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Abstract

Katona, G.O.H. and L.V. Quintas, The largest component in a random subgraph of the n-cycle,
Discrete Mathematics 121 (1993) 113-116.

Let M denote the order of the largest component in a random subgraph H of the n-cycle C,, where
H has the same vertex set as C,, and its edge set is defined by independently selecting, with the same
constant probability, each of the edges of C,. The probability that M is equal to k is known for k=1
and for n>k>|n/2]. Here we obtain the exact result for k=2 and comment on the cases
| n/2 |>k>2.

1. Introduction

Let M denote the order of the largest component in a random subgraph H of the
n-cycle C,, where H has the same vertex set as C, and its edge set is defined by
independently selecting, with the same constant probability, each of the edges of C,.

In [2] P(M=k), the probability that M =k, was determined for k=1 and for
n=k>| n/2 |. Here we investigate the cases 1 <k <| n/2 | which left unresolved in [2,
Problem 3.5, p. 249]. Specifically, we obtain the exact solution for k=2 and the
asymptotic solution for fixed k and large n.

First note that

P(M=k=PM<k)—P(M<k—1) with P(M<1)=(1—p)". (1)

Thus, it is sufficient to determine P(M <k).



Now, let f(s,k, p) denote the probability that a random subgraph of a path with
s edges has its largest component of order at most k. Here a random subgraph of the
path is defined in the same way as was done for the n-cycle and with the same edge
probability p.

The event M <k in the n-cycle will occur if and only if any one of the disjoint events
(a) or (b) occurs:

(a) Edge {1,2} in the n-cycle is absent and the complement of {1,2} in the n-cycle
does not contain a component of order greater than k; or

(b) Fori=1toi=k—1,a path of length i in the n-cycle contains the edge {1,2}, the
two edges contiguous to this path are absent, and the complementary path of n—2—i
edges in the n-cycle does not contain a component of order greater than k.

Then, with g=1—p,

1

o
P(M<k)=qf(n—1,kp)+ Y ip'q* f(n—2—i,k,p). ()
i=1

We next note the recurrence relation for f.

fsk,p=1 fo<s<k—1
and (3)
k—1

fls.k,p)=Y p'af(s—1—ik,p) if s=k.

i=0

This is a recurrence relation for f'(s, k, p) in the variable s. Its characteristic equation
(see e.g. [3, pp. 210-215]) is

1 3 k—1

XK —gx*~ 1 —pgx* =2 —p2gx* T3 — ... —pt T 1g=0. (@)

2. The case k=2

If k=2 then the roots of the characteristic equation (4) can be easily calculated as
functions of p. Thus, it is an easy exercise to determine f (s, 2, p) as a function of s and p.
Finally, (2) and (1) lead to the full solution in the present case.

3. The cases 2<k <| n/2 |

Lemma 1. The characteristic equation (4) has exactly one positive real solution ry which
is larger in absolute value than each of the other solutions and for

wi(x)=q(1 +(p/x)+(p/x)?+ -+ (p/x) 1)
(@) if p>k/(k+1) then

max { kq, | —p*} <r, <min{wy(kq), p},



(b) if p<k/(k+1) then
max { p, wi(kg), 1 —p*} <r,<min{kq, 1},

(c) if p=k/(k+1) then r,=p.

Proof. We consider the characteristic equation (4) in the form
X =wg(x). (5)

The right-hand side of this equation corresponds to a curve y=w(x) which is
strictly decreasing and concave up for all x>0. Thus, there is only one positive real
solution ry.

Furthermore, if z is any nonpositive root of (5), we have z=w,(z), and from the
triangle inequality applied to (5) that

lz1<q(1+p/lzl+p*/|z]* +---+p* 71/ 27 1)

with equality if and only if z is a positive real. That is, | z| < wy(|z]). Therefore, if z is not
a positive real root of (4), we have |z| <r,.
The conditions separating the cases can be written as p > kq, p <kq and p=kgq, resp.
It is helpful to view the positive real solution as corresponding to the intersection of
y=xand y=wy(x). The value of w(x) at x=p is kq. This observation settles case (c).
Suppose that p> kg, then kg <r, <p. Furthermore, w,(kq)>r,. These inequalities
prove

kq <r,<min{w,(kq), p} 6)
The value of wy(x) at 1 is 1 —p*. This implies
1—pr<r. <1 (7)
(6) and (7) settle case (a). Case (b) can be proved similarly. [J
As noted in the proof of the above lemma, for all p and k it follows that
I —p*<r, <1. However, it is the case that for some k (perhaps for all k > 3) there are
values of p such that the bounds for r, are to be found among p, kq, and w,(kq). For

example, we can make the following observation.
For k=3, so that k/(k+1)=0.75, we have

if p=0.5, then 1 —p*<r, <1, which yields 0.875<r;<1;
if p=0.7, then w,(kq)<r,<kq, which yields 0.715 <r; <0.9;
if p=0.75, then r3=p=0.75; and

if p=0.8, then kq<r,<p, so that 0.6 <r;<0.8.

Lemma 2. If k=2, then ry>ry, .



Proof. By definition, r is a solution of x = wy(x) while r, _  is a solution of x =w, _ ; (x).
Since wy — ;(x) <wi(x) for all x, we have r,_,<r,. O

Theorem. If nis large and k is fixed, then P(M =k)~c(k, p)(r,)", where ry is the unique
positive real solution of (4) and c(k,p) is a constant, independent of n.

Proof. f(n, k,p)is alinear combination of the nth powers of the roots of the character-
istics equation (4) (with the obvious modifications in the case of repeated roots). It is
known by Lemma 1 that there is a unique and maximum in absolute value real
r, among these roots. The term containing (r)" in f(n, k, p) will dominate if n tends to
infinity, that is, f(n, k, p) ~d(r,)", where d is a constant independent of n and ~ denotes
that the ratio of the expressions tends to 1 if n tends to infinity. Using (2) we obtain the
analogous statement for P(M <k) with another constant ¢ in place of d. Thus, in
P(M=k)=P(M <k)—P(M <k—1), the first expression, P(M <k) will, by Lemma 2,
dominate asymptotically.
Therefore, P(M =k)~c(ry)" as stated. [
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