Greedy Construction of Nearly Regular Graphs
G. O. H. KaToNA AND A. SERESs

Dedicated to Bernt Lindstr6m on his 60th birthday

1. INTRODUCTION

Let us try to build nearly regular graphs, starting with the empty graph on n vertices
and adding one single edge at each step. If we are allowed to make a long-term plan
this is very easy. First suppose that n is even. It is known [2] (a more elegant proof is
due to von Walecki, see [1]) that the complete graph on n vertices can be decomposed
into n — 1 one-factors (=set of edges containing each vertex exactly once). Then take
the edges in the first one-factor one by one, and after that the edges in the second
one-factor, and so on. The differences of the degrees in the so obtained graphs are
always at most one. The differences are zero for the graphs completing the first,
second, . .. one-factor, respectively.

Suppose now that our algorithm is ‘on line’ (the term is suggested by H. A.
Kierstead) based on the momentary degrees: at each step some vertices with minimum
degrees must be joined. We formulate this more precisely:

ALGORITHM. Put Gy = (V, ), where |V|=n. Denote the graph obtained after the
mth step by G,, = (V, E,,). The degrees in this graph are denoted by d,,. Consider all
the pairs (d,,(x), d,,(y)), where x, ye V, x #y, (x,y) ¢ E,,, and d(x) <d(y). Choose
any pair (x,, y,) with the lexicographically smallest pair (d,.(x), d,.(y)). Then
Em+1 = Em U {(xmr ym)}'

The choice of the new edge is ambiguous. We have seen that there is a sequence of
choices (best case) such that the difference of degrees does not exceed 1. Our question
is how large the difference can be at the other (worst) choices:

f(n,m)=  max_ max  (dn(x) = dn(y))- 1)
possible choices |V|=n, x,yeV

A graph G is called feasible if there is a sequence of graphs Gy, G, ..., G, =G
following the rules of the algorithm. Thus f(n, m) is the largest difference of degrees in
feasible graphs with n vertices and m edges.

The following easy example shows that f(n, m) may exceed 1: namely, f(6, 6) > 1.
Start with the one-factor (1,2), (3,4), (5,6). Now all degrees are 1. Next join the
vertices (1, 3), (2, 4). At this moment there are two vertices of degree 1, but they are
joined. A vertex of degree 1 and a vertex of degree 2 must be jointed, say (3, 5). Here
d¢(3) =3 and d4(6) = 1. The difference is really 2.

This construction can be generalized for any n >4. After having a cycle of length
n —2 and a disjoint edge, the next edge creates difference 2: that is, n edges may cause
the difference to be 2. On the other hand, one can see that this is the minimum.
Consider a sequence of m edges yielding difference 2. Suppose that there is a vertex of
degree 0 in the graph G,,_; formed by the first m — 1 edges. All other vertices must be
of degree at least 2, otherwise the new (mth) edge cannot make difference 2. On the
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other hand, if G,,_, contains no isolated vertex then at most two vertices may have
degree 1. The sum of the degrees in G, is at least 2n; thus m =n.

To construct larger differences is not so trivial. In Section 2 we show that any
difference may occur; that is, f(n, m) can be arbitrarily large. In this construction the
graph is almost complete. In Section 3 we give a better construction for the difference
3. We show that f(4k + 2, 4k* + 11k + 3) =3 (k = 4); that is, the difference can be 3 if
the number of edges is about half of the total number of possible edges. In Section 4
the converse is proved; f(4k + 2, 4k* + 11k + 2) <2. (The other cases mod 4 are also
settled.) Finally, we list some open problems.

2. CoONSTRUCTING LARGE DIFFERENCES

THEOREM 1. For any positive integer d there are positive integers n and m such that
f(n, m)=d.

Proor. The following rooted trees will play a crucial role in the proof. They will be
constructed recursively. Let T be a trivial tree consisting of a single vertex. Suppose
that T¢ has been constructed. Then T¢,, will contain its root 7, the vertices v,, . .., v,
and d vertex-disjoint copies of each T{, ..., T¢. r and v, are joined for all 1<i<d
and there is an edge between v; and the root of the ith copy of Tj-’ for all 1=j<k,
1=<i=d. Using these trees T¢, one more rooted tree, T¢ will be constructed. Its root
and each of the vertices u,, . . ., u 4, are joined. Moreover, there is an edge joining u;
and the root of the ith copy of T¢ for 1<j<d, 1<i<d+ 1. Observe the similarity
between T4,, and T%. T4, has d identical branches starting from the root, while 79
has d + 1 such identical branches (Figure 1).

LemMA 1. The number s°(j) of vertices of degree j in T is

d+1)*  ifj=1, ()
dd+ D)7 if1<j=<d, (3)

d+1 3 g o
T((d+l) -)+d+2 ifj=d+1. (4)

FIGURE 1
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The total number of vertices in T is

d+1)(d+ 1) -
@ +1)(d+1) g &

Sd -

Proor. Denote by s9(j, k) the number of vertices of degree j in T¢. s%(1,2)=d
and s(1, k + 1) =51, k)(d + 1) (2=<k) are obvious. This implies s%(1, k) =d(d +
1)¥7% Using the obvious similarity between T, and T, one obtains

s4(1) = d“ s, d +1) = (d + 1)°,

proving (2).

Let 1 <j=<d. The tree T{ contains no vertex of degree j if i <j, with the possible
exception of the root when j=d. The first vertices of degree j appear in the
construction of 7¢ (v,,...,v,). Thus, s%(j,j)=d hold. One can easily see that
sUj,j+1)=d* and s?(j, k +1)=(d + 1)s’(j, k) if j+1=<k. Therefore s%(j, k)=
d*(d + 1)~ holds for j + 1 =< k. Hence

(])— s"(],d+1) d(d + 147!

follows, proving (3).

Finally, it is obvious that sid+1, 1)=s5%d+1,2)=0 and sid +1, 3)=d. On the
other hand, s?(d +1, k+1)=(d + 1)s*(d + 1, k) + d if 3<k <d. This implies s“(d +
Lk)y=d(l+d+1)+---+(d+1)*F)=(d+1)*?—1for 3<k and

d+1 d+1
sid+1)= s"(d+1,d+1)+d+2=-d—((d+1)”“—1)+d+2,
completing the proof of (4).
(5) is a consequence of (2), (3) and (4). a

Lemma 2. If d is even then (5) is also even.

Proor. Since the term derived from 2d is obviously even, it suffices to observe that

e

Is even. O

We introduce some further notations. Let RY(i, j), 1<i<j=<d denote the set of
roots of all copies of T¢ in T¢. More formally, R“(i, i) is the one-element set of the
root of T¢. If R%(i, k) is defined, then R“(i, k + 1) consists of the roots of the d copies
of T¢ and of the union of all R“(i, j)’s in all copies of T{ in the definition of T, for all
i <j<k. Finally, R%(i), (1 <i<d) denotes the union of all R¥(i, j)’s fori<j=<d in all
coples of T"’s (i<j<d)in T“: that is, R“(i) is the set of the roots of all copies of T¢ in

. Let R° (d + 1) denote the one-element set consisting of the root of 7% Consider
the edge ‘coming’ from the root to a vertex belonging to R“(i). The set of these edges
is denoted by E“(i). The set of the other end points (the ones closer to the root) of the
edges belonging to E“(i) is denoted by A“(i). (See Figure 2, where i circles mark the
elements of R“(i) and i squares mark the elements of Ji_, A“(j).)

Now some simple but important properties of T will be collected.
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FIGURE 2

Lemma 3. Consider the unique coloring of T with two colors, pink and lavender,
say, in which the root is pink. Then:
(i) a vertex is pink iff it is in the union of R4(i)’s for 1<i<d + 1;
(ii) the degrees of the pink vertices are either 1 or d + 1;
(iii) each lavender vertex is incident to an edge from E“(1);
(iv) the elements of A“(i) (1<i<d) are all lavender and A(i + 1) c A(i) holds for
l=i<d,;
(v) if ve S RU(i), then all neighbors of v are in A%(j — 1) 2<j<d +1).

Proor. Prove the analogous statements by induction for 77. The coloring is
hereditary in the recursion. O

Take another, vertex-disjoint copy T“* of T¢. However, color T* with the two
colors oppositely to T¢: the color of the root of T* is lavender. Add edges to this
union V< of the two trees to obtain a d + 1-regular bipartite graph. The number of pink
(lavender) vertices of degree j (1<j <d) is s“(j). Add one-factors formed from edges
joining vertices of difference colors and of degree j until their degrees become d + 1.
This can be done since s%(j)=d+1—j, by Lemma 1. In this way we obtain a
d + 1-regular bipartite graph G containing two vertex-disjoint copies of 79 The size
of each part is given by (5).

LemMA 4. Suppose that the sizes of the parts X and Y of the regular bipartite graph
G = (X, Y; E) are equal and even. Then the complement of G is feasible.

Proor. The complement of G = (X, Y; E) is a union of two complete graphs on X
and Y, respectively, and of a regular bipartite graph H = (X, Y; F). Each of them can
be decomposed into one-factors. Take the edges (one by one) of the first one-factor in
the complete graph on X, and then the edges of the first one-factor in the complete
graph on Y. Continue with the second, third, . . . one-factors. When all edges within X
and Y, respectively, are there then choose the edges of the one-factors of H. O
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By Lemmas 2 and 4, the complement C¢ of G“ is feasible if d is even. Suppose that
this is the case. C“ is also regular of degree D =25? — 1 — (d + 1). The edges of T and
T“* are missing from.C? together with some other edges. Our algorithm allows us to
add any missing edge at this moment. Add (one by one) all the edges belonging to
E“(1) and E“*(1). The degrees of the vertices belonging to R“(1), R*(1), A4(1) and
A“*(1) are raised to D + 1. By Lemma 3(iii), the vertices of degree D are either pink
in 79 or lavender in T?*. Their degrees in T and T“*, respectively, are d + 1, by (ii).
Therefore all missing edges adjacent to them are edges of T¢ or T“*, respectively. In
the rest of the proof there will always exist vertices of degree D; thus the algorithm
allows us to join them to some other vertices, and so in the rest of the proof only edges
of T% and T** can be added. Moreover, the vertices of degree D (at this moment) are
not adjacent either in 7¢ or in T“* since they have the same color (pink in 79,
lavender in T“*). We must join vertices of degrees D and D + 1. Choose the edges in
E“(2) and E“*(2). They are joining vertices of degree D (in R(2) and R?*(2)) and of
degree D + 1 (in A“(2) and A“*(2)). Adding the new edges, these degrees increase by
one. At this moment the set of vertices of degree D is equal to | RY()U

iy RY*(i), by Lemma 3(i). (v) implies that their neighbors are in A“(2) and A?*(2).
By (iv), these vertices have degree D + 2. Now vertices of degree D and D + 2 should
be joined, etc. Continuing this procedure we arrive at the stage in which the edges
belonging to E“(d) and E“*(d) are added. Then the degrees of the two vertices in
R?(d +1) and R"*(d + 1) are still D. On the other hand, (iv) implies that the degrees
of the vertices in A“(d) and A**(d) are D + d, proving the existence of difference d.

a

3. CONSTRUCTING DIFFERENCE 3

The construction in Section 2 has a disadvantage: namely, it contains many edges.
When the difference in degrees becomes 3, then the graph is almost complete. In this
section, only the difference 3 will be considered. Given n, the number of vertices, we
try to construct difference 3 with a low number of edges. It will be somewhat more
than half of the total number of possible edges, and it will turn out in the next section
that the constructions are best possible.

Before stating the theorem we prove a lemma which is a slight extension of [2].

Lemma 5. If n is even then the complete graph on n vertices can be decomposed into
n — 1 one-factors such that the first two one-factors form one cycle.

Proor. Choose the vertices v, and vy, ..., v,_; to be the center and the vertices
(in this order) of a regular n — 1-gon, respectively. Let the first one-factor consist of the
‘radius’ (v,, v;) and all the edges and diagonals orthogonal to this ‘radius’:
(v2, Vy-1), (U3, Uy—2), « - - s (Vns2s Vguizy+1)- The other one-factors are the n — 2 different
rotations of the first one. It is easy to see that these one-factors are disjoint and their
union contains all edges of the complete graph. The second one-factor is

{(Vny Uuer), (U1, Vy—2), (U2, Uy3), - - o, (Vay—1s Un2)}- The first two one-factors form
the following cycle if n/2 is even:

Uns Uty Un—2, U3, Un—45 - - -, Un2)—=3 Yn2)+2> Y(i2)—15 Unr2s V(nr2y+1s

Unizy—2> Uni2y+3s « - » Vg, Up—3, U, Uy, U,.
If n/2 is odd, then this cycle is slightly modified:
Uns V1 Un—2, U3, Up—4s - - + 5 Un2)—2> Ym2)+15 Unrzs Umr2y—1> V(nr2y+2»

Y(n2)=3> Vn/2y+4s » - - » Vs, Up_3, U, U,,_, U,. [J
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If n is odd then there is no one-factor. Denote by M, a one-factor on the set V — v,
(v;eV).

LemMmA 6. If n is odd then the complete graph on V ={v,,...,v,} can be
decomposed into n matchings M,, , ..., M, .

Proor. Use the idea of the previous proof. The vertices of a regular n-gon are

considered, without a  center. Let M,  consist of the edges
(vy, v,), (3, Uui), -« o, (Uas1)2> Vin+3)2)- The other one-factors are the rotations of
this one. =

LemMmMA 7. If n is odd then the complete graph on V ={v,,...,v,} can be

decomposed into (n — 1)/2 two-factors, each containing exactly one odd cycle. One of
the two-factors is a cycle of length n.

Proor. Use the notations of the proof of Lemma 6. M,, M, . and the edge
(v;, Vp_ivy) (1<i<(n—1)/2) form a two-factor. Consider a cycle of it, not containing
the edge (v;, v,_;+1). The edges must alternate between M, and M,  ; therefore its
length is even. Only the cycle containing (v;, v,_;4,) can (and must) be of odd length.
It is easy to see that M, , M, and the edge (v,, v,) form a cycle of length n. a

THEOREM 2.
f(4k, 4k*+ 9%k —3)=3 for 11 =k,
f(4k +1,4k*>+10k )=3 for 9=k,
f(4k +2, 4k* + 11k +3) =3 for 4<k,
f(4k + 3, 4k* + 14k + 6) =3 for 10=k.

Proor. (1) n =4k +2. We will give a sequence of choices of edges in accordance
with the Algorithm giving difference 3 after the (4k*>+ 11k + 3)rd edge. Partition the

vertex set: V=AUB, where A={a,,...,a,}and B={b,, ..., bais}.
(1.1) The complete graphs on A and B can be partitioned into one-factors. Let these
factors be F, ..., Fy_, and H,, ..., Hy.,,, respectively. Suppose that the H’s are

ordered in such a way that the last two ones form one cycle. This can be done by
Lemma 5. Let the Algorithm first choose the edges in F; one by one then the edges in
H,. After this all the degrees are 1. Continue with the edges of F and then H,, and so
on. We finish this part of the construction with the edges in F,_, and H,,_,. We
obtained G,,, where m = (2k —1)(2k +1). The graph is regular, d,,(x) =2k — 1. It
forms a complete graph in A, while the restriction of G,, in B is a complete graph
minus a cycle of length 2k+2. Suppose that this missing cycle is
(b1, by, - . ., boksas by).

(1.2) Continue the Algorithm by choosing the edges of the following four one-
factors one by one:

(by, by), (ai, b3), (as, ba), (a3, byis2), (aa, bs), (as, bg), . . ., (@2x, bog+1);
(ay, by), (aa, b2), (b3, by), (as, bs), (as, be), . - ., (@, box+2);

(all bZ)) (02! b"&); (afh bl)’ (a4y b4)y (bSy bﬁ)) (aS: bﬁ)' (a(n b‘))r « ey
(@2k-1, bak+2), (aax, b7);

(a1, by), (az, by), (a3, by), (a4, b3), (bs, bg), (as, by), (g, bro), - . - .,

(@2x—2, baks2), (A2i—1, bs), (az, be).
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These one-factors are disjoint if k = 4. The graph G243k +1) thus obtained is regular,
again, with the uniform degree 2k + 3. Two more properties of this graph will be used
in the later steps. First, it constains a complete bipartite graph between {a,, a,} and
{b,, bs, bs, bs}. The second property is that the new edges within B are chosen from
the ‘missing cycle’ in such a way that there is still a ‘missing one-factor’. (That is, the
complement of* G4 +3y2x+1) contains a complete one-factor in B.)

(1.3) Add the edges of the ‘missing one-factor’ in B one by one:
(b2, b3), (ba, bs), . . ., (bax, baks1), (baxs2, by). The new graph G2k +3)2k+1)+k+1 1S NOt
regular. doxisyzk+y+x+1(x) =2k +3 if x € A and 2k + 4 if x € B. It is important that
the graph is complete in A and between {a,, a,} and {b,, b,, b3, b,}.

(1.4) Since all the vertices of degree 2k + 3 are adjacent to each other, we have to
join a vertex of degree 2k +3 and a vertex of degree 2k +4. Add the following
one-factor between {as, . .., ax} and {bs, ..., by s}:

(az, bay11), (as, by 12), (051 bs), (ae, bs), . - ., (@2, boy).

It is easy to see that this set of edges is disjoint to the one-factors given in (1.2) if k = 4.
Now choose these edges one by one. They are new edges and the degrees of the end
points are 2k + 3 and 2k + 4, respectively. The graph becomes G4 +3)2k+1)+3x—1- The
degrees in {a,, a,} are 2k + 3, they are 2k +4 in {as, ..., ay} and {b,, ..., b,} and,
finally, they are 2k + 5 in {bs, . . ., bar s}

(1.5) Observe that the only elements of degree 2k +3 (a, and a,) are adjacent to
each other and to all the vertices with degree 2k +4. We have to join a vertex of
degree 2k +3 and a vertex of degree 2k +5. Join a, and bs. The new graph has
2k +3)(2k + 1) + 3k =4k*+ 11k +3 edges. Here dyz,11x43(a;)=2k+3 and
dyciik+3(bs) = 2k + 6; that is, the difference is really 3.

(2) n=4k. Partition the vertex set: V=AUB, where A={a,,...,ay_,} and
B= {blr BEEY b2k+l}'

(2.1) Use Lemma 6 for both A and B, and denote the one-factor of A — {a;} by M,
and the one-factor of B — {b;} by N,. Suppose that the order of the vertices in B is
chosen in such a way that N, ., ={b,, b,), (b3, by), ..., (bax_1, bai)}. Start the
Algorithm with the edges of M,. Then take (a,, b,) and the edges of N,. Continue in
the same way: M,, (a,, b,), N,, Ms, (as, b3), N3, ...., Moy, (@si—1, box_1), Noy_-
The graph Gy 2«-1) thus obtained is regular of degree 2k — 1.

(2.2). Add the following three one-factors to Goak—1y:

(ay, by), (a3, b3), (as, ba), (a4, by), (as, be), (as, b7), (as, by), (as, bs), (as, bs),
(ar0, b13), (@11, b1o), (b1, b12), (@12, bia), (@13, bys), - - -, (@ak—1, baxsr);

(a1, b3), (a2, by), (as, by), (as, by), (as, by), (as, bg), (a7, bo), (as, bs), (ay, be),

(@10, b11), (@11, b12), (@12, b1o), (Bi3, b1a), (@13, bie), (@14, b17), - - -,

(@262, bak+1)s (@21, bis);

(ay, bs), (a2, by), (a3, by), (as, b3), (as, by), (as, by), (a7, bs), (as, be), (as, b7),

(@10, b12), (@11, b13), (arz, b1y), (@13, bra), (@14, bra), (bys, bie), (a5, byo),

(@16, b20), - -+, (@2k—3, bous1), (A2n—2, b17), (@2u—1, Dig).

We obtain the graph Gz, 4, which is regular of degree 2k +2. Observe that there is
still a missing one-factor between {as, . .., ao} and {bs, .. ., by}.

(2.3) The edges of N, and then (ax_;, by) come. In the present graph, Gazisis:
the degrees are as follows: dyzqsi41(a;) =2k +2 for 1<i<2k -2, dyorsie1(@aiy) =
2k +3=dsy2ise41(b;) forall 1=i<2k + 1.
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(2.4) The vertices of degree 2k + 2 are adjacent; the Algorithm forces us to join
vertices of degree 2k +2 and 2k +3. Add the following one-factor between A —
{ay, ax—1} and B = {b,, b, b3, b,}:

(azy bm), (03, bn), (‘14- b12)y (05; b9), (a(n bs), (07» bc); (-’13, b?); (aoy bg),

(@10, b1s), (ay, big), - - -, (@2k—a, bagsy), (@ak—s, b13), (azk—2, b14).

Observe that this one-factor completes the complete bipartite graph between
{as, ..., aq} and {bs, . . ., by}. The only vertex of degree 2k + 2, a,, is adjacent to all
the other a’s and to by, b,, by and b,. Finish this step by adding 3 more edges:
(ay, byy), (b1, by) and (b5, b,). The degrees at this moment are dyzy7x+:(a;) =2k +3
(Isi<s2k-1), dyrymi(b)=2k+4 (I1si<2k+1, i#10) and diye2y7x41(b1) =
2k +.3.

(2.5) Vertices of degree 2k+3 and 2k +4 should be joined. The following
one-factor between A — {as, . .., ag} and B — {bs, . . ., by} satisfies this condition:

(ay, by1), (az, by2), (a3, by3), (aq, byy), (ag, b)), (aio, b2), (ayy, b3), (a2, by),
(@13, bax—1), (@14, bax), (ays, baxir), (@16, bos), (017, big), . . ., (Azk—1, bog_»).

Here dszioi—a(a;) =2k +4, except for i=5, 6, 7, 8 when it is 2k +3, and
dazion—a(b;)) =2k + 5, except for i=35, 6, 7, 8, 9 when it is 2k + 4. The vertices of
degree 2k + 3 are all adjacent to all vertices of degree 2k + 4: therefore, following the
rule of the Algorithm, a vertex of degree 2k + 3 and a vertex of degree 2k + 5 should
be joined, making the difference 3.

(3) n =4k + 3. Partition the vertex set: V=AUB, where A={a,,...,ay} and
B={b,, ..., b3}

(3.1) Lemmas 5 and 7 will be used for A and B, respectively. Let M,, ..., M,, _, be
the one-factors in A. Similarly, let R,, ..., R,,, be the two-factors in B, where the
last one is a cycle of length 2k + 3. The symmetric ‘half’ of R, completed with the only
symmetric edge of R, is denoted by R;. The degrees of R} are ones at each but one
vertex where the degree is 2. Rename the vertices in such a way that R, ., is the cycle
(b1, ..., bass, b)) and the degree of b,, .5 is 2 in Rf.

Start the Algorithm with the edges of M;; then add the edges of R,, following the
rules of the Algorithm. Now take M, and then M;. Continue in the same way: R,, M.,
Ms, Ry, ..., Ry, My_5, My, _,, R;. The graph Gy.,,_, thus obtained is almost
regular of degree 2k — 1. The only exception is dy2, 41 (Par+3) = 2k.

(3.2) Roughly speaking, we add 4 one-factors to G2, ,_, between A and B:

(a1, by), (a2, by), (a3, b3), . . ., (@ok—4, bog—4), (b3, b _2),
(@2k-35 bok—1), (@zk—2, bar), (G2k—1, baki1)s (@ax; bag12);

(a1, b3), (az, b3), (a3, bs), (a4, by), (as, by), (as, b7), (a;, bg), (as, by), (ay, bs),
(@10, b11), (@11, b12), . . ., (@2k-3, box_2), (@2k—», by),

(b2ks barsr), (@ak—15 boki2)s (@, basia)s
The degree of by, _, is smaller; we have to correct it with, say, (bax_2, bax_y).
(a1, b3), (az, by), (a3, by), (a4, by), (as, b7), (ae, bs), (a5, by), (as, bs), (ay, b),
(@10, b2k—1), (@11, b1o), (a2, b1y), - - o5 (@ak—2, Bok—3), (Baksr, oksa),
(@2x -1, baw3), (@i, bax);
(a1, b4), (a2, by), (a3, by), (a4, b3), (as, bs), (as, bo), (as, bs), (as, be), (ay, b,),
(@10, bax—a), (@11, bok—3), (@12, bro), (@13, bra), - . ., (@23, boy_s),

(bak—1, bak), (@ax—», bak+3), (@ak—1, box—2), (@ax, bag ).
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Finish this part by adding the edge (b2, bak+3). We obtain the graph Gz, oxys,
which is almost regular of degree 2k + 3. The only exception is dueorss(P2xs3) =
2k +4. Observe that-there is still a missing one-factor between {as, ..., a,} and
{bs, ..., bo}.

(3.3) The edges of R, — R; come. In the present graph, G4 10k+6, the degrees are
as follows: dag2i10x+6(a;) =2k + 3 for 1 <i <2k and dy2, 0k46(b;) =2k +4 for 1<i <
2k + 3.

(3.4) The vertices of degree 2k +3 are adjacent, the Algorithm forces us to join
vertices of degree 2k + 3 and 2k + 4. Add the following one-factor between A — {a,}
and B — {b], bz, b3, b4}:

(a2, byo), (a3, by1), (a4, b12), (as, by), (ae, bs), (a;, be),
(ﬂsy b;), (09, bg), (a0, bla), (an, b, ..., (azx—s, b2k-2),
(@26—4> boxs1), (@ok—3, b2k+3)r (azk-zy baii2), (@ak—1, bax), (@, bak—1).

Observe that this one-factor completes the complete bipartite graph between
{as, ..., a0} and {bs, . .., by}. The only vertex of degree 2k + 3, a,, is adjacent to all
the other a’s and to b,, b,, b; and b,. Finish this step by adding 3 more edges:
(a1, byo), (by, by) and (b5, b,). The degrees at this moment are du>, 12c45(a;) = 2k + 4
(1<i<2k), dycsin+s(b) =2k +5 (1<i<2k +3, i #10) and dy2r12¢+8(b10) = 2k +
6.

(3.5) Vertices of degree 2k +4 and 2k +5 should be joined. The following
one-factor between A — {as, ag, a;} and B — {bs, . .., by} satisfies this condition:

(a1, b11), (a2, by2), (a3, b13), (a4, bya), (as, by), (aq, b>), (a9, b3), (a1, by),
(@12, baxs3), (a3, bys), (aya, bi), ..., (@a—s, bax_3),
(26—, bak), (@2k—3, boxs2), (@2k—2, bak+1)s (@ak—1 box—1), (ax, by _»).

Here dye2iiac45(a;) =2k +5, except for i=5,6,7 when it is 2k+4, and
dy2i1ak+5(b;) =2k + 6, except for i =5,6,7,8,9 when it is 2k +5. The vertices of
degree 2k + 4 are all adjacent to all vertices of degree 2k + 5; therefore, following the
rule of the Algorithm, a vertex of degree 2k + 4 and a vertex of degree 2k + 6 should
be joined, making the difference 3.

(4) n=4k + 1. This case is very similar to the previous one. V =A U B, where
A={a,,...,ay_ 1} and B={b,, ..., by}

(4.1) Lemmas 5 and 7 will be used for B and A, respectively. Let Ny, ..., Ny, be
the one-factors in B. Similarly, let S,, ..., S;_; be the two-factors in A. Rename the
vertices in such a way that Ny, U Ny, is the cycle (b, by, . . ., boxsa, by).

Start the Algorithm with the edges of N,; then add the edges of §,, following the
rules of the Algorithm. Now take N, and then N,. Continue in the same way:

82, Nay N5, 83, .. ., Sk—1, Nax—». The graph Gy, thus obtained is regular of degree
2k—2.

(4.2) Roughly speaking, we add 4 one-factors to Gy2_5,_; between A and B:
(a1, b1), (a2, b), (@3, b3), . . ., (@ak—1, bak—1), (Bais bars1), (Boksrs Barsa);
(a1, by), (as, b3), (a3, ba), (aa, by), (as, bs), (as, b7), (a5, bg), (as, b), (as, bs),
(@10, b11), (@11, b1a), - - -, (@2k—3, bok—2), (@225 b10), (Bax—1, b)) (@2x—1, boyss);
(a1, b3), (a2, by), (a3, by), (as, by), (as, b), (ae, bs), (as, b), (as, bs), (aq, b),
(@10, bokcs2), (@11, B10), (@12, b1r),s - -, (G2k—3, Bax—s),

(b2k—3, bak—2), (Ai—2, b2y), (az—,, baki1)s (bag_s, bok_1);
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(a]: b4): (aZ) bl); (03’ bz), (d4, b’!) (051 bR)J (aﬁ) bQ); (a7, bs), (ax, bfy)! (at); b'/)v
(a0, bax—1), (@11, bag+1), (a2, bro), (ars, b11), - . ., (@3, bo_s),
(bZk—4» b’Zk—B)’ (aZk—Z: boki2), (azihl; b2k)-

We obtained the graph Gg;2.5.41, Which is regular of degree 2k + 2.

(4.3) The edges of N;_; come. In the resulting graph Gy.2,6.42, the degrees are as
fOllOWS d4k2+6k+2(a;) = 2k +2 for I=sis 2k -1 and d4k2+6k+2(bi) = 2k o 3 fOr 1 = l =
2k + 2.

(4.4) The vertices of degree 2k + 2 are adjacent; so the Algorithm forces us to join
vertices of degree 2k + 2 and 2k + 3. Add the following one-factor between A — {a,}
and B - {le bz, b3, b4}:

(a3, byo), (a3, b11), (a4, b12), (as, bo), (as, bs), (a7, be), (as, by),
(ay, bg), (ayo, b13), (ary, bra),s - - ., (@2k—6, Pa—3), (@25, bax),

(@26 —4> bo+1)s (@2x—35 Dags2), (@ak—2, bak—1), (@ap—1, bax_>).
This one-factor completes the complete bipartite graph between {as, ..., as} and
{bs, . .., bo}, again. The only vertex of degree 2k + 2, a,, is adjacent to all the other
a’s and to b,, b,, b; and b,. Finish this step by adding 3 more edges: (a,, b,y), (b,, b>)
and (b3, b;). The degrees at this moment are dy2, g 2(a;)=2k+3 (1sis2k—1),
d4k2+8k+3(bi) =2k+4 (l <i<2k+ 2, I+ 10) and d4k2+8k+3(b]l)) =2k +5.

(4.5) Vertices of degree 2k +3 and 2k +4 should be joined. The following
one-factor between A — {as, a4, a;} and B — {bs, . .., by} satisfies this condition:

(a]y bl]): (aZ: b]2)3 (a31 bl3}! (04! b14): (aH) bl)) (a‘)) bZ)y (al()y bB)r (all) b4),
(@12, baks2), (@13, bis), (@1, bi6), - . ., (A2k—6s Dox—s),
(@2k—s, box—2), (@ak—a, box), (@2k—s, bow_1), (@ox—2, bagir), (@ak—1, Bog_3).

Here du:iic-1(a;)=2k+4, except for i=5,6,7 when it is 2k+3, and
dyzi1ok—1(b;) =2k + 5, except for i =5,6,7,8,9 when it is 2k +4. The vertices of
degrees 2k + 3 are all adjacent to all vertices of degree 2k + 4; therefore, following the
rule of the Algorithm, a vertex of degree 2k + 3 and a vertex of degree 2k + 5 should
be joined, making the difference 3. O

4. DiFrereNCE 3 CaN Occur ONLY WHEN THE DEGREES ARE AT LEAST (n +4)/2

In this section we prove that our constructions are the best possible. In the proof we
need the following lemmas.

LemMa 8. Suppose that the graph G(V, E) possesses the following properties for a
fixed positive integer d. The vertex set has a partition V =V, UV, such that V, induces a
complete graph and the degrees satisfy the following inequalities: d(x)<d for each
xeV,, d(x)=d for each x €V,, with strict inequality for at least one x € V,. Then
Vil <|Val.

Proor. Let us count the number e* of edges (x, y) € E such that xe V}, y e V, in
two different ways, considering the degrees in V, and V,, respectively:

> H{y:yeVa, (x,y)eE} =e*= 2 [{xixeV, (x,y) e E}|. (6)

xeWV; yeV,

On the left-hand side we have
Hy:yeVa, (x,y)e E}=d(x)—|{y:y e V1, (x, y) € E}|
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and hence
> Hy:yeVs (x,y)eE}Y| = 2:,/ d(x) — ZV {y:y e Vi, (x,y) e E}|.
xeV; X€eV) XEV)

Let us use the assumptions of the lemma in the latter formula. The following lower
estimate is obtained:

e*<|Wild—Vi|(IVi| = 1). (7)
Similarly, the right-hand side of (6) implies
e* > Vol d = Vo (|Va] = 1). (©))

The conclusion of all these calculations is obtained from (7) and (8):
Vil (d = Vil + 1) > Vo] (d = V| + 1). )

There is a vertex of degree =dH and this is at most |V| — 1. This gives rise to our other
useful inequality:

Vil + | V5| >d + 1. (10)

The function x(d + 1 —x) is a parabola with maximum at (d + 1)/2. (9) implies that
|V] is closer to (d + 1)/2 than |V5|. On the other hand, (10) implies that the smaller of
[Vi] and [V;] is closer to (the middle) (d + 1)/2. Hence we have |V|| <|V,|. O

This statement would be sufficient to prove a somewhat weaker theorem: for our
exact result a stronger variant is needed.

LemMA 9. Suppose that the graph G = (V, E) possesses the following properties with
a fixed integer d:
(i) d(x)=d for all x € V};
(i) d(x)=d + 1 for all x e V,;
(iit) V, spans a complete graph;
(iv) there is at least one edge between V| and V,.
Then |V|| + 2 =< |V,| holds.

Proor. In view of Lemma 8, we only have to exclude the case |V, =|V;| + 1. Now
(7), (8) (with d+1 and = instead of d and > in (8)) and |V,|=|Vj|+ 1 give
[Vi] = d + 1, which contradicts (i), (iii) and (iv). O

(This proof, shorter than our original one, is due to one of the referees.)

THEOREM 3.
f(4k, 4k + 9k —4)<2,
f(dk + 1, 4k* + 10k — 1) <2,
f(dk +2,4k* + 11k +2) <2,
f(4k + 3, 4k* + 14k + 5) < 2.

Proor. Let m be the minimal value satisfying f(n, m)=3. Suppose that the
sequence Gy, Gy, . .., G, verifies it; that is, these graphs are constructed in accord-
ance with the Algorithm and there are two vertices in G,, the degrees of which differ by
at least 3. The difference cannot be larger since the maximal difference in G,,_, is at
most 2 and the addition of one edge may increase the difference by at most one.



224 G. O. H. Katona and A. Seress

Denote the possible degrees in G,, by d, d +1, d+2 and d+3. Gy, Gy, ..., G,,_,
cannot contain vertices with difference 3 by the definition of m.

Suppose that the degree d + 2 appears first in G, ,: that is, all degrees in G, are
smaller than d + 2 but G, ,, contains a vertex of degree d + 2. G, must contain a vertex
of degree d + 1, so the possible degrees are d — 1, d and d + 1. We distinguish cases
according to the number of vertices of degree d — 1 in G,,.

(o) There are two different vertices x and y such that their degrees in G, are
d,(x)=d,(y)=d—1. As G, contains a vertex of degree d + 2, one of the end points
of the new edge E, ., — E, should have degree d +1 in G,, therefore it cannot be
(x, y). The consequence is that one of x and y has degree d — 1 in G,,,. Thus, there
are vertices in G,,, with difference 3 in degrees. This is a contradiction, since
v+ 1<m. This case is impossible.

(B) All degrees in G, are at least d. We introduce the following notation.
Vi={x:d,(x)=d} and V,={x:d,(x)=d +1}. As G,,, contains a vertex of degree
d +2, one of the end points of the new edge E, ., — E, should have degree d + 1 in
G, ; therefore it cannot be totally in V;. By the Algorithm all vertices in V; must be
connected in G,,. If (iv) holds then Lemma 9 can be applied for G,:

Vil +2<1V3|. (12)

On the other hand, if (iv) is not valid then |V}| must be equal to d + 1 and |V,| must be
at least d +2. If it is more, then (12) holds. In the only remaining case |V,|=d + 1,
V5| =d + 2 and consequently

[V]is odd. G, is a union of two complete graphs. (13)

The Algorithm joins now vertices in V, to vertices in V, for a while: that is, let
Ejo—Ey,, Eyyo—E, 4y, ..., Eyr,— E,,_, be edges joining a vertex in V; to a vertex
in V,. (The end points of these edges are distinct.) But suppose that E,,, — E,,,_, is
the last such edge. The reason for that can only be that all vertices having degree d in
G, ., (there must be one, otherwise degree d disappears too early) are adjacent to all
vertices having degree d + 1. Hence these vertices in V; are adjacent to all other
elements of V; and with |V;| — r elements of V,. This implies the inequality

d=|V| =14+ |V, —r. (14)

Under the assumptions of the present case, G,,_, may contain vertices of degrees d,
d+1 and d +2. There must be at least one of degree d since G,, also has one.
Moreover, there are at least two vertices of degree d in G,,_,. Otherwise, if x were the
only such vertex, the Algorithm would require x to be joined to some other vertex in
the mth step. However, this is a contradiction since there is a vertex of degree d in G,,.
Also, since v +r=<m —1, there are at least two vertices of degree d in G, .,. This
implies
Vil —r=2. (15)

The sum of the degrees in G, ,, is
d\VI+ Vol +2r=(Vi| —r+|Vo| = Dn + |V, +2r

=(Vil=nn-2)+(n—1)|Vo| +n=3n—4+(n—1) |V,

where the inequalities (14) and (15) were used. The number of edges in G,,, is at least
half of the above number. By v + r<m — 1 we have

iBn—4+(n—1)|Vo))<|E,,_,|. (16)
(B1) n=4k +2. (13) cannot; therefore (12) must hold. This implies |V;| = 2k + 2.
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The substitution of it into (16) yields 4k*+ 11k + 2 <|E,,_,|, proving the theorem in
this case. '

(B2) n=4k. As in the previous case, (12) implies that |V,| =2k + 1. However, the
sum of the degrees in G, is d |V;| + (d + 1) |V,| and this is odd when |V;| =2k — 1 and
|V] =2k + 1. This contradiction proves that |V,| =2k +2. We obtain 4k>+ 9k — 3 <
|E,.—1|, which'is better than we need.

(B3) n =4k + 3. In case of (13) nothing can stop the procedure of taking edges
between V, and V, until all vertices become of degree at least d + 1. This contradicts
(15). Therefore (12) is true and |V,| = 2k + 3 follows.

In case of equality, |Vj|=2k and |V,| =2k + 3 hold. By (14) and (15) we have
d=|V,| +1=2k +4. Two cases are distinguished. If d =2k + 4 then the sum of the
degrees in G, is d |Vi|+ (d + 1) |V3| = (2k + 4)2k + (2k + 5)(2k + 3), an odd number.
This contradiction shows that the other case might be considered: d =2k + 5. The sum
of the degrees in G, ., is at least d |V| + |V,| + 2r = (2k + 5)(4k + 3) + 2k + 3; that is,
|E,._1| =4k* + 14k + 9, which is more than what is needed.

Thus |V,| =2k + 4 can be supposed. (16) implies |E,,_,| =4k” + 16k + %, which is
larger than the desired lower estimate.

(B4) n=4k + 1. As in the previous case, one can assume (12) and thus obtain
|Va| = 2k + 2.

In the case of equality, |V;| =2k — 1 and |V,| =2k + 2 hold. By (14) and (15) we have
d= |V, +1=2k + 3. Two cases are distinguished. If d =2k + 3 then the sum of the
degrees in G, is d |V;| + (d + 1) |V,| = (2k + 3)(2k — 1) + (2k + 4)(2k + 2) an odd num-
ber. This contradiction shows that the other case might be considered: d =2k + 4. The
sum of the degrees in G, ., is at least d |V | + |V,| + 2r = (2k + 4)(4k + 1) + 2k + 2; that
is, |E,,_1| =4k* + 10k + 3, which is more than what is needed.

Thus |V,| =2k + 3 can be supposed. (16) implies |E,,_;| =4k*+ 12k — 4, which is
again larger than the desired lower estimate.

(y) There is exactly one vertex of degree d —1 in G,. The following lemma is
needed in this case.

LemMma 10. Let 6 be the smallest integer such that, for some G;:
(i) there are vertices of degrees 6 —1, 6 and é + 1 in G, only;
(ii) the number of vertices of degree 6 — 1 is exactly one, the number of vertices of
degree 6 + 1 is at least one; and, finally,
(iii) the vertex of degree 8 — 1 is adjacent to all vertices of degree 6.
Further, let u <i be such that G, is the last graph not containing vertices of degree é + 1.
Then (n +2)/2<|Uy| = |{x:d,(x) =8} and |U,| + 1< 6 =d.

Proor. & =d is obvious. G, cannot have vertices of degree 6 — 3 or less, since the
difference cannot be 3. Suppose that there is a vertex of degree 6 —2. E,., — E, must
join vertices of degrees 6 —2 and 6. Then G,,, contains a vertex of degree 6 + 1;
therefore it cannot contain one of degree 6 —2. Hence G, has exactly one vertex of
degree 6 — 2. Moreover, (iii) also holds, contradicting the definition of 6. We proved
that G, has only two different degrees. Let U,={x:d,(x)=6—-1} and U,=
{x:d,(x)=0}. U, spans a complete graph so Lemma 8 implies |U;|+1=<|U,]|.
Moreover, we claim that (iv) of Lemma 9 holds so Lemma 9 can be applied:

|Uil +2=<|U3|. (17)

Really, if there were no edge between U, and U,, then the forthcoming edges,
Esiin—E,, Epoo—E iy, .., Epvpuy-1— Eusyuy—2, would be between U, and U,,
creating G;. By the definition of G; (that is, of ), the only remaining vertex of degree
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6 — 1 has to be adjacent to the vertices of degree 6 in U, (in G;). These edges existed
also in G,. (iv) and (17) are proved. (n + 2)/2 <|U,| easily follows. Finally, the vertex
of degree d —1 (in G;) is adjacent to all other |U;| —1 vertices of U, and some
|Uy| = (JUy| — 1) vertices in U,. This proves |U;| <& — 1 and the lemma. O

(yl) n =4k +2. Lemma 10 implies 2k + 3 <d. Suppose first that we have a strict
inequality: 2k +4<d. After adding the edge E,,,—E,, the graph G,,; contains
vertices of degrees d, d + 1 and d + 2. The forthcoming edges join vertices of degree d
until the set V; = {x: d;(x) = d} spans a complete graph. It is obvious that j <m — 1. By
Lemma 8 we know that the set V,= {x: d;(x) =d + 1} satisfies 2k +2 =< |V,|. Counting
the sum of the degrees in G; gives the following lower estimate:

Wd VI + V) <I|E,-l, (18)

yielding 3((2k + 4)(4k + 2) + (2k + 2)) <|E,,_,|, which is stronger than what we need.

Suppose now that d =2k + 3. Then 6 = d also holds; consequently i = v. Again, by
Lemma 10, |U,| =2k +2 and |U,| =2k holds in G,. The edges E, ., —E,, E,.,—
E.vi,.. .. Evsyu—1 — Eutu,—2 must join vertices of degrees d — 1 and d. We obtained
the graph G, . It contains 2k + 2 vertices of degree d. The next edge E, v, — E.+0,-1
(or E,,, — E,) joins the only vertex of degree d — 1 and a vertex of degree d + 1. G,
now contains 2k + 3 vertices of degree d. By the Algorithm, we have to join vertices of
degree d. Adding such an edge preserves the property that the number of vertices of
degree d is odd. This should be done until the set of vertices of degree d spans a
complete graph. Let G, be this graph. Introduce the notation W, = {x: d,(x) =d} and
W, = {x:d,(x)>d}, where |W)| is odd. By Lemma 8 we have 2k + 2 =< |W,|, but the
equality is impossible since |W,| is odd. Therefore,

|W,| <2k —1. (19)

The forthcoming edges £, — E,,, E .o — E 1, ..., E i, —E,,,._, join vertices of
degrees d and d + 1. The integer r is chosen in such a way that w + r =m — 1; that is,
all pairs of vertices of degrees d and d + 1 are adjacent in G,,,, = G,,_,. The number of
vertices of degrees d, d +1 and d + 2 are |W| —r, |W,| — 1 and r + 1, respectively. Any
given vertex of degree d in G,,_, is adjacent to all other vertices of degree d and all
vertices of degree d + 1. This implies the inequality |W;| —r — 1+ |W,] —1=<d. Since
[Wi| + |W,| =4k + 2 and d = 2k + 3, the former inequality results in

2k —3=r. (20)
The sum of the degrees in G,,_, is
Ck+3)(IW| =N+ Rk+DH(W, =D+ RE+5)(r+1)=QR2k+3)(W;|—1)
+Rk+d)dk+1—-|W D+ 2k +5)(r+1)=02k+4)(4k +1)— |W| +2r +2k +5.
Using (19) and (20) we obtain a lower estimate:
|Ep_1] = 3((2k + 4)(4k + 1) — 2k — 1) + 2(2k —3) + 2k + 5) = 4k* + 11k + 2.

(y2) n=4k. Lemma 10 implies that 2k + 2<d, only. However, equality here would
imply 6=d=2k+2, i=v, |U|=2k—1 and |U,| =2k + 1. Count the sum of the
degrees in G,:(2k +1)(2k — 1)+ (2k +2)(2k + 1). This is odd; the contradiction
proves that 2k + 3 <d.

Two cases are distinguished: 2k +3 <d and 2k + 3 =d. In the former case add the
edge E,,, — E,; the graph G, ,, contains vertices of degrees d, d + 1 and d + 2. The
forthcoming edges join vertices of degree d until the set V, = {x:d;(x) =d} spans a
complete graph. It is obvious that j=<m — 1. By Lemma 8 we know that the set
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Vo= {x:d;j(x) = d + 1} satisfies 2k + 1< |V,|. (18) yields |E,,_,| = 3((2k + 4)4k + (2k +
1)) = 4k* + 9k + 3, better than what is needed.

We may suppose that d =2k + 3. The edge E,,, — E, joins the only vertex of degree
d—1 and a vertex of degree d + 1. By the Algorithm, we have to join vertices of
degree d. This should be done until the set of vertices of degree d spans a complete
graph. Let G,'be this graph. Use the notations W, and W, of the previous (y1) case. By
Lemma 8 we have (19).

The forthcoming edges £,,,, — E,,, E .o —E .1, ..., E,.,— E,,,_; join vertices of
degrees d and d + 1. The integer r is chosen in such a way that w + r = m — 1; that is,
all pairs of vertices of degrees d and d + 1 are adjacent in G,, ., = G,,,_,. The number of
vertices of degrees d, d + 1 and d + 2 are |W,| —r, |W,| — 1 and r + 1, respectively. Any
given vertex of degree d in G,,_, is adjacent to all other vertices of degree d and all
vertices of degree d + 1. This implies the inequality |W,| —r — 1+ |W,| — 1<d. Since
|W,| + |W,| =4k and d =2k + 3, the former inequality results in

2k —5=r. (21)
The sum of the degrees in G,,,_, is
2k +3)(W| =)+ 2k + (W5 — 1)+ 2k +5)(r + 1) = 2k + 3)(|Wi]| — 1)
+(2k+4)(dk —1— WD+ 2k +5)r+1)=RQk +4)(4k — 1) — |W;| + 2r + 2k + 5.
Use (19) and (21) to obtain a lower estimate:
|E,—1| = 3((2k +4)(4k — 1) — 2k — 1) +2(2k — 5) + 2k + 5) = 4k*> + 9k — 4,

as desired.

(y3) n=4k +3. Lemma 10 imples that 2k + 4=<d. Suppose first that we have a
strict inequality: 2k + 5 <d. After adding the edge E, ,, — E,, the graph G, ,, contains
vertices of degrees d, d +1 and d + 2. The forthcoming edges join vertices of degree d
until the set V; = {x: d;j(x) = d} spans a complete graph. It is obvious that j <m — 1. By
Lemma 8 we know that the set V5= {x: d;(x) =d + 1} satisfies 2k + 2 < |V,|. The lower
estimate (18) gives

4k* + 14k + Y <|E,,_\l,

more than our need.

We may suppose that d =2k +4. The edge E, ,, — E, joins the only vertex of degree
d—1 and a vertex of degree d +1. By the Algorithm, we have to join vertices of
degree d. This should be done until the set of vertices of degree d spans a complete
graph. Let G,, be this graph. Use the notations W, and W, of the previous (y1) and
(y2) cases. By Lemma 9 (the existence of E, ., — E, ensures (iv)) we have

|W,| < 2k. (22)

The forthcoming edges E,,,, — E,,, Eys2—Eys1, ..., Eny, — E, ., join vertices of
degrees d and d + 1. The integer r is chosen in such a way that w + r =m — 1; that is,
all pairs of vertices of degrees d and d + 1 are adjacent in G,,., = G,,_,. The number of
vertices of degrees d, d + 1 and d + 2 are |W,| —r, |W5| — 1 and r + 1, respectively. Any
given vertex of degree d in G,,_, is adjacent to all other vertices of degree d and all
vertices of degree d + 1. This implies the inequality |W,|—r —1+ |W,] — 1=<d. Since
|W,| + |W,| =4k + 3 and d = 2k + 4, the former inequality results in

2k —3<r. (23)
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The sum of the degrees in G,,,_, is
Ck+H(W| —r)+ 2k +5)(IW,| = 1) + (2k + 6)(r + 1)
=k+H(IW| =)+ Rk +5)dk+2—- WD+ 2k +6)(r+1)
‘ =2k +5)(4k +2) — |W,| +2r + 2k + 6.
Use (22) and (23) to obtain a lower estimate:
|E,.—1] =3((2k + 5)(4k +2) — 2k + 22k — 3) + 2k + 6) = 4k* + 14k + 5,

as desired.
(y4) n =4k + 1. This case can be settled in the same way as the previous one. Only
the calculations are different. O

5. FURTHER RESULTS AND PROBLEMS

1. Let g(n, d) denote the minimum m such that f(n, m) = d. Theorems 2 and 3 have
determined g(n, 3). In a forthcoming paper we will publish the following results:

tm s 9/ (;) =89/ (3) =3

We conjecture that

3k — 1)/3k, for d = 4k,
i e, i (n) ) Bk —1)/3k, ford=4k +1,
gm0 2) 7Y 3k/Gk + 1), for 4k +2,

Gk +1)/(3k +2), for d =4k + 3.

We are able to prove the upper estimates by appropriate constructions.

2. Probably the most natural question here is to determine A(d) as the minimum »n
such that f(n, m) =d holds for some m. The solution of this problem is urged by Paul
Erd6s. The construction in Section 2 gives only

(2d +1)(d +1)* -1
7 i

For d = 3: h(3) < 298. However, the construction in Section 3 shows that h(3) < 18.

3. There are other ways to use the degrees in an ‘on line’ algorithm to obtain nearly
regular graphs. For instance, one could join the pairs (of degrees) (4, 4) before (3, 5).
It seems that it does not make the graph more regular. The same is very likely to be
true if only two degrees are used to determine the new adjacent pair. However, this
might be changed if 3 or more degrees are used.

4. Suppose that, in an ambiguous case of the Algorithm, not the worst choice is
made, but all possibilities are chosen randomly with equal probabilities. We conjecture
that the probability of the event that the difference in degrees is =3 tends to 0 with
n— ., Computer experience due to K. Balifiska supports this belief. W. Imrich thinks,
however, that (for sufficiently large n) the difference in degrees should be at least 2
with high probability.

5. Which are the feasible graphs? Are all regular graphs feasible? Obviously not, as
F. Hoffman and K. Kriegel pointed out; a feasible graph must contain a one-factor
(one-factor neglecting one vertex) if n is even (odd). If a graph can be decomposed
into one-factors then it is clearly feasible. The converse is not true. Together with M.
Aigner, we found that the famous Petersen graph is feasible, and it is well known that

h(d)=2
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it cannot be decomposed into one-factors. The feasibility is shown by the following
sequence of edges: (1,6), (2,7), (3,8), (4,9), (5,10), (2,3), (4,5), (7,9), (8, 10),
(1,5), (6,8), (1,2), (3,4), (6,9) and (7, 10). Thus feasibility is a generalization of the
one-factor-decomposition. Is it true that all regular graphs containing a one-factor are
feasible?

6. S. Poljak asked if the problem of feasibility is NP-complete.
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