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Abstract

Let A be atamily of k-element subsets of a finile set. The shadow
of A is the family of such (k — 1)-element subsets which are subssts of
members of A. An old theorem of Kruskal and the author finds the
minimum size of the shakow if k and the size of A is given. This paper
gives a short survey of some related resulls. In the last two sections

applications in reliability theory are shown.

I. Introduction
Let X be afinite setof n elements and A= (A,, Ag v ALl afamily of some (distinct)

k-element subsets of it. If (E) denotes the family of all_k-element subsets of X, then 4 ¢

(:) can be writlen. (f) can be considered as the k-th level of the partially ordered set of

all subsets of X ordered by inclusion. Then A is a set silling on the k-th level of this
partially ordered set.

Suppose that the elements of X are ordered: X = {1, 2, ..., n}. The characteristic vector
ofaset A ¢ X is a zero-one veclor of dimension n, its i-th componentis 1 iff i € A. E.g.
the characleristic vectorof A=(2,3,5} is (0,1,1,0,1,0,0,...). The shadow of 4 is
defined by

(A ={B:|Bl=k-1 and Bc A e 4. (1)

Eg. it A={(1,23),{1,2 4), (1,3, 5]} Then (A = {(1,2}, (1,3}, (1,5}, (2.3).{2.4}. {2.5). {3.5}}.
The name of this concept comes from the partial ordered set. o(A) is the "shadow" of 4 on
the (k —1)-th level.

Consider the (linear) ordering of the characteristic vectors of the elements of (:) It
defines an ordering in (f) that is called the lexicographic ordering of (f) E.g If [X]=5,
k = 3, then the ordering is the following: (0, 0, 1, 1, 1), (0, 1, 0,1, 1), (0,1, 1,0, 1),(0, 1,1, 1, 0),

(1,0,01,1), (1,0,1,0,1),(1,0,1,1,0), (1,1,0,0,1), (1,1,0,1,0), (1,1,1,0,0).
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Theorem 1 (Kruskal [19] and Katona [14]).

min = F(k,m)
nkK,[A = m are fixed

is attained for the family A consisting of the lexicographically first m members of (,f)
Actually this form of the theorem is due to Clements and Lindstrém [3] who proved a more

general theorem. Kruskal and Katona gave a complicated explicit formula for F(k,m). The
following lemma is needed to formulate it.

Lemma 1. For given positive integers m and k there is a unique expansion of the form

kk) (kk—) (‘)
( ..
W'lee ak>ak1>...>atzt2 .

Then F(k,m) can be expressed:

- ax) (ak—l) (ax)
F(k,m) _(k_1 o Jte- A

More recent, shorter proofs are due to Daykin [4], Eckhof and Wegner [6], Hilton [13], and
Greene and Kleitman [11]. The (probably) shortest proof is given by Franki [7].

2. The isoperimetric problem.

In the classical isoperimetric probiem the volume of a body is given and the surface is to
be minimized. It is known that the sphere is the optimum. In our case the space is the set of
zero-one sequences of length n. This is called the Hamming space if the distance is defined
as the number of different digits. Volume is replaced by the size |4]| of the "body" 4. We
only have to define the surface. It is the set of the sequences neighbouring (being of distance
one of) an element of 4:

A ={a:ae A, 3Ibe A . aand b differinone position}.
The obvious analogue of the classical isoperimetric problem in this space is the following.

Discrete isoperimetric problem. Given n and the size |l of aset A4 of zero-one
sequences of length n, minimize |§(.4)|.

The sphere can be expected to be the optimum here, too. But what is a sphere in this
space? Of course, we choose a center and take the points of distance, say r, from this center.
The most natural would be the all-zero sequence, but for some reason, to be made clear
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later, we choose the all-one sequence. If the size |4] is of the form

(:)+(n11)+"'+(k21) ()

for some integer k then the definition is clear, the sphere with center (1, 1,...,1) and
radius r=n -k —1 should consist of all the zero-one sequences containing at least k + 1
ones. However, if |4] is between (2) and

)+ () e (R)

then the definition of the sphere is ambiguous: it consists of all zero-one sequences
containing at least k + 1 ones and some, more exactly,

Iﬂl-[(:)+(ni1)+"'+(k21)] 3)

sequences containing exactly k ones.

Theorem 2 (Harper [12]). Given n and 4], the minimum of the surface [5(A)| is attained
for the sphere.

For a shorter proof see Frankl and Furedi [8]. It remained to determine the optimal choice

of the sequences with k ones. The following notion helps in doing it. The outer surface is
defined by

A(A)=(b:beA Jae A5 a and b differ in one position}.

Itis easy to see that A(A) = §(A). Therefore, to find the minimum of A(A) for a given size
|4| is equivalent to finding the minimum of §(C) for the size |(] = 2" — |4|. That is, the two
problems of minimization are equivalent.

Suppose that A4 is a sphere and let
A ={a: the numberofonesin a is atleast k+ 1) U B

where B consists of some sequences containing exactly k ones. Itis easy to see that A(A)
consists of all the sequences containing exactly k ones which are not in % and of o(B)
where B is considered to be a family of k-element subsets rather than the set of their
characteristic vectors. The first part has a fixed size: (2) minus (3), that is,

() am) v (R) -0

Hence the minimization of A(A) is equivalent to the minimization of (®). By Theorem 1,
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this and the surface 4 will be minimum for the lexicographically first t sequences where t

is given by (8). The definition of the sphere should be modified accordingly. This completes
Theorem 2.

The minimum surface can be expressed by a formula. Let m denote the size of |Al.
Define k by

() am) st (20 sme() + (om) + -+ (1),

min (3 = (7) + (2 %0) - oon (2) =1 e (kam- () - () == (07 1))

it n and |4 are fixed. [15] gives a direct proof resulling in this formula.

3. F(k,m) is a complicated function.
We will study the function F(k,m) only in the interval 0 < m < (2",;'1 ) It is easy to see

that m < F(k,m) holds in this interval. Actually, we will consider the excess function e(k,m) =
F(k,m) —m expressing the shadow how much larger is than the original family. The normal-

ized excess function is
S, (x) = F&:ﬂ e(k,L(Z“;‘)x_J) 0<x<1).

On the other hand, let us define the Takagi function by

2!
i=1
where
2t _2j it (2j2) < x<(2f+ 1)2
o(x) = for 0<j<2-1
=2V 92 it (2f + 1)/2 < x < (2] + 2)/2

This function is continuous, nowhere differentiable and self-similar (Takagi [22]).

Theorem 2 (Frankl, Matsumoto, and Tokushige [9]). The sequence s, (x) converges
uniformiy to t(x) when k — oo,
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This theorem shows that F(k,m) as a function of m jumps rather strangely. It is not easy
to compute and use it. Lovasz [21] has a very nice suggestion to overcome this difficulty.
Generalize the biondmial coefficient for non-integer values:

(i) =x(x—1)..‘kl(x—k+1)

is a polynomial of x defined for any real x > k. Then the following theorem can be proved.

Theorem 4 (Lovasz [21]). Let 4 be a family of k-element sets where |4 =(ﬁ). Then

(k ’ ,) < o(A).

This theorem gives only a lower estimate on |[o(A)| in contrast to Theorem 1 which
determines the exact minimum. However, it is much easier to calculate and use this lower
estimate than F(k,m). On the other hand, this lower estimate is sharp for the integer xs, that
is, it gives the right order of magnitude.

4. Oriented, coutinuous version.

The notions and statements of this section will be formulated only for k = 3, since it is
easier to visualize this case, bur everything holds for larger ks, too. The word oriented in the

title of this section means that we consider ordered 3-tuples, or 3-dimensional vectors rather
than 3-element subsets of the ground set X. Thus A is a collection of vectors (x, X, X5)

where (x,, X,, X3) € X. To be closer to our traditional case we suppose that all oriented
variants of the set {x,, x,, x5} are chosen, that is, A is closed under the permutation of the
coordinates. However, an essential difference is that the xs are not necessarily different
here. Another relaxation is that X can be any measurable set. The traditional case can be
considered as a discrete space with equal probabilities % To emphasize the other extreme

case, suppose that X is the [0,1] interval with the usual Lebesque measure p. Then the

number of (subsets) sequences in A can be replaced by the measure of them. Therefore in
this section A is a measurable set of the unit cube with the property that (x;, x,, X5) € A

implies that any vector obtained by permutation of the coordinates of (x,, x,, x3) isin A In
our traditional case we deleted elements from the subsets to obtain the members of the
shadow. It can be easily repeated here. Delete one coordinate. Since A is closed under
permutation, it does not matter which coordinate. Thus the analogue of the shadow in this
case is the good old projection:
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A = {(x), %g) : (X, %y, %5) € ).

Theorem 5. Theyminimum area (measure) of the projection () for all such measurable
subsets A of the unit (3-dimensional) cube which are closed for the permutations of the
coordinates, have a measure p and have a measurable projection is u2/3,

It is easy to see that this estimate is sharp. the "small" cube of size u2/3 serves as a
construction.

This theorem can be deduced from Theorem 1 as it is shown in [16]. (This analogy was
independently discovered by Daykin [5].) On the other hand, it has been proved earlier by
Loomis and Whitney [20]. Unfortunately, the elegant analytic proof of Loomis and Whitney
(using Holder;s inequality) does not help in proving Theorem 1. The exclusion of the repeti-
tion of the coordinates changes the situation.

5. Applications in reliability theorey.

Suppoe that a complicated device is given, built from many components. Each
component can go wrong with probability p (0 < p < 1). However, the breakdown of one
component does not necessarily cause the malfunction of the whole device. The roles of the
components in the operation of the device can be very different. Let X be the set of the n
components. Call a subset A c X an operative set if the device operates correctly
whenever the elements of X — A work but the elements of A do not work. The family of
operalive sets is the operative family. It will be denoted by A Atypical example is a network
of electrical transmission lines forming a graph. The system stops its operation if the graph
becomes disconnected. In this example the edges of the graph form the set X. The
operative family consists of those sels of edges whose deletion do not disconnect the graph
(that is, the sets not containing a cut of the graph).

In the above example and in most practical cases 4 has the following property:
AeAand Bc A imply Be A

Such families are called ideals. However there are practical situations where 4 is not an
ideal. Let us see now only a non-serious example. Let the device be a country. If one of the
ministers goes crazy the country slops ils proper operation. However, if his phone goes
wrong simultaneously, then nobody notices anything. That is, the two-element set {minister,
its phone} is in 4 while the one-element set consisting only of the minister does not belong
to 4

The probability of the event that the whole device is operating correctly is
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2, plAltr — pyn-IAlL (4)
A€EA

This is called the reliability polynomial. If p and A are fully known then the reliability
polynomial can be easily computed. In practical situations, however, A is not known, only
some of its properties or parameters. In such a situation we can only give eslimates on the
reliability polynomial. The best eslimates are the minimums and the maximums. Therefore
we try to study the minimum and maximum of (4) where n and p are fixed and A4 can be
chosen under some given conditions.

Lel a,(A) denote the numbers of i-element members of A. Then (4) can be rewritten in
the form

2

a(Ap'(1 - p)". (5)
i=0

pi(1 - p)"“ is a decreasing (increasing) function of i when p <% (p > ;— ). (5) behaves very
differently in these two cases. Consider only the first one: p < % . Find the minimum of (5)

(the maximum is easy in this case) forideals 4 such thal
n
[A=% a=m
i=0

is given.

If a member of A is replaced by a member of larger size, (5) will be smaller. However,
this "pushing up” cannot be done without limitations, the condition that 4 is an ideal is an
obstacle.

Flia) s a_, (6)
is a consequence of Theorem 1 and the fact that 4 is an ideal. Heuristically, the "pushing
up” procedure can be continued until F(i.a;) is nearly equaltc a,_;. If m is a power of 2,

say 2%, then equality can be altained at each level. The family 4 of all subsets of a b-
element subset of X show it. In general, a cylinder of size m = 201 + 2924, — 2% (by >

b2>...>br20) is defined by a sequence of sels X o EE&1 382 >...>B., elements ay
€ X——BI, a, € B1-—B2 ..... a,_y € Br_z—Br_1
C={A: AcBlufAufa}: AcBlu...u{Au(a,,... a_,}: AcBj).

One can prove, using some lemmas giving inequalities on F F(k,m), that the "pushing up"
procedure ends up in a cylinder under constraint (6).
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Theorem 6 (Ahiswede and Katona [1]).

n
z a( ity = pyni,

A is an ideal, |/’!| j<0

is altained for the cylinder.

For more practical and deeper applications, see the monograph of Ball, Colbourn, and
Provan [2].

6. Reliabability with mediocre states.

In this section we suppose that each element of the device may have three diflerent states.
It may be operative, mediocre or failing with probability pgy, p,, or p,. respectively. (p, +
Py + P, =1) A state of the device is a 0, 1, 2-veclor of dimension n where the i-th compo-

nentis 0,1, or 2 if the i-th element of the device is good, mediocre, or failing, respectively. A

state (sy, s, ..., s,) is call operative if the device operates when its i-th element is in stale
s; (1 <i<n). The set of operative states of the device will be denote by 4 ¢ {0, 1, 2})(. (84
Spiev+28)S(ry, Ty ..., 1) is the abbreviation for s;<r, for 1<r<n. Asin the trditional

case, A isanidealil A e and B< A imply B e A. In most parctical cases this property
is satisfied.

If A e A4 then 1(A) denotes the numberof 1's in A while 2(A) denotes the number of

2s in A. The probability of the event that the device operates properly is expressed by the
formula

Zp n-1(A A}p 1(A)p (7)
AeA

In this case this is the (generalized) reliability polynomial. Introduce the notation a(i,j) for the
number of elements A € 4 salisfying i=1(a) and j=2(a). This gives rise to another form of

the reliability polynomial:
> aipg" I, lp, (8)

i and j

The aim of the invesligations, again, is to find the minimum and the maximum of the
reliability polynomial for certain classes of A's. Obviously, in most practical cases 4 should
be an ideal. So the condilions containing "ideal" are the most important. However, the only
result [17] treats only the least important case when B <A s forbiddenin 4. In the rest of
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the paper we will try to find the minimum of (7) (and (8)) under the conditions that (1) A is
an ideal and (2) |4| =m is fixed. "Try" means that we are unable to reach our goal, we only
show the difficultiess, The key idea in proving Theorem 6 was the lower estimale on a;_, in
terms of a, using Theorem 1. Here we need similar lower estimates on a(i-1,j) and a(i,j-1)

when a(i,j) is given.

A sequence containing 0, 1, and 2 can be described by the subsets of positions
containing 1 and 2, respectively. This description is more similar to the situation given in
Theorem 1. Therefore, consider a family F(ii of pairs (B, C) where B,C c X, Bn C =0,

|B] =i, |C| =j. Intrcduce the notions of the left shadow:

01(/1“.) ={B.C): B=B-(x}, xeB, (B,C) e ﬂij},
and the right shadow:

oz(ﬂij) ={(B,C): C=C-(x}, xeC, (B,C) e ﬁii}.

Suppose that A4 is anideal of 0, 1, 2-sequences of length n. Consider the sequences
A containing i 1's and j 2's. Let ﬂij denote the family of pairs defined by these
sequences. Il is easy lo see that a(i-1, j) 2 [01(ﬂi;)| and af(i, j-1) 2 JUQ(ﬂii);_ This pair of
inequalities shows that our problem is different from the problem of minimizing the size of the
shadow. The left shadow can be very small, however, this would imply that the right shadow

is large. Therefore, our aim could be to determine the pairs in the right hand sides of the
above inequalities which cannot be decreased.

Problem. Find the minimal pairs (as two-dimensional veclors) (|o-1(ﬁ¥ij)l,|62(/’!ij)|) where n,
i,j and [ﬂ{ij[ are fixed.

We do not even have a nice conjecture. However, there is a theorem in a special case.

Namely, when the positions of the 1's and 2's are separaled. Suppose that X can be
partitioned (X=X, U X,, X; n X, =@) insuchaway that (B, C) e ﬂi] implies that B < X,
C < X,. Such families are called two part (i,j)-families.

-, Theorem 7. Suppose that |X,|, [XZJ, i, j, and the size of a two part (ij)-family 4 are given.
If (101(ﬁ()|,|02(ﬂ)|) is a minimal pair under these conditions, then it can be attained by a
family A4 satisfying the following conditions: If (B, C) € 4, B' precedes B and C'
precedes C, respeclively, in the lexicographic ordering, then (B, C') € A.

Unfortunately, this is not a full solution even in this special case since the condition given
in the theorem allows a lot of freedom. However, it does not seem to be very hard to finish

A07-



SHEDDING SOME LIGHT ON SHADOWS

this part of the problem. Let us mention that Theorem 7 was independently discovered by
Kleitman [18] trying to prove an old conjecture of Erdos. Finally, lel us mention that the
interested reader should see the survey paper of Frankl and Tokushige [10] about the same
subject.
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