Partial dependencies in relational
databases and their realization”

J. Demetrovics

Computation and Automation Institute, Hungarian Academy of Sciences, Victor Hugo u. 18-22, H-1132
Budapest, Hungary

G.0.H. Katona and D. Miklos

Mathematical Institute, Hungarian Academy of Sciences, P.O.B. 127, H-1364 Budapest, Hungary

Received 12 January 1991

Abstract

Demetrovics, J., G.O.H. Katona and D. Miklés, Partial dependencies in relational databases and their
realization, Discrete Applied Mathematics 40 (1992) 127-138.

Weakening the functional dependencies introduced by Amstrong we get the notion of the partial
dependencies defined on the relational databases. We show that the partial dependencies can be charac-
terized by the closure operations of the poset formed by the partial functions on the attributes of the
databases. On the other hand, we give necessary and sufficient conditions so that for such a closure
operation one can find on the given set of attributes a database whose partial dependencies generate the
given closure operation. We also investigate some questions about how to realize certain structures
related to databases by a database of minimal number of rows, columns or elements.

1. Introduction

In this paper we investigate a new kind of dependencies, called partial dependency,
defined on databases first introduced in [4] and discussed in details in [5]. After
repeating some results from [5] which show some kind of ‘‘negative’’ result on
whether one can simplify a database using partial dependencies we will deal with the
realization of these dependencies.

The model of a database is a matrix in this paper, columns of whose, called at-

Correspondence to: Professor G.O.H. Katona, Mathematics Institute, Hungarian Academy of Sciences,
Realtanoda u. 13-15, Budapest 1053, Hungary.

" This research was partially supported by Hungarian National Foundation of Scientific Research Grant no.
2575.



tributes, are indexed by the names of the data (a column contains the same sort of
data) while the rows are indexed by the names of the individuals and called records
(a row contains the data of a single individual).

The set of the attributes (and the columns of the matrix) will be denoted by Q.
If ACQ, be 2, we say, according to the original definition of dependency [I1,2],
that b functionally depends on A iff the data in 4 uniquely determine the datum
in b. In many real examples it may happen that this condition is only ‘‘almost’’
fulfilled, i.e., there are sets A C 2 and attributes b € 2 such that for almost all rows
if two of them coincide in A, then they coincide in b as well. In other words, certain
data structures in the columns A uniquely determine the datum in b, but certain
others do not. We say that b is partially dependent on a data structure in A4 if all
records of the database system containing these data in 4 contain the same datum
in b.

There are theoretical and practical reasons to investigate partial dependency. The
theoretical one is, for example, that every functional dependency contains a partial
dependency and the later one is a finer structure. A practical reason is the following:
consider a very simple database consisting of four columns Q = {x,, x,, x3, x4} such
that x, functionally depends on x; and x, depends on x;. Now instead of storing the
whole matrix on four columns practically it is enough to store only the two columns
x; and x3 and another small matrix showing the functional dependencies. However,
if x, only ‘‘almost’’ depends on x;, and x, almost depends on x,, i.e., the depend-
encies are violated only in a few number of rows, then the functional dependency
model is not enough to simplify the storage of the database (and save memory),
while it could be done using partial dependency.

In the second section of the paper we will give the necessary definitions and nota-
tions while the third section contains the investigation carried out to see if we can
weaken the partial dependency structure keeping all the necessary information
about the database but simplifying the storage and search. In the last section first
we investigate if the structures introduced in Section 3 can be represented by data-
bases then suggest a possible way to avoid redundancy (but we will loose informa-
tion as well) and investigate the representability of this structure as well. We also
raise and partially solve some questions about how to realize this structure with
databases on a minimum number of rows and/or columns and with a limited num-
ber of elements.

2. Definitions, notations

Here a database will be considered as an m X n matrix, the columns be called at-
tributes and their sets denoted by . An element of the database is an element of
the matrix. The subsets of € will be denoted by capital letters while the columns,
i.e., the elements of  and the elements of the database will be denoted by lower-
case letters.

The best-known dependency of databases is called functional dependency defined



in the following way: if we have two subsets 4, B of Q then B functionally depends
on A (denoted by A — B) iff there are no two rows (records) of the database which
coincide in A but differ in at least one position of B. The singular databases are not
uniquely determined by the set of the functional dependencies they satisfy but these
dependencies contain much information about them.

If we weaken the functional dependency we get the much weaker but much more
concrete partial dependency which depends on the single elements. Suppose that in
a database the elements in the two columns ¢, and a, do not determine uniquely the
element in column b in every case, but for example if in a row the elements in the
columns ay, a, are ry, r,, respectively, then the element in the attribute b is r5, i.e.,
uniquely determined. We denote this fact by (a,, a,;ry, 1) = (b;r3).

To give the general definition of partial dependency we first define the partial
Junctions. 1f D, denotes the set of the possible values of the attributes ¢; in a data-
base (the elements of the database) and r; € D;, then a=(a,, ..., a;;r, ..., r;), where
a; € £2 is called a partial function whose domain is the set D(«)={ay,...,a;} and
the value of the function taken at a; is r;. For example, the rows of the database
are partial functions, and deleting some elements from the domain of the partial
function together with the value taken there results another partial function. We say
that a partial function f=(b,, ..., b;;sy,...,S;) depends (partially depends) on « (in
a given database)—which we will denote by a — f—iff in every row of the database
which contains the elements r; in the rows g; (1 <i<k) the columns b; will contain
the elements s; (1=/=</).

The above definition is given only for those partial functions, which are coherent
in a given database, which means that they are realized by at least one row of the
database, i.c., deleting some entries of this row we get the partial function. For a
given database the coherent partial functions have a certain nice structure. If a =
(ay,...,ag;r,...,ry) and g=(by,...,b;s,...,5;) are two partial functions then we
say that  is a part of 8, denoted by aC B if {a,,...,ac} C{by,..., b} and a;=b; im-
plies that r;=s;. For every database the set of coherent partial functions will have
the hereditary structure, i.e., they will satisfy the following two properties:

(2.1) If e P and fCa, then feP.

(2.2) For every o€ P there is a ye P, such that aCy, y=(c,...,C,;...) and
{Cisvsus G} =2

We define the intersection or meet and union of partial functions, though the later
one only for certain pairs. Let a=(ay, ..., a7, ..., 1) and f=(by, ..., 0581, ..., 8))

be two partial functions. The intersection of them is the partial function y whose
domain is the set of those attributes ¢ which are in the domains of both « and 8,
say c=a;=b; and r;=s;. The value of the partial function y at c is of course r;=s;.
For the partial functions a¢=(ay,...,ax;r,....r,) and f=(by, ..., b5, ...,5) we
define the union of them only if the domain of their intersection equals the intersec-
tion of their domains (the earlier is always a subset of the later). In this case their
union is the partial function y whose domain is the union of the domains of « and
f and which takes the following values at an attribute ¢ in its domain:



r; if c=a; and c¢{b,,...,b;},

S,

; if c=b; and c¢ {ay, ..., a},

r":S'

; if c=a;=b;.

J

In the last case r;=s; is given by the fact that the domain of the intersection of «
and g equals the intersection of their domains.

3. Different models and structures for the partial dependency

Using these definitions we give the closure of a partial function, similarly to the
(well-known set-theoretical) closure of a subset of Q (see [3]). We need the following
straightforward lemma:

Lemma 3.1. If «, B, y, 0 are partial functions in a database, then

G.1.1) a—a;

(3.1.2) a—=p and p—y imply a—y;

(3.1.3) acCy, 6 Cpand a— f imply that y — &,

(3.1.4) if a—p, y— 0 and o U y exists and is coherent, then BU ¢ exists and is
coherent as well, and ¢ Uy — fUJ.

Definition. The closure of the (coherent) partial function & (denoted by C(«)) is the
partial function £ which has the largest domain among those partial functions y for
which a - y.

There should be a partial function £ satisfying the above definition since if £,
and f, are two partial functions with @ — 8, and ¢ — 8, then by (3.1.4) their union
exists and is coherent and @ — ;U ,. Thus we have

Cla) = Uﬂﬁ )]
or in other words
Ca= U ®:9. ()
a— (b;s)

We have the following lemma listing the properties of the closure (the proof is
straightforward and omitted):

Lemma 3.2. If a and p are two partial functions on the same database, then
3.2.1) ac C(a);
(3.2.2) aC p implies that C(a)C C(B);
(3.2.3) C(C(a))=C(a).

In general we will call a function a C function closure if it is defined on a hereditary



set of partial functions and satisfies the properties (3.2.1)-(3.2.3). Thus the function
a— C(a) where « is a given partial function in a database and C(«) is its closure
according to the Definition is a function closure. In the remaining of this section
we will repeat the analogue of the investigation carried out by Demetrovics and
Katona in [3,4] to find the connection between the usual closure operation and the
functional dependency. The details and the easier proofs of these results are given
in [S] but the argument here is self-contained.

First note that in a given database the closure operation given in the Definition
by the partial dependency uniquely determines the partial dependency.

Lemma 3.3. o — f holds if and only if pC C(a).

Let T be a family of pairs of partial functions in a database. T'is called a depend-
ency family if the —; relation defined by T as

a—rf if and only if (a,B)eT

satisfies properties (3.1.1)-(3.1.4). Lemma 3.1 shows that if we define the family
T'so that (a, 8) € Tiff f depends on @ then we get a dependency family. In the proof
of the statements of Lemma 3.2 one only needs to have the facts about — given in
Lemma 3.1, so we can define a function closure C for every dependency family.

Theorem 3.4. There is a one-to-one correspondence between the T dependency
Jamilies and C function closures given on the same ground set as it is given below:

TwCm= | ). A3)

(a,(b;s)eT

The inverse of this is given by:

C—,;T={(a, 8): B C(e0)}. C))

Proof. Lemma 3.2 proves that the operation given by —, in (3) will be a function
closure. On the other hand, we have to prove that the families 7 given by (4) will
be dependency families, i.e., the corresponding relation —; satisfies properties
(3.1.1)-(3.1.4). Here C satisfies (3.2.1) which implies that — satisfies (3.1.1). If
BC C(a)and y C C(f), then (3.2.2) and (3.2.3) give y C C(B) C C(C()) = C(a), that
is (3.1.2) also holds for 7. (3.2.3) follows from the definitions and property (3.2.2):
If acy, dC B and pC C(a), then 6 C BC C(a) C C(y), that is (y,0) e T.

Now we prove that — satisfies (3.1.4). We know that o U y exists and that it is
coherent, thus C(aUy) exists and is coherent. 8C C(a)c C(eUy) and 6 C C(y) C
C(aUy), that is # and J has a common coherent superset which easily implies that
their union exists and that it is coherent and of course a subset of C(a U ), which
is exactly what we had to prove.

Still we have to prove that the two operations —; and —, are inverse of each
other. Let 7} —»;C—, T, and (a, #) be an element of 7;. Then—according to prop-



erty (3.1.3) of T,—every attribute of f# takes the same value in the union which
gives C(a) in (3) as it takes by g, that is fC C(a) which means that (&, )€ 7. On
the other hand, if (e, #) € 75, then fC C(a), that is for every attribute » of 8 and
value s taken there by f we have a — (b;s), which implies with property (3.1.4) of
T, that a - B, (e, f) e T.

Finally let C, —», T—,C, and a a coherent partial function. For every attribute b
of C() and value s taken there by C, (@) we have (b;s) C C,(«), and thus («, (b;5)) €
T. This fact and definition (3) together imply Cy(a)=Cy(x). [J

What we have so far is that partial dependencies can be uniquely described by
function closures (Lemma 3.2) or dependency families (Theorem 3.4). The depend-
ency family corresponding to a partial dependency is essentially the same as the par-
tial dependency and the function closure is definitely a simpler structure, so in the
remaining of this section we will focus on the function closure operation. On the
other hand, we have to know that not all function closure operations defined on par-
tial functions are closure operations given by the partial dependency structure of a
certain database. This question will be more thoroughly investigated in Section 4.

We will call a partial function & (in a database or according to a closure operation
C defined by the database) closed if &« = C(ct). We prove that the set of closed partial
functions uniquely determines the closure and/or the dependency.

Theorem 3.5. Let G be a family of partial functions defined on the same ground
set 2. G will be the set of closed partial functions according to a closure operation
Ciff

(3.5.1) for every a€ % there is a ye G, such that aCy, y={cj,...,Cp;...} and
€5 5000 p=i0

(3.5.2) a,pe 9 implies that aN fe 4.

Proof. The set of closed functions corresponding to a function closure satisfies
properties (3.5.1) and (3.5.2). (2.2) assures that for every (closed) ¢ there is a y satis-
fying (3.5.1) and this y will trivially be closed. If & and £ are two closed partial func-
tions, then e = C(«) and f=C(B), aN BCa and so by (3.2.2), C(aN ) C()=c.
Similarly, C(eN g)c C(B)=pand so C(aN B)CaN B.(3.2.1) gives the opposite of
this, altogether C(@N B)=a N B, that is ¢ N B is a closed partial function in the
given dependency.

If an arbitrary family ¢ of partial functions satisfies properties (3.5.1) and (3.5.2),
we give the closure operation whose closed sets will be exactly the elements of %.
The function closure will be defined on those partial functions which are subsets of
some maximal elements (those, whose domain is ) of ¢ by

C@y= [ B

acfe@

It is easy to see that this closure will have as closed sets exactly the elements of ¢. [



Here property (3.5.2) means that ¢ is closed. The families of partial functions
satisfying properties (3.5.1) and (3.5.2) will be called partial meet-semilattices. The
previous theorem means that the families of closed partial functions form a partial
meet-semilattice and so the function closure uniquely gives the meet-semilattice.
Next we prove the opposite of this.

Theorem 3.6. There is a one-to-one relation between the partial meet-semilattices
% and function closure operations C defined on the same ground sets as it is shown
below:

g Ca)= [) 8. (%)

acCpfe9

The inverse of this is given by:

C—,9={a: Cla)=0a}. (6)

Proof. It has been already shown that definition (5) gives a function closure opera-
tion and definition (6) gives a partial meet-semilattice and also that (6) gives all the
partial meet-semilattices. We will show that —, is injective and that —, is an in-
verse of —,. Let C; and C, be two different function closures, « a partial function
such that Ci(a) # C,(@) and 4, and %, the two corresponding meet-semilattices ac-
cording to —, (here C)(a) # C,() may mean that one of C,(«) and C,(«) does not
exist). If we have C(a) but not C,(«) then the earlier (which is in %,) may not be
in %, since the opposite would mean that there is a partial function in %, which
contains «, and so C,(@) would be defined. If both C,(«) and C,() are defined
but Ci(a)# C,(xx) then there is a partial function (b;s) defined only on one at-
tribute such that exactly one of C,(a) and C,(«) contains it, say (b;s) C C(a) and
(b;5) £ Cy(a). Then a € Cy(ar) and so Ci(Cy()) 2 Cy(ex) 3 (b;5). At the same time we
have C,(ar) and so C,(C,(e)) = Cy(e) 3 (b;s). This implies that the closure of the
partial function C,(«) in the closure C) is a superset of C,(«), that is %, does not
contain C,(«), which is obviously an element of %,.

Let C, be a closure, C;—, ¢ and ¢ —, C,. If for an arbitrary partial function «
we have C|(a) then Ci(a) € ¥, so C,() is defined and—as it was proved in Theo-
rem 3.5—it equals Cj(a). On the other hand, if we have C,(«) then there is a
partial function in ¢ containing ¢, and so the closure of « is defined in C,. The
existence of C\(a) again implies C;(a) =C,(a). [J

In the case of the functional dependency the fact that the closure operation and
so the dependency itself is uniquely determined by the set of the closed sets of at-
tributes decreases the necessary space to store the information in a database and
may significantly simplify the structure of the storage. On the opposite of this, in
the case of the partial dependency the set of closed partial functions is a bigger set
than even the whole database, since every row of the database is a closed partial
function. This bigger structure, however, carries no more information than the



original database. So the question is if we can consider only a subset of the closed
functions which carries all information, or at least a big part of it.

Property (3.5.2) shows that the partial meet-semilattice ¢ can be described by
much fewer elements than its cardinality. Let .# (%) denote the set of those elements
of ¢ which are not the meet of two other different elements of 4. (Even this weaker
structure will contain all the rows of the database, and possible some other partial
functions as well.)

Lemma 3.7. Every element of a partial meet-semilattice G is the meet of some (=1)
partial functions from (%) but there is no real subset of #(%) having this
property.

We have the following straightforward lemma describing the families .#(9).

Lemma 3.8. A family 3 of partial functions is an #(%) family of a partial meet-
semilattice G iff it satisfies the following two properties:

(3.8.1) for all ae 3 there is a ye 3 such that aCy, y={c,...,Cy;...} and
{8}, .00} =523

(3.8.2) ifa=(_, @, r=1, a,ay, ...,a, € 5 then a=a; for some i.

The families of partial functions satisfying properties (3.8.1) and (3.8.2) are called
meet-free. The proof of the following theorem is straightforward.

Theorem 3.9. There is a one-to-one realization between the partial meet-semilattices
% and the meel-free families 3 of partial functions given by

G —M(D), )]
whose inverse is given by

T2 9={eqN---Na,: r=1, o, ...,a,€ 7}. 8)

4. The realization of partial dependencies

By the results of the previous section the partial dependencies or the partial func-
tion closures are uniquely determined by the meet-free families of the partial func-
tions. However, a similar statement about the databases and meet-free families of
partial functions is not true as the following example shows (we have seen that the
database uniquely determines the corresponding meet-free family but it could be
that for a meet-free family there is no database corresponding to it). Let the meet-
free family of partial functions be {(a, b,c;p, q,r),(a, b; p,q)}. The only database
whose partial functions closure’s meet-free family could be this is the one having
three attributes (a, b, ¢) and the only one row (p, g, r), but the corresponding meet-
free family has only one element (a, b,c; p,q,r).



The problem in the above example was that the meet-free family there had a non-
maximal element (i.e., an element not being defined on the whole ground set Q).
We show that this can never happen.

Theorem 4.1. Let 9 be a partial meet-semilattice formed by the closed partial func-
tions of a database. Then every element of G which is not defined on the whole
ground set £ is the meet of two partial functions different from itself.

Proof. Let {a,,...,a;} be a real subset of Q and e =(ay, ..., a;r, ..., r;) be a closed
partial function. Let ce @2, but cé{ay,...,a;}. Since a=(ay,...,a;;r,...,ry) is a
closed partial function we have two different elements of the database s, ¢ such
that there are two rows of the database containing (ay,...,Q, C;Fys ..., g, ) and
(@), ..., Ciryy .. 1y, 1), Let the closure of (ay,...,q,¢;r, ..., r,S) be f and the
closure of (ay, ..., 0, C; 1y, ..., Iy, t) be y. Then B and y both contain ¢ and so SNy 2
. Let now f and y be two closed partial functions different from ¢ such that
BNy 2aand D(SNy)\ D(e)is aminimal set. Suppose that D(BN y)\ D(«) contains

at least one element, say ¢ and SN y takes the value s there. @ =(ay, ..., Qg Fyy .oy Tk)
is closed, and so there should be a row of the database which contains « but takes
a different value, say 7, at c. Let d be the closure of (ay, ..., 0, ¢;ry, ..., Iy, £). Then

d2aandso dN(LNy)2abut dand BN y take different values at ¢ and so the do-
main of d N (S N yp) is strictly smaller than the domain of AN y, a contradiction. [

This means that in the case of a given database .#(%) satisfies the following
property:

4.1) for all ae M(9G)re, a={c,...,c,;...} and {c,...,c,} =Q.

A meet-free family of partial functions having this additional property will be
called big. A big family is uniquely realizable by the partial dependency relation of
a database, as the following clear lemma shows.

Lemma 4.2. For a given big family 5 of partial functions let M be a database
(matrix) whose attributes are the elements of Q and rows the elements of 3, and
so defined on the whole set Q. Then the meet-free family of partial functions cor-
responding to M as described in Section 3 is 3, or equivalently, the system of partial
dependencies given by M is the same as given by 3.

So far we have been investigating structures equivalent to the original database
(having no less information) and it turned out that in view of the partial dependency
we cannot simplify the structure of a database. The case may be different if we com-
bine functional and partial dependencies to solve the problem mentioned in the in-
troduction, which may be the subject of a further investigation. Here we focus on
the possibility of loosing some information in exchange of simplifying the structure.
We could avoid the redundandy mentioned at the end of Section 3 by deleting all
the maximal elements of .#(%) but then we would be left by an empty set, as proved



here. A better approach could be to delete first the maximal partial functions from
the set of closed partial functions ¢, denote the remainder by %’ and then take those
elements from ¢’ which are not the meet of two other elements. Let us denote the
result by .#(%). One can easily see that from .4, (%) we can get all the partial
functions of ¢ which are not defined on the whole ground set © and for the relation
of %" and .#)(%) we can repeat Lemma 3.8 and Theorem 3.9, except that from
Lemma 3.8 property (3.8.1) should be deleted.

We have a new structure which may or may not be used to describe the database.
For a given % the corresponding (%) will satisfy (3.8.2) but it will not be neces-
sarily true that every nonmaximal element of .#,(%) will be the meet of two ele-
ments different from it. For example in Table 1 the closed partial functions in the
rows are (a, b; p,q) and (a; p), where the latter is nonmaximal in .4, (%) but is not
the meet of other closed partial functions from the set A(G).

Of course we have a property (%) trivially satisfies:

(4.2) for every (ay,...,a;;...) € M(9) {ay,...,a;} is a real subset of Q.

Theorem 4.3. For every set 3 of partial functions satisfying properties (3.8.2) and
(4.2) there is a database such that for the corresponding partial meet-semilattice 9
we have A (%)= 3.

Proof. We prove that there is meet-semilattice ¢ of partial functions for which
A (%) is not only meet-free, but big as well. Then Lemma 4.2 assures that there is
a corresponding database.

For every element o of 3 take two new elements of the future database, say a
and b. Then for « define two partial functions defined on the whole ground set
in the following way: both contain ¢ and on the attributes not in the domain of «
one takes everywhere a while the other one takes everywhere b. Consider now the
big set .4 consisting of the pairs taken for every element @ of 5 and only those.
The meet of the elements of the pair taken from ¢ will trivially be & and one can
easily see that every other meet of at least two elements from .4 will be the meet
of some elements of 3. So if we take the set ¢ corresponding to .4 then .4 (%)
will really be 3. [

Finally we investigate the following question: if we have a set 3 of n partial
functions satisfying properties (3.8.2) and (4.2) then how many rows do we need in
a database for which for the corresponding partial meet-semilattice ¢ we have

Table 1
Attributes a b c
First row p r s

Second row

=

Third row P q u




A6(%)= 3?7 The theorem above implies that 2n rows are enough. On the other
hand, it is easy to see that the partial functions in 3 should be contained in at least
two different rows such that it is the meet of those two rows. This means that if
we have k rows then (5)=# or roughly kz]/ﬂ. Theoretically one can reach this
lower bound: if in a database the meets of every two rows are different from each
other we will have many elements of .4, (%) on relatively few rows.

Lemma 4.4. For every k there is a database % on k rows such that 4,(9) :(’5).

Proof. Suppose we have an indefinite supply of different elements for the database
and let the database be defined on (%) columns, each being assigned to a different
pair of rows. If column @ corresponds to a pair of rows, then these rows at the posi-
tion given by the columns contain the same element (the corresponding database
takes the same value) and with these exceptions the database contains all different
elements. One can easily see that in this database for every pair of rows we have
one element in .4, (%) which has exactly one element in its domain. [

In the proof of Lemma 4.4 we considered as many columns and as many elements
as it could be reasonable. The question becomes much more difficult if we limit the
number of columns and elements of the database and still want to reach a bound
in Lemma 4.4. For example, we may ask: what is the minimum number of the col-
umns of a database if it has k rows and |.#(9)| = (%), i.e., the meet of every two
rows of the database is different from the other ones. Frankl and Fiiredi investigated
a similar question for sets [6]. Although they considered union instead of meet, the
questions are trivially equivalent in case of subsets of a set. However, in our case
their results do not apply: here the meet and union are not dual of each other (the
latter is not even defined sometimes) and the definition of the meet of two partial
functions is rather different from the definition of the intersection of two sets.

Thus we have only the following two simple results on the minimum number of
columns:

Lemma 4.5. If in a database on k rows the meet of every two rows (considered as
partial functions) are different of the other ones the database has at least log, k
columns.

Proof. On m columns the domain of every row has 2" —1 nonempty subsets and
so the row as partial function may have 2” —1 different meets of other functions.
If there are k—1 other rows and all of them have to have different meet with the
given row we have 2" —1=k-1. O

In this lemma we had no information on the number of the elements of the data-
base. It is clear that a limit on the number of elements may increase the number of
necessary columns but we have results only if we are restricted to two elements.



Lemma 4.6. If in a database on k rows the meet of every two rows (considered as
partial functions) are different of the other ones and the database has only two
elements the database has at least (2/1og 3)log, k columns.

Proof. On m columns there are 3% possible partial functions if the functions may
take only two different values. The meet of the rows should have domain smaller
than the whole ground set 2, and so a row cannot be the meet of any (other) two
rows. We have k rows and so (%) different intersections which implies that 3" — k>
. O

References

[1] W.W. Armstrong, Dependency structures of data base relationships, Information Processing ’74
(North-Holland, Amsterdam, 1974) 580-583.

[2] E.F. Codd, A relational model of data for large shared data banks, Comm. ACM 13 (1970) 377-387.

[3] J. Demetrovics and G.O.H. Katona, Combinatorial problems of database models, in: Algebra, Com-
binatorics and Logic in Computer Science, Colloquia Mathematica Societatis Janos Bolyai 42
(North-Holland, Amsterdam, 1983) 331-353.

[4] J. Demetrovics and G.O.H. Katona, Extremal Combinatorial problems of database models, Manu-
script.

[5] J. Demetrovics, G.O.H. Katona and D. Miklés, Partial dependencies in relational databases,
Alkalmaz. Mat. Lapok 15 (1990/91) 163-179 (in Hungarian).

[6] P. Frankl and Z. Fiiredi, Union-free hypergraphs and probability theory, European J. Combin. 5§
(1984) 127-131.



