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Abstract

A database R has some obvious and less obvious parameters such as the number
of attributes, the size |r|, the maximum size of a domain, the number of some special
functional dependencies (e.g. the minimal keys), and so on. The main aim of this paper
is to survey some of the results giving connections and inequalities among these parameters.
The methods are of a combinatorial nature. A generalization of the numerical dependency
is also considered.

1[5 Introduction

The simplest model of a database is a matrix. The entries in one column are
the data of the same kind (name, date of birth, etc.), the entries of one row are the
data of one individual. Thus, in fact, we are dealing with finite sets of homogeneous
finite functions which can be illustrated by matrices.

However, in the literature the names of these concepts are traditionally different
from the above ones. One kind of data (e.g. name) is called an attribute. It can be
identified with a column of the above matrix. The set of attributes will be denoted
by U = {a,, ay, . . ., a,}. The set of possible entries in the ith column is the domain
of g;. It is denoted by D(a;). Thus, the data of one individual (row of the matrix)
can be viewed as an element r of the direct product D(a;) X D(a,) X . .. X D(a,).
Therefore, the whole database (or matrix) can be decsribed by the relation
Rc D(a))xD(ay) X...xD(a,). If r=(ey, e,,...,e, €R, then r(i) denotes the
ith component of 7, that is, ;. '
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There might be some logical connections among the data. For instance, the
date of birth determines the age (in a given year). Let A and B be two sets of
attributes (A, B ¢ U). The data in A might uniquely determine the data in B. Formally,
we say that B c U functionally depends on A c U if

ri(i) = rp(i) for all such i that g; €A
implies

ri(i) = ro(i) for all such i that g; €B.

It is denoted by A —- B [2,8]. Less formally, A — B if any two elements of R
having the same values in the attributes belonging to A must have the same
values also in B. Functional dependencies have a very important role in practical
applications. In most of the present paper, we will consider these and some natural
generalizations.

A special functional dependency has an even greater importance. If K — U,
that is, the values in K determine all other values, then K is called a key. If K is
a key and contains no other key as a proper subset, then it is a minimal key.

A database R has some obvious and less obvious parameters, such as the
number of attributes n, the size m = |R| of the relation, the maximum size of a
domain, the number of some special functional dependencies (e.g. the number of
minimal keys), etc. The main aim of this paper is to survey some of the results
giving connections among these parameters. An easy example is the following
statement.

THEOREM 1.1 [12]

The number of minimal keys is at most

(15])

The inequality easily follows from the well-known theorem of Sperner [35],
which states that the size of |¥| of an inclusion-free family ¥ (A, B € ¥ implies
A € B) is at most (| »2). To prove that the inequality cannot be improved, one
has to construct a relation R with n attributes and this many minimal keys. This can
be more easily done if the possible systems of functional dependencies are characterized.
For similar reasons, other equivalent descriptions are needed, too. These are collected
in section 2. Section 3 contains inequalities similar to theorem 1.1. Section 4
investigates a partial ordered set whose elements are the relations on the same U,
modeled with their systems of functional dependencies. Finally, section 5 tries to
characterize the system of some more general, so-called (p, ¢)-dependencies.

SIE -

and this estimate is sharp.
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2. Different characterizations of the systems of functional dependencies

It is éasy to see that the following four properties hold for the functional
dependencies in any relation R. Let A, B, C and D be subsets of the set U of the
attributes of R.

A—>A, (2.1)

A—> B and B— C imply A > C, 2.2)
AcC,DcB and A - B imply C — D, (2.3)
A—>B and C—> D imply AuC — BUD. 24)

A system 9 of pairs (A, B) of subsets of U satisfying (2.1)—(2.4) is called a
determination. (To be precise, we should repeat here these conditions with some
other kind of arrows, like A ~> B instead of A — B, but we will use the same
notation for functional dependencies in a relation and in a determination.)

The system of all functional dependencies in a relation R was called a full
family by Armstrong [2]. He also found the characterization of the possible full
families.

THEOREM 2.1 [2]

A system of pairs A — B of sets is a full family for some relation R iff it is
a determination.

Using this theorem, it is easy to complete the proof of theorem 1.1. Define
the determination 9 to contain the pairs A » B forall Bc Ac U and A — B for
all A, B c U such that [ n/2 ]| <] A|. It is easy (but somewhat tedious) to check that
this is a determination, therefore there is a relation R in which the full family
consists of these functional dependencies. The minimal keys in this relation are all
the sets of size | n/2]. This proves the sharpness of the statement of theorem 1.1.

Given a determination 9 on U, one can define

PA)={a:A—>a} forall AcU. 2.5)

The following properties can easily be proved for all A,B c U.

Ac Z(A), (2.6)
A c B implies £(A) < $(B), 2.7
L(L(A)) = L(A). (2.8)

A set-function satisfying these properties is called a closure operation or, shortly,
a closure.
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PROPOSITION 2.2

The correspondence @ — £(D) defined by (2.5) gives a bijection between
the set of determinations and the set of closures.

Consider the following closure:

A if |Al<|n/2],

n Sk
Flnr2y(4) {U if |A]2[n/2],
This closure defines the determination 913'[,‘,2 | by proposition 2.2. On the other
hand, there is such a relation R that its full family is @7,,,,. It is obvious that the
minimal keys in this relation are the | n/2 ]-element subsets of U. This gives an
easier proof of the sharpness of theorem 1.1.

Given a closure &£ on U, define the closed sets by B = £(B). The family of
closed sets is denoted by ¥ = Z(£). It is easy to see that % is closed under
intersection, that is A, B € % implies A N B € %. Furthermore, U € %. A family %
satisfying these properties is called an intersection semi-lattice.

PROPOSITION 2.3

The correspondence £ — %(&£)is a bijection between the set of closures and
the set of intersection semi-lattices.

Denote by 9@, the determination containing the pairsA - Bforall Bc Ac U
and A — B for all A, B c U such that k<| A|. The corresponding closure is

R serehaihs A iflAI<k
= = g
. : U if |A] 2k,

Note that Z} =%(&£}) consists of U and all sets of size at most k— 1.
Given an intersection semi-lattice ¥, define

M=MZ%)=(M:Me% and there are no r =2 sets in %, all different
from M such that their intersection is M}. 2.9

It is easy to see that (i) no member M of M is an intersection of other members
(all different from M), and (ii) U € M. Such families of subsets are called intersection-
free families.

PROPOSITION 2.4

The correspondence # — M(%) is a bijection between the set of intersection
semi-lattices and the set of intersection-free families.
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It is easy to see that M} = M(Z}) consists of U and the sets of size k— 1.

Propositions 2.2, 2.3 and 2.4 give different equivalent notions describing the
same thing in different ways. The given goal determines which one of them should
be used. They more or less belong to folklore, but their proofs (and the inverse
mappings) can be found in [9] and [17]. In the rest of this section, we show some
other equivalent notions which are/might be useful for some applications.

Let Z be an intersection semi-lattice on U and suppose that Hc U, H ¢ %
hold and Z U {H} is also closed under intersection. Consider the sets A satisfying
A €%, H c A. The intersection of all of these sets is in %, therefore it is different
from H. Denote it by £(H). (If Z = Z(£), then £(H) is the closure of H according
to &£.) H < £(H) is obvious. Let #(%) denote the set of all pairs (H, L(H)), where
Hc U,He&% but 2L (H} is closed under intersection. The following theorem
characterizes the possible sets #(%):

THEOREM 2.5 [9]

The set {(A;, B;)}T-, is equal to #(%) for some intersection semi-lattice %
iff the following conditions are satisfied:

A,cB;cU, A;#B;, (2.10)
A;c A; implies either B;C A; or B;D A;, 2.11)
A; c B; implies B;c B|, (2.12)

for any i and C c U satisfying A; c C c B;(A; # C # B;) there is a j
such that either C=A; or A;cC,B; ¢ C, B;? C all hold. 2.13)

The set of pairs (A;, B;) satisfying (2.10)—(2.13) is called an extension. Its
definition is not really beautiful, but it is needed in some applications. On the other
hand, it is also an equivalent notion to the closures:

THEOREM 2.6 [9]

% — (%) is a bijection between the set of intersection semi-lattices and the
set of extensions.

Let & be a closure on U. Define ¥; as the family of minimal sets A ¢ U such
that a; € £(A). It is clear that no member of ¥, is a subset of another member of
it. Such families are called inclusion-free or Sperner families. Hence, it is obvious
that

&; (1<i<n)is a Sperner family (2.14)
and

either &= (D) or {q;) €Y. (2.15)
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One more, essential property can be proved:

if A c U contains no subset belonging to &;

then {¥;: A contains a subset belonging to ¥;}
contains no subset belonging to ¥;. (2.16)
PROPOSITION 2.7 [22]

The |U | Spemer families satisfying (2.14)—(2.16) give an equivalent description
of the closures.

A function 6 satisfying
€A)cA (AcCU) (2.17)
is a choice function. Given a closure &£,

CA)=U-LWU-A) (2.18)

is a choice function.

THEOREM 2.8 [15]

The correspondence defined by (2.18) is a bijection between the sets of
closures and the set of choice functions satisfying

€(A) c Bc A implies 4(A)=%(B) for all A,Bc U
and

A c B implies €(A) c €(B) for all A,Bc U.

Given a determination & (or a closure 9, etc.), it determines the family
H=H(&) (or K = H(D)) of minimal keys. It is a non-empty Spemer family. Conversely,
if a non-empty Sperner family ¥ is given, then

A ifthereisno K € ¥ suchthat K c A,

$A) =
(4) {U ifthereisa K € H suchthat K c A

is a closure and the set of minimal keys in it is ¥. This, theorem 2.1 and proposition
2.2 prove the following proposition.

PROPOSITION 2.9

For any non-empty Sperner family ¥, there is a relation R in which the
family of minimal keys is X.

Of course, H does not determine &£ uniquely.
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3. Inequalities for the parameters of a database

We have shown an example of these kinds of problems in the introduction.
Theorem 1.1 determined the maximum number of minimal keys. Thalheim observed
that this bound can be improved if the domains are bounded.

THEOREM 3.1 [37]

Suppose that D(a;) <k (1 <i<n), where k* <2n+ 1. Then the number of

Improve this bound for small k’s.

PROBLEM 3.2

Let us show here an extension of theorem 1.1. In many practical cases, it is
known that a certain set of attributes cannot uniquely determine a too large set of
attributes. Formally, |B—A|< k (suppose k < n/2) must hold for any functional
dependency A — B. It follows that the keys are of size at least n — k. As earlier, the
minimal keys form a Spemer family. Thus, we have to find the largest Sperner
family with members of size at least n— k. However, this is an easy task knowing
the YBLM-inequality (Yamamoto [39], Bollob4s [6], Lubell [29], Meshalkin [31]);
it is often called the LYM-inequality:

YBLM-INEQUALITY

If the number of i-element members in a Sperner family & of n elements is

fi, then
- [
z

In our case, if the Sperner family is the family of minimal keys, then f, = f}
=...=fpt-1=0 holds. Use the inequality

('f)s( " ) if k<n/2 n—ksSisn
i n—k

f z?:n—kﬁ |9|
1 = = i
>.§k<>>,§k(_k) G55 o )

3.1

in (3.1):
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This proves the following statement.

THEOREM 3.3

Suppose that all functional dependencies A — B on an n-element set of attributes
satisfy |B — A|< k, where k < n/2. Then the number of minimal keys is at most

(£)

Thalheim [36,37] obtained interesting results for the same problems for the
case of null-values (some data of some individuals are unknown).

The maximum number of functional dependencies is uninteresting, since the
determination uniquely determined by the functional dependency & — U serves as
the extremal one. (The number of functional dependencies is 22” here.) The situation
is rather different if we consider only those functional dependencies which are non-
trivial and non-reducible. A functional dependency A — B is called basic if

A#B,
there is no A" C A(A’ # A) such that A’ — B,
there is no B” D B(B” # B) such that A —» B”.

Let N(n) denote the maximum number of basic functional dependencies in
a determination on n elements.

THEOREM 3.4 [3,28]

3/2
21— 3loglogy m 1y | oy < Nemy < 271 - 10821
log, elog, n 150/n

At first sight, it might be surprising that this number is near to the obvious
upper bound 2", However, in this case the real question is to determine the deviation
from this upper bound, that is, the second term. The above theorem gives only
estimates.

A similar, but perhaps more natural parameter of a determination 9 is the
following one. Let € be a set of functional dependencies on a set U, not necessarily
satisfying the conditions (2.1)—(2.4). We say that € generates the determination
D iff € D and D is the smallest such determination. The size |€ | of the smallest
¢ generating the determination & can be considered as the design complexity of 9.
It is denoted by C(2). Furthermore, introduce the notation C(n) = max{C(®) : @
is a determination on an n-element set} for the design complexity of the most
complex determination in this sense. There is an obvious upper estimate by theorem
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3.4 and C(n) < N(n). (It is not known how far these two parameters can be.) The
lower estimate can be obtained proving that

C( Ln/zJ) (L J]

(See Thalheim [38].)

THEOREM 3.5
_2_n- - ) 1033"2
c [l_ J)SC(n)SZ( 1504_)

A relation R in which the full family is E’D'I'_,, /2| Mmust have exponentially many
rows (see lemma 3.10), that is | R| must be very large. Mannila and Riihi [30]
started to investigate the analogous question with bounded | R|. Let C(n, m) denote
max{C(D) : D is a relation R on an n-element set U with size | R | at most m}. The
following result, surprisingly, states that the minimum number of functional
dependencies generating the worst determination remains exponential even in the
case of linearly many rows.

THEOREM 3.6 [30]
CQu+1, 3u+2)22%

PROBLEM 3.7

Find estimates for C(n, m), in general.

Mannila and Réih4 also investigated the algorithms finding the smallest (that
is, of size |C(D)|) € generating 9. They have shown in [30] that the number of
steps is at least cm log m for fixed n, where m is the number of rows and c is a
constant independent of m. The brute force algorithm needs o(n*2™m log m) steps.
On the other hand, as a function of n the number of steps must be exponential. In
the proof, they use the number of different &’s on an n-element set. (See section 4.)

PROBLEM 3.8

Give estimates on Ny(n) and C,(n), where these numbers are defined analogously
to N(n) and C(n) under the restriction | B — A| < k for all functional dependencies
A — B,

It is known from the results surveyed in section 2 that there is a relation R
for any determination @, closure &, or set of minimal keys X such that R generates
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exactly this given @, & or X. It is not clear, however, what is the minimum of | R |
satisfying these goals. Let s(D), s(£) and s(¥) denote these minima.

THEOREM 3.9 [12,14]

s(HYy<1+ (L;Jj

holds for any non-empty Sperner family 3 on n elements. On the other hand, there
is such a ¥ satisfying

1

b (LgJJ < $(%).

The proof of the latter inequality is not constructive. We do not know the
(nearly) worst Sperner families. A possible candidate is 92)’[,,,2 - This is one of the
motivations to study s(X}), where K} denotes the family of all k-element sets of
an n-element set. The following easy lemma is surprisingly strong.

s(HY) n
( Zk]z(k_l) (0<k<n).

For k=1, 2 or n— 1, the lower estimate obtained by this lemma is sharp. It
can be shown by easy constructions. For k = n, this inequality is too weak, but the
exact result can be obtained by a small trick.

LEMMA 3.10 [13,16]

THEOREM 3.11 [13,16]

SHDH =2, sK3) = [ 1++1+8n \’12"'8"]

SXopD=n sX)=n+1.

The case k=3 is very interesting from a mathematical point of view.
Lemma 3.10 leads to s(¥%) 2 n. In [13], we proved the equality for n’s of the form
12r + 1 and 12r + 4 and conjectured that the equality holds for all n > 7. We also
stated a conjecture for Steiner triple systems, where n is of the form 3r + 1. This
conjecture would imply the equality s(¥3) = n. Rausche [32] found a counterexample
for n = 10, but Gronau and Ganter [25] proved the second conjecture (therefore the
first one, as well) for the integers n = 3r + 1 > 13. Bennett and Wu [4] independently
proved the original conjecture for all n = 7 with the possible exception n = 8. Somewhat
later, but independently, Gronau and Mullin [26] also settled the general case. (Very
recently, Yeow Meng Chee [7] found a new proof for the second conjecture.)



J. Demetrovics, G.O.H. Katona, Functional dependencies in database relations 73

THEOREM 3.12
s(H3)=n, n=27 n=#8.

For k=4,5,...,n-3, n-2, one cannot expect a nice formula for s(X7).
However, it is asymptotically determined for fixed k and large n. In fact, lemma
3.10 gives an asymptotically correct lower estimate and the non-trivial construction
given in [13] ensures the validity of

THEOREM 3.13
f:ln("_l)’2 < s(XP) < czn(k_l)lz,

where ¢; and ¢, do not depend on n.

There is a similar result for large «’s.

THEOREM 3.14 [23]
1 .2 n 12
T Ss(‘j{,,_z)sin ,

cn@HDB < K™ L) < cqnt,
where ¢3 and ¢, do not depend on n.

Theorem 3.9 gives some information on the worst (in the sense of minimum
number of rows) key systems. It would be interesting to study smaller subclasses.
We are able to offer only open problems.

PROBLEM 3.15

Determine max s(X) for Sperner families on n elements inducing a determination
containing functional dependencies A — B satisfying | B — A| < k, where & is a fixed
integer.

PROBLEM 3.16

Determine max s(J{) (and mins(%)) for Sperner families on n elements,
satisfying | ¥ | = k.

Practically nothing is known about this problem. However, it has a connection
to another, perhaps easier problem. Let a subset A U be an antikey if it is not a
key (=superset of a member of X). The set of maximal antikeys is denoted by
¥ -!. The following inequalities are known from [13]:

=1 s(i’I{)
o1e(2)
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and
. (K <1+ K7,

that is, there is a strong connection between | % ~'| and s(%). This leads to another
open problem.

PROBLEM 3.17

Determine max | X ~!| and min | % ~!| for Sperner families having exactly | X | =k
members.

We think that the minimum is attained for a family consisting of i and (i + 1)-
element subsets, where i is determined by

(1)er<(2)

if k is not too large relative to n.

There is a slight “philosophical” problem around s(%). Mostly, it is supposed
that the functional dependencies are given in advance, independently of the actual
individuals (rows). Even in this case, it has some sense to determine the minimum
number of rows generating the “full” system of functional dependencies, as was
formulated by Thalheim [38]. On the other hand, our opinion is that one cannot
completely exclude the view that the set of functional dependencies is (at least
partially) determined by the actual data. In connection with this way of thinking,
it is natural to ask what is the dependency structure of a random relation, as was
suggested by Biskup [5].

Very little is known about s(&) for closures (or, equivalently, determinations).
Of course,

S(L}) = s(X}) (3.2)
holds. Furthermore, there is a result on the s-function of direct products. This is not

true for key systems.
Let U=U; U U, be a partition of U and let &, and £, be two closures

defined on U; and U,, respectively. The direct product £, x &£, is defined by
(:SB] X 22) (A) = .SB[(A M U]) v sz(A N UQ_)
THEOREM 3.18 [13]

S($1 X .582) = S(gl) + S(gl)— 1.

Theorems 3.11, 3.18 and (3.2) enable us to determine s($£) for several closures.
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4, Partially ordered sets of closures

In this section, we will consider relations (databases) on a fixed attribute set
U. More precisely, the closures generated by them will serve as models. That is,
we forget about other properties of the databases (like other types of dependencies)
— only the functional dependencies are considered. A further very natural condition
is added, namely only the closures satisfying

L£2D)=0 4.1)

are considered. (For the determinations, this means that & — A holds only for
A=0.)

A database is constantly changing during its life. It also changes the corresponding
closure. A typical change is to delete the data of some individuals. If A — {a}
(Ac U, a €U) is true, then it remains true after the change. This implies

Z(A) € £5(A) (for all A c U), “4.2)

where &£, and £, denote the closures before and after the change. We write £, =2 £,
in this case. It is easy to see that this property is transitive, consequently the
closures on a fixed n-element set U satisfying (4.1) form a partially ordered set
(poset) for the ordering given in (4.2). The aim of the present section is to study
this poset P.

In section 2, we saw that the family of closed sets is an equivalent form of
a closure. A closure satisfies (4.1) iff

D e%(P). (4.3)

On the other hand, it is easy to see [9] that

Hence, it follows that an equivalent form of P consists of the intersection semi-
lattices containing &, ordered by inclusion as families.

It is easy to see that P has a rank function r(%) = | % |- 2, that is, r is zero
for some element (namely, for ¥ = (&, U)) and if %, c %, and there is no third
element between them, then r(%,) =r(%,) + 1.

The first thing to study is the size of P. Consider the intersection semi-lattices
consisting of U, some subsets of size | n/2] and all of their intersections. They are
distinct and their number is

i)

It was shown in [10] that the exponent in the upper estimate is at most
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n
242 .
( Ln/2] )

Recently, Alekseyev [1] proved that 2+/2 can be omitted.

THEOREM 4.1
27 w2y )(+o(1)
2(L Iu) S|P 2(L ’2") .

PROBLEM 4.2

Determine P asymptotically.

Since the number of Sperner families is determined by Korshunov [27]
asymptotically (not only the asymptotics of the exponent!), there is some hope that
the same can be done using proposition 2.7 and Korshunov’s theorem.

There are some initial results concerning the sizes of the lower levels of P.
THEOREM 4.3 [11]

The number a(n, k) of the elements of rank k& in P satisfies

a(n, k) ~ &(k) (k + 1)",
where k is fixed and » tends to infinity.

The next theorem deals with the levels near to the top. (The top rank is 2" — 2).

THEOREM 4.4 [11]
an, 2" -2 — k) ~ p(k)n*,

where k is fixed and n tends to infinity.
Comparing theorems 4.3 and 4.4, one can see that P is very asymmetric: the
lower levels are much wider than the top ones.

PROBLEM 4.5

Determine approximately the widest level of P.

Theorems 4.3 and 4.4 suggest that the widest level is far below the
middle.

To continue our investigations to understand the structure of P, the next task
is to determine the minimum and maximum degrees at each level. Let deg,(£) and
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degy(£) denote the number of edges going upward and downward, respectively,
from &£ in the Hasse diagram of P. The following functions are defined:

fi(n, k) = max(deg,(£) : r(%) = k},
fr(n, k) = min{deg,(£) : r(%) = k},
f3(n, k) = max {degy(&E) : r(¥) = k},
fa(n, k) = min{degy(¥) : r(%) = k}.
(1<n0<k<2"-2).
fi(n, k) is fully determined; there are estimates on f>(n, k) and f,(n, k). However, we

know practically nothing about f3(n, k).

THEOREM 4.6 [9]
filn, k)=2"-2 -k,

THEOREM 4.7 [9]
A, k)=0  iff k=2"_2,

fan, k) =1 iff k=2"_2n-a-1_29

for some 0 < a < n. If k>2""! + 2, then f,(n, k) < the number of bits 1 in the binary
expansion of 2" — k- 2. This is at most n— 1.

Let us mention that the proof is based on the somewhat strange notion of
#H(%), see theorem 2.6.

THEOREM 4.8 [9]

[logy(k + 1)] < fyln, k) < |logy(k +2)| -1

+ (the number of non-zero digits in the binary form of & + 2).

PROBLEM 4.9

Give estimates on f3(n, k).

5. Branching and partial dependencies

We now introduce a more general (weaker) dependency than the functional
dependency. We do this first in a very particular case to show the usefulness of the
concept. Let Ac U and b € U. We say that b (I, 2)-depends on A if the values in
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A determine the values in a “two-valued” way. That is, there exist no three rows
being the same in A but having different values in b. We denote thisby A — (1, 2) — b.
Similarly, A — (1, q) — b if there exist no ¢ + 1 rows having the same values in
each column of A, but containing g + 1 different values in column b.

As an example, suppose that the database consists of the trips of an international
transport truck, more precisely, the names of the countries the truck enters. For the
sake of simplicity, let us suppose that a truck goes through exactly four countries
on each trip (counting the start and endpoints, too) and does not enter a country
twice during one trip. Suppose furthermore that there are thirty possible countries,
and one country has at most five neighbours. Let a,, a,, as, a4 denote the countries
as attributes. It is easy to see that a; — (1,5) = a3, {ay,a;} = (1,4) > a3 and
{ay, a3} = (1, 4) > a,. Now, we cannot decrease the size of the stored matrix, as
in the case of functional (that is, (1, 1)-) dependencies, but we can decrease the
range of the values in the new matrices. The domains D(q;) in the original database
have thirty possible values, names of the countries or some codes of them (5 bits
each, at least). Let us store a small table (30 x5 x5 =750 bits) that contains a
numbering of the neighbours of each country, which assigns to them the numbers
0, 1, 2, 3,4 in some order. Now we can replace the attribute a, by these numbers
(a}), because the value in a, gives the starting country and the value in aj determines
the second country with the help of the small table. The same holds for the
attribute a3, but here the number of possible values can be even further
decreased if another table is given containing the numbering of possible third
countries for each pair ay,a,. In this case, the attribute a3 can take only
four different values. The same holds for a4, too. That is, while each value
of the original relation could be encoded by 5 bits, now for the cost of two
small auxiliary tables we could decrease the length of the values in the
second column to 3 bits, and that of the elements in the third and fourth columns
to 2 bits.

It is easy to see that the same idea can be applied in each case when the paths
of a graph are stored, whose maximum degree is much less than the number of its
vertices.

After this long motivation, let us give the general definition. Fix a relation
R on the set of attributes U. Let Ac U, b €U and 1 <p < g integers. We say that
b (p, q)-depends on A if there are no g+ 1 rows of R such that they contain
at most p different values in each attribute in A, but ¢+ 1 different values
in b.

In [20], we called these dependencies branching. The referee called our
attention to the paper of Grant and Minker [24], in which they introduced the
numerical dependencies. These are identical to our (1, g)-dependencies. Their theorems
are special cases of the forthcoming ones.

Define the mapping $ = $g,, : 2V — 2V by

$A)={b:A—> (p,q) > b}.



J. Demetrovics, G.O.H. Katona, Functional dependencies in database relations 79

PROPOSITION 5.1
9 has the following properties:
Ac 3(A), 5.1
A c B implies $(A) c $(B), (5.2)
for any subsets A, B c U.

The set-functions satisfying conditions (5.1) and (5.2) are called increasing-
monotone functions. Note that (5.1) is identical with (2.6) and (5.2) is identical with
(2.7). An increasing-monotone function, however, does not in general satisfy the
third property (2.8) of closures.

Are these two conditions enough? We have only partial answers to this
question. We say that an increasing-monotone function N is (p, q)-representable
iff there is a relation R such that N = $g,,.

THEOREM 5.2 [20]

Let N be an increasing-monotone function satisfying N'(@) = @. Then, N is
(p, g)-representable if one of the following conditions holds:

p=1and 1<g,
p=2 and 3<gq,
2<p and p> -p-1<gq.
PROBLEM 5.3

Is the statement of theorem 5.2 true for any p < ¢? Is it possible to drop the
condition N (D) = @7

The first undecided case is p = 2, ¢ = 3. The situation is significantly different
if p=gq.

PROPOSITION 5.4 [20]
$rpp is a closure for any 1<p.

Thus, it is natural to ask if all closures are ( p, p)-representable for any given
p. If p < g, then we know that $, in general, is not a closure. However, is it at least
true that all closures are (p, q)-representable? The answer, in general, is negative.

THEOREM 5.5 [20]

If p>2, n>6, then £ is not (p, p)-representable.

The situation is better if p=g=2 orp<gq.
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THEOREM 5.6 [20]
Every closure is (p, ¢)-representable if one of the following condition holds:

p=1and 1<gq,

p=2 and 2<gq,
2
2< p and S%<q.

Hence, we can see that any closure is (1, 1)-representable (we knew this a
lot earlier!) and (2, 2)-representable. However, it is not true for (3, 3)-representation.
PROBLEM 5.7

Characterize the (3, 3)-representable closures.

One might think that this characterization, if found, is good for all (p, p).
This is not true, as we will see using the following theorem.

THEOREM 5.8 [34]

&y is (p, p)-representable forp=1,2,3,4,2k—-3,2k— 2, if k> 2 and is not
(p, p)-representable for %k —1<p<2k—-4and for 2k—-1<pif n> ny(k), k> 1.

For instance, £} is (p, p)-representable for large n iff p=1,2,3,4,5, 6.
This is a closure which is (6, 6)-representable but not (7, 7)-representable.

In the cases where a representation is found, one can define sp,(N) as the
minimum of | R| for relations representing N. In this part, we do not pose open
problems since they are obvious; the results are very modest.

THEOREM 5.9 [21]
51g(N) £ 2gn2"

holds for any integer ¢ > 1 and increasing-monotone function N.

Lemma 3.10 can easily be generalized for this case. This generalization helps
to prove the following statement:

THEOREM 5.10 [21]

822(.523) =2n if n>3.
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THEOREM 5.11 [33]

Spp(£5) = min {v t (v; 1) > n}.

Finally, let us only briefly mention the partial dependencies. The vector
a=(a,...,a;H,...,n)iscalled a partial function where the a’s are elements
of U and r, € D(a;,). We say that B=(b;, ... .b;; s, ...,s) depends on ain
R if each row containing 7, in the column of the attributes a;, (for all 1 <h<k)
contains s, in the attribute b;, (for all 1 < A <1). The paper [19] contains investigations

concerning this dependency.
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