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Some connections between extremal set theory and the optimization of the reliability polynomial
are shown. Then the concept of the reliability polynomial is generalized for the case when the
elements can have three different states: good, mediocre and bad. The state of the device can be
described by a 0,1,2 sequence. Such a state is called operative if the device operates when its
elements are in the states described by the sequence. The maximum of the generalized reliability
polynomial is studied under the condition that the set of operative states forms an antichain.
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1. INTRODUCTION

Suppose that a complicated device is given, built from
many components. Each component can go wrong with
probability p (0 < p < 1). However, the breakdown of
one component does not necessarily cause the malfunc-
tion of the whole device. The roles of the components
in the operation of the device can be very different.
Let X be the set of the n components. Call a subset
A C X an operative set if the device operates correctly
whenever the elements of X — A work but the elements
of A do not work. The family of operative sets is the
operative family. It will be denoted by . A typical
example is a network of electrical transmission lines
forming a graph. The system stops its operation if the
graph becomes disconnected. In this example, the
edges of the graph form the set X. The operative family
consists of those sets of edges whose deletion does not
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disconnect the graph (i.e., the sets not containing a cut
of the graph).

In the above example and in most practical cases,
s has the following property:

AEAd and BCA imply BE 4.

Such families are called ideals. However, there are
practical situations where & is not an ideal. Let us see
now only a nonserious example. Let the device be a
country. If one of the ministers goes crazy, the country
stops its proper operation. However, if his phone goes
wrong simultaneously, then nobody notices anything;
that is, the two-element set {minister, its phone} is in
s, while the one-element set consisting only of the
minister does not belong to «.

If the elements fail with probability p, indepen-
dently, then the probability of the event that the whole
device is operating correctly is

> plla — py-ial, (1)

AEdA

This is called the reliability polynomial. If p and A
are fully known, then the reliability polynomial can be
easily computed. In practical situations, however, 4
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is not known, only some of its properties or parameters.
In such a situation, we can only give estimates on
the reliability polynomial. The best estimates are the
minimums and the maximums. Therefore, we try to
study the minimum and maximum of (1) where n and
p are fixed and s can be chosen under some given con-
ditions.

Let f;() denote the number of i-element members
of #i. Furthermore, use the notation c(x) = p*(1 —
p)*~*. Then, (1) can be rewritten in the form

Ji(s)e(@). 2

L[

1

The conditions on & allow certain vectors [ fo(s4), f1(4),
<o oy [,(A)], only. The extreme values of (2) should
be found for this set V" of vectors. As (2) is a linear
function of the vectors, it is enough to find the extreme
points of the convex hull of 7. One of them will give
the extreme value. These extreme points are deter-
mined for some classes of families & (i.e., for some
sets V of vectors) in [7-10]. In Section 2, we will show
how these types of results could be used in finding the
maximums and minimums of (2). Unfortunately, most
classes for which the extreme points are determined are
not very practical from the point of view of reliability
theory. Our aim is to emphasize the connection be-
tween the two areas only.

The main aim of the present paper is to generalize
these ideas for the case when the components of the
device may have three different states. They can be
good, mediocre, or bad, with certain probabilities. In
Section 3, the concept of the reliability polynomial is
generalized for this case and its extreme values are
determined for a very special class. This is done by
proving a theorem determining the extreme points of
the convex hull for a new class.

The present work was largely motivated by the pa-
pers of Van Slyke and Frank [17], Ball and Provan [2],
and Colbourn and Harms [6] in which the traditional
(two-state) model was considered and extremal combi-
natorial theorems were used.

2. EXTREME POINTS OF HYPERGRAPH
CLASSES AND THEIR USE FOR THE
RELIABILITY POLYNOMIAL

A family o of subsets is called a Sperner family if A ¢
B holds for any two members of it. As it was pointed
out in the Introduction, the family of operative sets is
usually an ideal. The defining condition of the Sperner
families is just the opposite of the property of an ideal,
so this is not a very practical case. However, this is
the most known and most studied class. This is why
we start the investigations with it.

Let us recall that f;(d) denotes the number of

i-element members of #. The vector [fy(A), fi(A),
..., f,(A)] is the profile vector of A. The following
theorem is formulated in [9] but it is actually only an-
other form of the well-known LYM-inequality (more
properly, YBLM-inequality, see [4, 15, 16, 18]).

Theorem A. The extreme points of the convex hull
of the profiles of Sperner families on n elements are

O, ...,0)and(0, . . . ,0,(’{,’),0,. .. .,00=i=n).

Suppose now that the operative family is a Sperner
family and determine the maximum and minimum of
the reliability polynomial subject to this condition. The
minimum is trivially 0. The maximum can be attained
only for the nonzero extreme points in Theorem A.
For these extreme points, (2) becomes

n i n i N 1 Lo .
(I.)C(t)—(i)p(l i) Py

Comparing P;_, and P;, one can determine the maxi-
mum P;:

Proposition 1. The maximum of the reliability polyno-
mial for Sperner operative families is

max (';)p‘(l —-p)yi= (';)p“(l = gk,

O=i=n

where

k =max { I: l e }
n—i+1 1—-p

A family « is called intersecting if A N B # @ holds
for any two members of it. Taking the complements
of the members of an intersecting family, the new fam-
ily will satisfy A U B # X for any two of its members.
Such families are called nonfilling. The extreme points
of the convex hull of the profiles of the intersecting
families are determined in [9]. The intersecting fami-
lies, however, are not ideals, so they are, again, far
from the applications. The nonfilling families are not
necessarily ideals, but they can be easily made ideals
adding all the subsets of the members. On the other
hand, the maximum of (1) and (2) will be attained for
families containing all possible additional members.
The following theorem can be easily obtained from the
theorem describing the extreme points for the inter-
secting families turning the extreme vectors back [inter-
changing the ith and (n — {)th components].

Theorem B. The extreme points of the convex hull of
the profiles of nonfilling families on n elements are




(1)

LSSRATCT

n—1 n—1
(72 ) Do o
where 1 < k < n/2 and the Oth, 1st, . . ., (k — Dth,
kth,...,(n—k— Dth,(n — kth, (n—k+ Dth, . ..,
nth components are shown,
)
n n
(1’(1)’.'.’(’1—1)’0’ 90)
2
if nis odd, where the Oth, 1st, ..., (n — 1)/2th,
(n + 1)/2th, . . ., nth components are shown;

(3) Allvectors obtained by replacing any set of com-
ponents by 0 in the above vectors.

The nonfilling families have some meaning for relia-
bility theory. The condition expresses that the opera-
tive families cannot be too large, more precisely, the
union of two of them cannot cover the whole device.

The minimum of the reliability polynomial for non-
filling families is 0. Its maximum is attained for extremal
points of type (1) and (2) in Theorem B. Thus, the
possible candidates for the maximum of (2) are

k-1
Pi=3, (’?)p‘(l —py
i=0 \1

n—k .
X (" i 1)pf(l - p) I =k=n/2)
i=k

and

n—1

& n . .
Bans (.)p‘(l = gL

i=0 \1

It is easy to see that

P, <P, iff ps%(lsksngl),

This proves the following theorem:

Theorem 2. The maximum of the reliability polynomial
for nonfitting operative families is
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1 - ifl =
p 5= P,
AN |
Prn= Z (l_)p'(l -p)!
_l n n .
+ (" )ps(l —ph  ifp=l
n 2
2
and n is even
and
n—1
2 n 5 .
Pn+l = 2 ()p‘(] - p)ni'
2 =0 l
ifp= % and n is odd.

Let us see some more practical conditions on the
operative family. In [17], the following one was consid-
ered. Let o be an ideal, suppose that f;(+4) = 0 for all
i > k, where k and the value f, o) # 0 is also known.
The maximum of (2) under this condition is trivial; one
has to take fi(#d) = () for all i < k. To describe the
minimum, some definitions and statements are needed.

Suppose that the groundset X is ordered in some
way. Then, the subsets of X can be described by their
characteristic vectors.The characteristic vector of the
set A C X is an n-dimensional 0,1-vector, its ith compo-
nent is 1 iff the ith element of X is in A. We say that
the subset A lexicographically precedes the subset B
if the characteristic vector of A lexicographically pre-
cedes the characteristic vector of B. Let s, be a family
of k-element subsets. Introduce the notation

s,(s4,) = {B:|B|= i, JAE A,

such that BCAY(i<k).
Theorem C [12, 13], for a shorter proof see[11].). Sup-
pose that the size of the family d, of k-element sets is
fixed. Then, |s;(4,)| (i < k) is minimum for the A,
consisting of the lexicographically first k-element sets.

This theorem makes it easy to minimize (2) for the
case when the largest nonzero f,(#) is given. Denote
the subfamily consisting of the k-element members of
A by d,. As A is an ideal, we have

|s: ()| = fi(sh) (i < k). 3)

Hence,

k n
;} |s:(s0)|c(i) < ;ﬁ(sﬁ)c(i) (4)
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follows. The left-hand side is achievable, by Theorem
C; o, should be chosen to be the family of the lexico-
graphically first k-element subsets in X. By this, one
of the extremal constructions is found. (It is not always
unique.) This minimum can be calculated from (4) using
another version of the theorem. However, this result
is a complicated formula expressed by binomial coeffi-
cients. If, incidently, |s4,| = f,() is of the form (§),
then the minimum of (2) [left-hand side of (4)] is

k
> (‘.’)p"(l - prL.
i=0 \!

This line is continued in the works of Ball and Provan
[2] and Colbourn and Harms [6] for the so-called shall-
able families.

The next condition is, again, fairly practical. Sup-
pose that & is an ideal and |&| = m is known. Both
the minimum and the maximum of (2) were determined
for this case in [1] under the condition that c(x) is
monotone. (However, we have to mention that [5]
solved the problem earlier for a more general structure
when c¢(i) = i but their method works for any monotone
weight. [14] also formulated the analogous statement
for another structure and monotone weights. [1] and
[3] have extensions for the nonmonotone case.) It is
inconvenient to give the exact minimum and maximum;
instead, we show the extreme constructions only.

A quasi-sphere (with center 0) is a family containing
all i-element subsets (0 = i = r) for some 0 = r =
n and the lexicographically first some r + 1-element
subsets of X. A quasi-cylinder of size N is the family
of the lexicographically first N subsets of X.

Theorem 3 [1, 5]. If § < p, then the minimum of (2)
is assumed for the quasi-sphere and the maximum is
assumed for the quasi-cylinder. However, if p < %, then
the minimum and the maximum are assumed for the
quasi-cylinder and the quasi-sphere, respectively.

Of course, these four statements are really only one.
The minimum for an increasing ¢(i) and the maximum
for a decreasing c(i) are trivial. On the other hand, the
minimum for a decreasing weight and the maximum
for an increasing one can be obtained from each other
by multiplying the weight by —1.

3. RELIABILITY POLYNOMIAL IN
PRESENCE OF MEDIOCRE ELEMENTS

Here we suppose that each element of the device may
have three different states: It may be operative, medio-
cre, or failing with probability p,, p,, or p,, respec-
tively (py+ p, + p, = 1.) A state of the device is a 0,

1, 2-vector of dimension n where the ith component is
0, 1, or 2 if the ith element of the device is good,
mediocre, or failing, respectively. A state (s, 55, . . . ,
s,) is called operative if the device operates when its
ith element is in state s; (1 = i= n). The set of operative
states of the device will be denoted by s C {0, 1, 2}*.

Some more notations are needed: If A € #, then
0(A) denotes the number of 0’s in A while 1(A) denotes
the number of 0’s and 1’s in A. The probability of the
event that the device operates properly is expressed
by the formula

0(A),, 1(A)—0(A -1A
2 Byl i, 5)
AEd

In this case, this is the (generalized) reliability polyno-
mial. Introduce the notation f;(s) for the number of
elements A € o satisfyingi = 0(A) andj = 1(A). Also,
for the sake of brevity, use the notation c(i, j) =
pip 'p4/. Then, another form of the reliability polyno-
mial is obtained:

> fis)ed, ). (6)

O=i=j=n

We write that A = (s;, $5, ..., 58, =B = (1, t,,
.., 1) iff s; = r, holds forall | =i = n. A set of
operative states & is an ideal if A = B and B € & imply
A € 4. On the other hand, if A « B holds for any two
distinct members of &, then it is called an arntichain.
The aim of the investigations, again, is to find the
minimum and the maximum of the reliability polyno-
mial for certain classes of s{’s. Obviously, in most
practical cases, « should be an ideal. So the conditions
containing ‘‘ideal’’ are the most important. However,
we were able to treat only the least important case:
the case of antichains. In the rest of the paper, we will
try to determine the maximum of (5) (and (6) under the
condition that ${ is an antichain. The method of the
paper [10] will be used.
Introduce the concept of the profile-matrix of A:

Jools)  fo.(s4) Joa(st)
0 fiash) fialsd)
0 0 o)
F(A) = )
0 0 Fun(sd)

This matrix may be considered as a vector in the
[(n + 2)(n + 1)]/2-dimensional Euclidean space. Each
antichain & determines one such profile-matrix. De-




note their set by V(antichain). (6) is a linear function
of these variables; thus, the maximum of (6) is attained
for one of the extreme points of the convex hull of
V(antichain). Therefore, it is sufficient to determine
these extreme martrices.

Theorem 4. The extreme matrices (extreme points) of
the convex hull of the profile-matrices of the antichains
in{0, 1, 2}* (|X| = n) are the matrices E = (e;;), where

e; =0 if

e; iseither 0 or (;’)(J) if i=<j, ()

i>j,

i
and

e;# 0, eu#0 (i,7) £k, D). (8)

Proof. (1) First we introduce some notations conve-
nient to the proof. Let I denote a set of pairs (i, j) satis-

fying

imply

i=j and

@J)
% (k1)

for all @), k,DHeI 9

(i.e., it is an antichain). The set of all such sets I is
denoted by $. The (n + 1) X (n + 1) matrix T(I) contains
entries 0’s and 1’s. The entry of the ith row and the
Jth column is 1 iff (i, j) € I. Replace the 1 by ()()) in
the ith row and jth column for all (i, j) € I. The so-
obtained matrix is denoted by E(I).

(2) Now solve the problem analogous to the theorem
for the monotone elements of {0, 1, 2}*. It is obvious
that there is exactly one monotone element of {0, 1,
2}¥ containing i zeros and j — i ones. Therefore, if &
is an antichain in {0, 1, 2}¥ and consists of monotone
elements, then f;;(%) is either 0 or 1. f;(B) is obviously
0if i > j. Moreover, if e; = 1, e;; = 1, then (i, j) &
(k, 1), i.e., the profile-matrix F(%) of any such % is
T(I) for some I € $. It is easy to see that they all are
extreme points as well.

(3) We have to prove that the profile-matrix of any
antichain « € {0, 1, 2}¥ is a convex linear combination
(the coefficients are nonnegative and their sum is 1) of
the matrices E(I), I € $. Fix # and consider the sum

5 F{A}

prr (10)

for all pairs (P, A), where P is a permutation of the
groundset X, A is a member of &, and A is monotone
in the permutation P.
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One way of summing (10) is the following:

SSHA_LSSraan. an

On the right-hand side, 2, F({A4}) is equal to F(%),
where % is the set of monotone (in P) elements of A.
By Section 2 of this proof, this is equal to T(I) for
some I € $. Denote its coefficient on the right-hand
side of (11) by A({). Their sum is obviously 1, since the
number of permutations is n!. Hence, (10) is a convex
linear combination of T(I)’s:

s EGAD ({A}) = 3 ADT(). (12)

The other way of summing (10) is

ZZ F({A})

(13)

The number of permutations in which a given sequence
A is monotone is 0(A)!(1(A) — 0(A))!(n — 1(A))!. There-
fore, (13) is equal to

5 0(A)!(1(A) — 0(A))!(n —

AEd n!

1(A))!

F({A})

F{AD [ fifs)

Al ()

O=isj=n

Applying (12), we have

Jl8) => MDTD).

o)

J/\i
O=isj=n

But this equation is equivalent to

(f;'J(‘Sﬂ))()sisjsn = 123 ANDE(). ]

(S

As a consequence, the maximum of the reliability
polynomial (6) for antichains is equal to

max (n)(n) c(i,j),
nes \J/ \1

(14)

where the maximum is taken over all antichains $ satis-
fying (9). One might have the objection that the number
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of extreme matrices in, Theorem 4 is exponential. How-
ever, the original number of candidate extreme families
is double exponential; thus, the theorem gives a real re-
duction.

In what follows we further reduce the number of
possibilities for the case c(i, j) = pip’i ‘p4~. Suppose
that $ maximizes (14). Some properties of $ under this
assumption will be proved.

Compare two neighboring possible terms of (14):

n i =1, j—i+1,n—j
(J.)(,.i l)po P py

>(<) (;‘)({) PipipY it g >(<)§T. (15)

We will show that there is no *‘jumpini’ in %, i.e.,
(i, j) € 9,0 < i, and j < n imply the existence of an
(i—1,j") € 9 satisfying j < j'. Indeed, if there is no
element (i’, j') € $ such that i > i’ and j <j’, then $
can be enlarged by (i — 1,/ + 1), a contradiction. So,
we may suppose that there is such an element of $
where i’, = i — 2. The inequality

i i"+1
= ey
J=a+1 jr—i

is an obvious consequence of the assumptions. Conse-
quently, py/p, is either smaller than the left-hand side
or greater than the right-hand side. In the first case,
replacing (i, j) by (i — 1, j) in ¥, it enlarges the sum,
by (15), contradicting the optimality of $. In the second
case, the replacement of (i’, j') by (i" + 1,j") gives the
contradiction.

The same argument shows that there is no ‘‘jump
inj’’ in $ either. Summarizing the two directions: (i,
NE % O0<iandj<nimplies(i —1,j+ 1) € $. On
the other hand, if (i, j) € %, where i + 2 = j, then it
cannot be the element with the smallest j. Therefore,
the elements of $ can be described with i + j = k with
afixed k. The following version of Theorem 4 is proved.

Theorem S. The maximum of the reliability polynomial
(5) under the assumption that the operative set is an
antichain is

k
I-E-I n k—1i

max > ( )( . l) popiHpsH

0=k=2n i=max{0k-n) \K — I 5

It is easy to give limitations on the best k, but we
were not able to determine it.
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