of this section we will consider closures only. First, we prove a
direct product theorem analogous to the (1, 1) case considered in [3].

Definition 2.4. Let £ and N be closures on ground sets U and V, respectively,
with UNV = 0. The direct product of £ and N is the closure on ground set U UV
defined by

For ACUUV  (LxN)A)=LANU)UNANY).

This direct product plays an important role in the theory and practice of
relational database systems.

Theorem 2.5. Let L and N be closures on ground sets U and V, respectively. Then
$pg(L X N) < 5pg(L) + 5pg (V) — p.

Proof. The statement is trivial if some of £ and A is not (p, ¢)-representable. Thus,
we may assume that both sp,(L) and spe(N) are finite. Let M) be a minimal
representation matrix for £ and let M, be that for . We form the following
matrix:

QW
M=|\R T,
Y P

where @Q is obtained from M; by dropping the last p rows. W consists of the first
row of M, taken as many times as the number of rows of Q, R consists of the last
p rows of M;, while T consists of the first p rows of M. P is obtained from M, by
dropping its first p rows, finally Y contains the last row of M, in as many copies
as the number of rows of P. We claim that Jy,, = £ x N.

Let us suppose first that y ¢ (£ x N)(A) for some A C U U V. We may
assume without loss of generality that y € U. This implies that M; contains ¢ + 1
rows that have at most p different values in columns of A, but are all distinct in

Q W
R )

y. These ¢ + 1 rows occur in matrix M, as well, namely in the part (
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Thus, they have at most p different values in their extensions to V, which implies
v & Im,,(A).

On the other hand, let y € (£ x N)(A4) and rq, 7y, .. .,T¢ be such rows that
they contain at most p different values in columns of A. Assume again that y € U.
If there are two among ro, 71, ..., such that both of them are in the part (Y P),
or one of them is in (Y P) and the other one is the last row of (RT), then these
two rows agree on y, so they cannot contain ¢ + 1 distinct values in y. However, if
at most one of the r;’s from the "lower” part of M, then there exist ¢ + 1 distinct
rows of M) that have same values in A and y as r;’s, namely the restriction of
T0,T1,...,7¢ b0 U. Thus, y € L{ANU) implies that r;’s have at most ¢ different
values in y, i.e., y € Iy, (4). ”

Next we will calculate certain spy(L) values for the following well-studied
closures.

Definition 2.6. Let £ denote the following closure on Q:

Ck(X)={X if |X|<k

€ otherwise.

First we need a general lemma.

Lemma 2.7. Let us assume that LX is (p, q)-representable. Then

8pq(LF) > n
g+1 /)] =~ \k—-1)"
Proof. Let M be a matrix of s,,(LE) rows (p, g)-representing £X. For any k — 1
element subset B of Q there exist ¢ + 1 rows of M that contain at most p values in

B but ¢ + 1 different values in some other column. If rows {rg,r1,...,7,} belong
to B C Q and rows {to,1,...,%;} belong to C C £, then

{ro,r1,...,7¢} & {to,t1,..., 1, }.
Indeed, if the same ¢q + 1-tuple of rows belonged to B and C, then
Iump(BUC) €82
would hold, a contradiction. Thus, the number of possible different g + 1-tuples of

rows is at least as large as the number of k£ — 1-subsets of . .
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Proposition 2.8.
spe(Ln) =g+ 1.

Proof. The inequality spq(LL) > g + 1 follows from Lemma 2.7. The inequality in
the other direction and the representability 1s proved by the following construction:

0 0 0

1 11 1
2.2 2 2
9 9 49 q

Theorem 2.9. [fn > 3, then
ng(ﬁﬁ) = 2n.

Proof. We construct a matrix M of 2n-rows (2, 2)-representing £2 as follows. Rows
2t — 1 and 2i will contain 0 in column 7 and 2i — 1 and 2¢ in other columns,
respectively. If A C Q has more than one element, then there exist no three rows of
M containing at most two different values in columns of A implying Jasrq2(A) = Q.
On the other hand, for any pair of one element subsets {i} and {j} of Q rows
21 — 1,2¢ and 2j shows that {i} (2—'2>)j in M.

In order to prove that we need at least 2n rows to (2,2)-represent £2, let us
assume that M is a representing matrix of minimum number of rows. As in the
proof of Lemma 2.7, for every column there exist three rows that contain at most
two different values in that column. That is, for every column, there is a pair of
rows that agree on that column. We claim that these pairs are disjoint for different
columns.

Case (1) There exist columns i and j such that the same pair of rows are

2 ’ ;
chosen above, say r and s. Then {1, j} z32) Q implies that the two rows r and s

must contain identical entries, which contradicts the minimality of M. Indeed, if r
and s contained different elements in a column k we could choose a third row t that
contains a third different value in column k (by £2(#) = 0 any column contains

at least three different entries), the triplet (r,s,t) would show {1, s} &4 {k}, a
contradiction.

Case (ii) There exist columns ¢ and j such that the pairs chosen for them have
one common row, i.e., these two columns contain at most two different values in
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certain three rows. Then again {i, j} g implies that all other columns contain

at most two different entries in these columns, so for n > 3 we get back to Case
(i). Thus, we have proved that the pairs of rows belonging to the columns must
be pairwise disjoint if n > 3. Let us note that s22(L2) = 4 and s92(£3) = 5. The
lower bounds follow from Lemma 2.7 either directly or by easy argument. The
upper bounds are given by the following constructions.

s

1
\ 2
0
(0
$22(L2) =5 : 1
2

\3

o

Sgg(f,g) =4

—_ R DN = O N DD e

o W N = O

The next theorem is an interesting application of a theorem of Lovasz.

Theorem 2.10. i
spp(Ln) = minf{v : (U; ) > n}.

Proof. Let us first prove the upper bound by a construction. Assume that (";1) >
n. Construct a matrix M of v rows and n columns as follows. The first row consists
of all 0’s. Then assign a distinct p-element subset of the remaining v — 1 rows to
every column, and put the numbers 1,2, ..., pin them, respectively. The remaining
entries are 0s. We show the case p =2, n =6 and v = 5.

0 0 00 0O
111000
2 00110
0 2 0 2 01
00 2 0 2 2

Let us now assume that b € A C Q. Then there are p+ 1 distinct entries in column
b in row 0 and the p rows assigned to b, while 0 occurs at least twice in these rows
in columns of A. This means that b ¢ Japp(A), i.e. every subset A of Q is closed
under Jarpp, 50 Ippp = L.
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On the other hand, let M (p, p)-represent L7 and let V be its set of rows.
Every n — l-element set is closed in L]}, thus there exist p+ 1 rows for any column
b € € such that they contain p + 1 different entries in b but at most p distinct
ones in each of the remaining columns. Thus these p + 1-element row sets are all
different, let S} denote the one belonging to column b. We may assume without
loss of generality that for every b the numbers 0,1,2,...,p are standing in b and
in the rows of S;. Now let us change all entries of M which is not between 0 and p
(inclusive) to 0. It is easy to see that the obtained matrix still (p, p)-represents L7,
but now exactly p + 1 different entries occur in each column. Let us consider the
hypergraph V = (V,{Sy : b € Q}). V is p + l-uniform and there exists a partition
of the vertex set V into p+ 1 classes for every edge S; that completely cuts S but
does not cut completely any other edge. This latter partition can be constructed
according to the numbers occuring in column &. Such a hypergraph is called p+ 1-
forest. Lovasz [6] proved that the maximum number of edges of a k-forest on m
vertices is (T__;‘) Now V is a p + 1-forest on v points with n edges, so Lovész’s

result gives
()
n < :
p

Let us note that Theorem 2.10 shows that equality does not necessarily occur
in Theorem 2.5. Indeed, one has only to observe that £ = £L?~] x £}.

The following inequality is another example of the ”strange” behaviour of
spp(LE). It shows that the function is not monotonic in k.

Lemma 2.11. For any positive integer r

sl (%) 2 er 1n+22ril 4 By,

Lemma 2.7 gives a lower bound of the order of magnitude n2/3 thus we do
not know yet the right order for s52(£3).

Proof of Lemma 2.11. We give a construction that proves the upper bound. Let
M be a matrix of m+2r—1 (2r—1 < m) rows defined as follows. For each column
we assign r pairs of rows that will contain the numbers 1,2,..., r, respectively,
while the other entries of the columns are all distinct and different from 1,2,...,r.
Let us index the rows in two parts, 1,2, ..., m for the first mrowsand 1,2,...2r—1
for the last 2r — 1 rows. (Thus we have row "first 1” and row "last 1” and so on...)
The pairs we assign will consist of a "first” row and a ”last” row. First, we order
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all possible ”first-last” pairs in the following way: (1,1),(2,2),...,(2r—1,2r — 1),
(2,1),(3,2),...,(2r - 1,2r — 2),(1,2r - 1), (3,1),(4,2), .. . Then the first r pairs
are assigned to the first column, the second r pairs to the second column, etc. It is
easy to see that the pairs assigned to one column are pairwise disjoint. Now, any
l-element subset b of 2 is closed, because for any other column ¢ contains distinct
elements in any pair assigned to b, and we can add a third row which contains a
third different element in ¢. If A = {a, b} is a 2-element subset of 2, then the pairs
assigned to a and b have at most 2r — 1 different second coordinate, but there are
2r pairs altogether, so two of them have to have the same second coordinate. These
determine three rows, which contain at most 2 different values in columns of A. If
there were three columns that contain at most two different values in certain three
rows, then one of the rows is from the ”first” part of the matrix and two of them
from the ”last” part, or vice versa, but in both case we would obtain that a pair is
assigned to two different columns, a contradiction. Thus, every 2-element subset
of Q is closed, but any 3- or more element subset (2,2)-implies the whole 2. M
has m + 2r — 1 rows and n = [@m] columns. The trivial inequality

r I-21v'—1 _|+ r
m
2r—1 2r—1

m+2r—1< +2r-1

completes the proof for n of the form [#-=1m|. If n is not of this form then n + 1

is, one of the columns is deleted. This gives an additional term . -

We pose the following problem:

Open problem. Determine the value sy2(L3)!
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