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RENYI AND THE COMBINATORIAL SEARCH PROBLEMS

G. O. H. KATONA *

1. Introduction

The whole story has started with the Hillman, Rényi’s car. It was a kind of
a member of his family. That time, in the early sixties, very few people had
cars in Hungary, the gasoline was cheap, there was no parking problem. Once
he gave me a ride from the Institute to the cafeteria, less than 200 meters.
One day, however, the Hillman stopped its smooth services. Obviously, there
was some electrical problem with it. The electrician, however, was unable to
find the source of the trouble. Rényi had to find it, himself. He has found
it, and in the mean-time he has developed a general mathematical model for
the situation.

The car can be considered as a finite set of its parts. The car does not
work since one (hopefully exactly one, so we suppose it) of its parts does not
work properly. When trying to find it, tests are performed. One test tries
to function a subset of the parts. If it does not work then the defective part
is in this subset, otherwise it is not contained in it. After performing several
such tests we have to determine the defective part.

Let us formulate it a little more mathematically. A finite set X of n
elements is given. A distinguished element z of X is given but it is unknown
by us. Furthermore, a family A of subsets of X is given. We can ask the
questions if “z is in A” or not, for members A of 4. We have to identify z
on the basis of the answers for the above questions. We call the members of
A question sets. They are the potential questions.

There are two basically different models. If the sequence A;,..., Ay, of
actual questions (a subfamily of A) is fixed in advance then we say that this
is a linear search. TFhe obvious mathematical aim is to minimize the number
m of questions. On the other hand, the choice of the next question may
depend on the answers to the previous questions. The first question set is
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A € A. If the answer is z ¢ A then the second question set is Ag € A while
in the case of the answer £ € A the second question set is A; € 4. The third
question set is Agg € A, Ag1 € A, A10 € A and A;; € A, resp. depending on
the two previous answers, etc. This is called a tree search. In this case the
maximum number of questions (the length of the longest path of the tree)
should be minimized. The tree search seems to be more practical, however
the linear search is much simpler to organize, so in the era of fast computers
it might be equally important.

With this model Rényi [27] initiated an area, the combinatorial search
problems. He and his followers have written many papers. However his work
was not the only source of these investigations. Now we show some other
sources.

Let X be a set of soldiers in World War II. A sample of blood is drawn
from every person. The ones.containing syphilitic antigen should be found
using the Wasserman test. It was an original idea that the blood samples
could be poured and tested together. In this way it can be decided if a
certain subset of soldiers contains an infected person or not. This model
is basicly identical with the previous one, the only difference is that the
number of elements to be identified is not known, in advance. (See [10] and
[31].) This kind of models are called group testing and considered to belong
to Mathematical Statistics.

An even older question was raised by Steinhaus [30]. A set of n table
tennis players is given. Suppose that their abilities are constant, it can be
described with a real number, there is no randomness, so the better one
always defeats the weaker one. The aim is to determine their total order
by pairwise comparisons, that is, table tennis matches. Although it is not
clear at the first sight, this problem is also covered by the above model. Let
X be the set of n! permutations of the players. One of these permutations
is searched. One match determines if this unknown permutation belongs to
the set of n!/2 permutations where player a is better than player b.

So, one can say that the area has three sources (Fig. 1). The present
author wrote a survey paper [16| containing 66 references, the book by
Ahlswede and Wegener (1] has 166 references and finally the most recent
summarization of the area, the book of Aigner [2] quotes 198 papers. These
numbers show that the area became quite large, a small paper cannot survey
it. Therefore the aim of the present paper is to survey those papers which
were written (mostly by Hungarian authors) under a direct or an indirect
influence of Rényi.
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2. Qualitatively independent sets and partitions

Let A,B C X be two question sets. Suppose that they are disjoint. First
ask if the unknown z is in A or not. If the answer is no, we have to ask B,
as well. However, if the answer is yes then there is no need to ask B, we
know that z is not in B. If one of

(1) AUB, AUB, AUB, AUB

is empty, the situation is similar, that is, one of the possible answers to the
first question makes the second question superfluous. We say that A and B
are qualitatively independent if none of the sets in (1) is empty.

Rényi (28] raised the question what is the maximum of |4| on an n-
element set if any two different members of A are qualitatively independent.
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The answer is very easy for even n-s. It is easy to see that the sets in (1)
are all non-empty iff there is no inclusion among the sets A, A, B, B.
A family S of subsets is called a Sperner family iff there is no inclusion in it,
that is, C € D holds for any two distinct members of S. Using this notion,
we can state that any two members of A = {A;, A2,..., A} are qualita-
tively independent if and only if 4* = {A4;, Az,...,Am,A1,42,...,An} isa
Sperner family. However, the maximum size of a Sperner family is known:

(l J)'

Therefore, if A4 is a family of pairwise qualitatively independent sets then
A* is a Sperner family and 2m is less than equal to the above binomial

coefficient, so
1{ n
m< - . ]
2 (lfJ)

This inequality is true for any n but it is also sharp for even n-s, due to
the following construction. Take all n/2-element subsets containing a fixed
element f.

NS 3

The odd case is non-trivial, but easy. It was independently discovered
by many authors [17], [6], [7], [20].

THEOREM 1. The mazimum size of a family of pairwise qualitatively
independent sets on n elements 1s

(B

The construction coincides with the even case.

[20] also contains good estimates on a more general problem. We say that
r > 2 sets are qualitatively independent, if they divide X into 2" non-empty
sets. The maximum size of a family in which any r sets are qualitatively
independent is estimated.

One may consider a more general condition. If all the sets in (1) are of

size at least d then we say that A and B are qualitatively independent of
depth d.

PROBLEM 1. What is the: maximum size of a family of pairwise quali-
tatively independent sets of depth p on n elements?
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It might be true that the obvious generalization of Theorem 1 holds for
fixed d and large n. The case when d = cn seems to be hard.

In what follows, we will consider another generalization. Before that a
further motivation will be presented. It can be considered as the fourth
source of the area of combinatorial search problems. Given n coins, one of
them is counterfeit. It is known that the counterfeit coin is lighter than the
good ones and it should be found by the minimum number of weighings using
an equal arm balance. (No additional weights can be used.) The novelty
in this problem is that one question (weighing) devides the groundset into
three parts: the set of coins in the left arm, the set of coins in the right arm
and the rest. In our earlier model the groundset was devided into two sets:
the question set and its complement. This example of the equal arm balance
suggests to introduce the notion of the question partition: P = {A,,..., A,},
where Aj,..., A, is a partition of the groundset X. The answer to this
question determines the unique ¢ satisfying z € A;. In this case a family P
of partitions is given and the partitions for a linear search or tree search are
chosen from this P. If the number of parts in a partition does not exceed r
we call it an r-partition.

The notion of the qualitatively independent partitions is straightforward.
P1 and P; are qualitatively independent r-partitions if they divide X into r?
non-empty subsets. One cannot expect that the exact maximum number
m(n,r) of the pairwise qualitatively independent r-partitions could be de-
termined, only its exponent. Poljak and Tuza [25] proved that

. 1

limsup — logm(n,r) < =
n r

A recent great achievement is

THEOREM 2 (Gargano, Kérner, Vaccaro [13]).
; 1 2
limsup —logm(n,r) = -.

n r

One should mention the preliminary work of Korner and Simonyi [22].

The following result does not belong to this section, but it is a surprising
development in the area of the counterfeit coin problem and this is the best
point to mention it. Suppose that n coins are given, m < n of them are of
weight 1— ¢ (counterfeit coins) the rest of them are of weight 1 (good coins).
Find the shortest tree search determining all the counterfeit coins. As the
number of possibilities is (:J and one question has three different answers,
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the minimum number of questions (in the worst case) is at least logs (;)
This lower estimate is not the best because we cannot always divide the
possibilities into 3 equal parts. The exact result, in general, expected to be
quite complicated as it depends on number theoretical properties of n and
m. The cases m = 1,2,3,4,5 are considered in (8], [32], [33], [34], [35].

It is surprising that the above lower estimate is still almost sharp in the
following sense.

THEOREM 3 (Pyber [26]). If ezactly m (lighter) conterfeit coins are to
be found among n coins then it can be done in at most

logs (n) + 15m
m

3. Optimal search with constraints on the sizes of question sets

steps in all cases.

Let us turn back to the original question. Suppose, again, that there is
exactly one unknown element z € X, the family of question sets is the
family of all subsets in X and a tree search is used. Let k denote the length
of the longest branch of the tree, that is, the number of questions in the
worst case. Then the number of sequences of answers is at most 2* since a
sequence cannot be an extension of another one. For different z the sequence
must be different. Hence 2*¥ > n holds. This implies k > [log, n]. Now we
show a construction of a (very special) tree search whose length is [log; n].
It will be a linear search. Label the elements of X by 1,2,...,n. These labels
can be written with [log, n] binary digits. Let A; consist of the elements of
X whose label’s jth digit is 1. The answers to these questions determine all
digits of the label of the unknown z. Thus we can formulate the following
theorem.

THEOREM 4 (Folklore). The minimum number of questions in a linear
(tree) search to find the only unknown element in an n-element set 1s

[logy n].

Rényi asked what the situation is if A = {A : A € X,|A| < k}. The
situation is considerably different here. E.g. the results for the tree search
and the linear search do not coincide any more. The case of the tree search
is easier both to describe and to prove.
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Observe that any question set can be replaced by its complement. Thus,
k < n/2 can be supposed. Furthermore, if after some questions in a tree
search it is known that the unknown z is in a subset of size s < 2k then z can
be found by [log, s] further questions, using Theorem 4. Now let us give an
optimal tree search. Write n in the form n = gk + s where k < s < 2k and
take a partition By, B, ..., By, Bgyy where |By| = ... = |Bg| = &, |Bysa] =
s. Ask By, B, ... until the answer is “yes”, z € B; (i < ¢). Then z can be
found by [log, k] further questions. If the first such case is § = ¢+ 1 then
we need [log, s] more questions. It is not hard to prove that this is (one of)
the best tree search [16].

THEOREM 5. Suppose that the question sets are the subsets of size at
most k < n. Then the shortest tree search needs

[%]-2+-Pog2(n-k[%]-¥2k)].

When, in his seminar, Rényi asked what the minimum number of ques-
tions in a tree search is, many students (B. Bollobés, J. Galambos, T.
Nemetz and D. Szész) brought the solution for the next seminar for the
case _’ik;_ll +1 < n. Then the result is [2f5]]. The present author has
constructed ([15]) the best linear search for all k. This leads to the following

estimates.

THEOREM 6. Denote by I(n, k) the minimum length of a linear search
finding an unknown element in an n-element set using question sets of size
at most k. Then

- ?1 gmmgl%?-%
il Pl — log —
logk ¥ - log oy %

(See also [23] and [37].) As it is pointed out by Dyachkov, the lower
estimate is asymptotically sharp when k = ¢n.

Baranyai [5] generalized the construction for r-partitions whose parts
(except the last one) are bounded in size. Proving this result he proved a
“small lemma” which turned out to be a 120 yeer old conjecture of Sylvester:

THEOREM 7 (Baranyai [4]). Suppose that k divides n. Then the set of
all k-element subsets of the n-element set X can be partitioned into such
classes that each class forms a partition of X.
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Although this famous result does not belong to the Combinatorial Search
Theory, it was created under an indirect influence of Rényi. It is obvious
to ask what can be said if k does not divide n. To formulate a conjecture
concerning this general case, a new definition is needed. Suppose that the
elements of the groundset X are ordered: X = {z1,z3,...,Zn}. Define
A; = {x(i—l)k+1,$(i—1)k+2,---;I(i—l)k+k} where the indices are considered
mod n. The family Ay, Az,..., Ay where w = n/gcd(n, k) is called a wreath.
(Neighboring k-element subsets are taken after each other until the end of
one fits to the beginning of the first set.)

CONJECTURE (Baranyai and Katona). There are permutations of the
groundset in such a way that these permutations of the wreath give all k-
element sets exactly once.

It seems to be hard to settle this conjecture. Sylvester’s conjecture was
earlier attacked by algebraic methods and an algebraic way of thinking.
Baranyai’s brilliant idea was to use matrices and flows in networks. This
conjecture, however, seems to be too algebraic. One does not expect to solve
it without algebra. (Unless it is not true.)

Let us turn back to the search problems with restrictions on A. We will
use the problem of Steinhaus to obtain motivations. The problem actually
became an important problem of computer science (with numbers rather
than table tennis players). It is the simplest one of the so called sorting
problems (see [21]). It is obvious by Theorem 4 that a tree search to find
the actual permutation needs at least [log, n!] pairwise comparisons. This is
nlog; n+cin+o(n). The tree search given by Ford and Johnson [12] (which is
belived to be the best) needs nlog, n+can+o(n) steps. That is, the first term
is determined, but not the second one. Let us see the reason why the lower
estimate [log, n!] cannot be realized by a tree search. To reach this bound
we have to halve at each stage the set of possible cases, therefore the question
sets should divide the groundset (of permutations) into 4 equal parts. This
is, however not always possible. Consider the comparisons a <?< b and
b <?< ¢. Denote by A and B the set of permutations giving positive answer
to the first and the second question, resp. Then two of the sets in (1) have
size n!/3 and the other two have size n!/6. This is the motivation to the
following investigations.

THEOREM 8 ([18].) The minimum length of a linear search using ques-
tion sels satisfying

|AnB| <1
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18
V8n-T7-1
5 .
Let us mention that this strange formula is equal to the smallest m such
that

m
n51+m+(2).

[18] also gives the exact minimum up to an additional constant 1 for the case
|An B| < 2. Fairly good estimates are given for the cases |AN B| < k where
k <c¥n.

For the case of tree search let us start with an observation of Sebd [29].
If the first question set is A and the answer is z € A and the second question
set is A; then it can be replaced by AN A;. On the other hand, when z ¢ A
then Ag can be replaced by A N Ag. Continuing in this way we obtain a
modified tree search where the question sets on different branches of the
tree are disjoint while the ones along the same branch are in inclusion. Of
course the lengths of the branches are unchanged. Thus, when looking for
the shortest tree search, this strong property may be supposed. E. g. if k = 1
then the original condition becomes simply the condition that all question
sets, with exception of the very first one, are of size 1.

Seb8 [29] has determined the length of the shortest tree search under
the condition |A N B| < k for all k < n/4, however the formula is rather
complicated so we give only the case k = 1 here.

THEOREM 9 (Sebd [29]). The minimum length of a tree search using
question sets satisfying

|ANnB| <1
18

[\/Sn 7~ 1]
..

Compare it with Theorem 8. The best linear search is not longer than
the best tree search, in this case. For k = 2, however, the former one is
about 1/3/2-times larger than the latter one.

[29] contains good estimates also for the case when the intersection of
any m question sets is bounded.

The combination of the previous two types of constraints has not been
studied, yet:
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PROBLEM 2. Determine the length of the shortest linear and tree
searchs, resp., under the conditions

|A| <k, |]AnB| <l forall A,BEe€A.

Let us see the situation at the search of a permutation by binary com-
parisons. We observed that the comparisons a <? < b and b <? < ¢ imply
the existence of two question sets dividing the set of permutations into four
parts containing one third, one third, one sixth, one sixth of the whole set,
instead of the “good” proportion one fourth, one fourth, one fourth, one
fourth. However, this is not true for all pairs of questions! What we can
say is that among any 3 + 1 questions there is one such pair. One way of
expressing the fact that two question sets are not intersecting each other in
a “good” proportion is the use of the entropy function of the Information
Theory. The entropy of the partition A U A3 U A3 U A4 of X is

Z g, (XL
11X %% |
This expression is 2 for the case when 4; = 1| X|. It is known from Informa-

tion Theory that it is smaller in all other cases. This suggests the following
problem.

PROBLEM 3. Determine the length f(t, E) of the shortest linear search
under the condition that among any t question sets there is a pair such that
the 4-partition induced by them has an entropy at most E.

We have only estimates. To formulate them some more definitions are
needed. Put h(z) = —zlog,z — (1 — z)logy(1 — 2). The inverse of h is
defined using the interval 0 < z < 1/2 where it is monotone.

THEOREM 10.
2-FE

2
—logzn“(t"‘l)

2
3 < f(t,E) < z log; n + O(log, n).

PROOF. Start with the lower estimate. Let £ be a random variable
taking on values from X. Define the probabilities to be equal: P(¢ = z) =
1/n. Denote the question sets by Aj,..., Am. They define some further

random variables:
g 0 if &¢A;
YTl if €e A
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Now define the entropy of a random variable 5 taking on its different values
with probabilities py,...,pn:

H(n)=-)_pilogp;.
i=1

Observe that ¢ determines the random vector (&1,...,£m). On the other
hand, as the answers to the questions “z € A;” determine z, therefore the

converse is also true, (£1,...,€&y,) determines £. Consequently the distribu-
tion of the two random variables are identical and

(2) H(§) = H((£1,---,€m)) =logy n.

Here we need an elementary lemma from Information Theory (see any text-
book on Information Theory, e.g. [11], [9]):

(3) H((n1,n2)) < H(m) + H(n2).

(2) and (3) imply
(4) logyn < H((&1,€2)) + H(&s) + H((€s, 7)) + . ..

for any partition of the set {&;,...,&n} into one and two-element subsets.
If they are all one-element sets then (4) leads to log, n < m, only, since the
entropy of one §; is bounded by one. However if we find M such disjoint
pairs that H((&;, {;)) < E(< 2) then (4) results in

(5) logon+ M(2 - E) < m.

To find the best M, the problem will be reformulated for graphs in
an obvious way. Define a graph whose vertices are £; and two vertices

are connected iff H((&i,&;)) < E. The following graph theoretic lemma is
needed:

LEMMA. Given a simple graph G on m vertices, there is at least one
edge among any t vertices. Then it contains at least

(6) ==

vertez-disjoint edges in G. This result is sharp.
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PROOF. Take the largest set L of vertex-disjoint edges. Let |L| = 1. If
m — 21 > t then there are ¢ vertices not contained in any member of L. By
the conditions of the lemma there is an edge among these t edges which is
vertex-disjoint to the members of L. This contradicts the maximality of L.
The contradiction proves m — 2l < t and the first part of the lemma.

Now consider the graph G of m vertices consisting of a complete graph
on m —t + 2 vertices and isolated vertices. This graph obviously satisfies
the conditions of the lemma and cannot contain more vertex-disjoint edges
than (6). O

The lemma and (5) imply

log, n + m—_-2t—+—1(2-— E)<m
and the lower estimate in Theorem 10.

The upper estimate will be proved by a simple construction. Define
k = [nh~1(E/2)|. Question sets of size at most k will be used. Then, by
the monotonity of h(z), we have H(&;) < h(k/n) < h(h™Y(E/2)) = E/2. (3)
implies H (&, ;) < E, as needed.

Use the construction mentioned after Theorem 6 as k/n is a constant.
Then the lower estimate is sharp in Theorem 6. It gives the upper estimate

logn

___h(h‘l(E/2)) + O(log n)

which coincides with the one given in the Theorem. O

Let us have some remarks concerning this Theorem.

1. It gives an approximate solution to the problem of Theorem 8 in a
new case.

2. Problem 3 and Theorem 10 are not intended to help finding the
shortest linear search for a permutation by pairwise comparisons. It is a
trivial problem, one has to compare all ('2‘) pairs. However the solution of
the analogous problem for the tree search might give a better lower estimate
on the permutation problem.

4. Miscellany

As it was mentioned earlier, a tree search needs nlog, n + O(n) steps to find
the proper permutation of n objects (numbers) by pairwise comparisons.
Modern computers have complex hardwares able to execute many operations
simultanously. This is called parallel computation. As one object can be
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used only in one comparison at each moment, not more than n/2 parallel
operations are possible. Therefore at least O(log n) steps are needed even if
parallel steps are allowed. Ajtai, Komlés and Szemerédi [3] proved that this
can really be done in this many steps.

A. Varecza has proved many interesting results of sorting type. Let us
mention only one of them here. Let z;,...,z,-2,¥y1,y2 be distinct integers.
It should be decided by pairwise comparisons if y; are y; neighboring in the
natural order of all these numbers. It is easy to see that 2(n — 2) steps are
enough. However it is not at all trivial to prove that there is no shorter tree
algorithm. It is proved in [36].

If there are more unknown elements in X then one question set A may
give different answers. One of the natural models is when there are two
possible answers: either a) there is one unknown element in A or b) there
is none. Hwang and Vera Sés [14] gave good estimates for the minimum
length of a linear search when the number d of unknown elements is known
in advance.

J. N. Srivastava’s following idea connected search theory with the theory
of statistical factor analysis. The usual aim of factor analysis is (roughly
speaking) to determine the weights of the influence of different factors for
the investigated quantity. Now suppose that there are many possible factors,
very few of them have a real influence the other ones have no influence (or
are negligable). However it is not known which ones are the non-negligable.
Thus in this model two things are done simultanously: a) determination of
the non-negligable factors, b) determination of the weights of them. [19]
contains results on the tools used to solve this problem, the so called search
designs. These investigations led to the problem of finding the largest family
S closed under the operation symmetric difference and such that S — {0} is
a Sperner family [19]. Generalizations can be found in [24].
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