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ON THE NUMBER OF CLOSURE OPERATIONS

G. BUROSCH, J. DEMETROVICS*, G. O. H. KATONA*,
D. J. KLEITMAN and A. A. SAPOZHENKO

[5] introduces a natural partial order for the closure operations in a fixed
finite n-element set. It is shown that this partially set is ranked. In the present
paper estimates are given on the number of closure operations of fixed rank.
On the other hand, asymptotical results are given on the number of closure

operations determined uniquely by the family of subsets whose closure is the
underlying set (keys).

1. INTRODUCTION

Codd [7] and Armstrong [2] introduced the system of functional depen-
dencies as a model of a database. We, however, prefer another equivalent
variant, the closure operation (see e.g. [5]). Let X be the (finite) set of
attributes, that is, the set of types of data. The elements of X are words
like “name”, “date of birth”, “age”, etc. Some of the data determine some
other data uniquely. For instance, the date of birth determines the age. Let
AC X,a € X,a & A. We say that A determines a and write A — a iff
the set of data in A determines the data in a, more precisely, there are no

two individuals having the same data in A and different in a. The function
L :2%X — 2% is defined by

L(A)={a:A— a}.

*The work of these authors is supported by the Hungarian National Foundation
for Scientific Research, grant number 2575
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This function obviously possesses the following properties:
A C L(4),

AC B implies L(A)C L(B),
L(L(A)) = L(A).

Such a function is known as a closure operation or briefly a closure. There-
fore a closure is a possible model of a database.

LO)=10

is a rather natural assumption for closures formed from databases. In the

present paper we will use the name closure for the functions satisfying this
additional condition.

The most natural question concerning a poset is to determine its size.
The present authors investigated this question in [6]. We proved that
the number a(n) of closures on an n-element set satisfies the following
inequalities:

2V3( 3 ) (1 +o(1))

Q(L%) <a(n) <2

This has been substantially improved by Alekseev [1] showing that

(1%))(1+o(1))

a(n) =2

as we conjectured.

In [5] we introduced a partially ordered set P of the closures as a model
of changing databases:

L1 <Ly iff L£1(A)DL2(A) holds forall AC X.

The integer valued function r(z),z € P is a rank function iff 0 < r(z) for
alz € P,r(z) =0forsomez e Pandz < y,z,y e P,Az:2 <2<y
imply r(y) = r(z) + 1. It has been proved in [5] that the partially ordered
set P of the closures has a rank function and the maximum rank is 2" — 2.
The set of elements with rank k is called the k*® level. In [5] we investigated
the minimum (maximum) number of immediate neighbours (degree in the
Hasse-diagram) at a given level.

In Section 2 we give the order of magnitude of the number of elements
in the k' and (2" — 2 — k)*® level, resp., for fixed k, and for n — co. It is
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interesting that the poset is much thinner at the top. the size of the k*? level
is exponential in k while the size of the (2" — 2 — k)*® level is a polynomial
of k.

The sets A satisfying £L(A) = X are called the keys of the closure L.
This concept has obviously an important role for the databases. The data
of a key determine the individual uniquely. The really important ones are
the minimal keys: they are keys containing no other key as a proper subset.
The family of all minimal keys is denoted by K = K(L). It is easy to see
that A,B € K, A # B imply A ¢ B. The families satisfying this condition
are called Sperner families. K is a saturated Sperner family iff it is Sperner
but K U {A} is non-Sperner for all A € 2% — K. It is proved in [5] that for
any non-empty Sperner family S there is a closure £ such that K(£) = S.
If K is saturated then £ is unique. The converse is not true. An example of
a non-saturated Sperner family is given in [5] which determines the closure
uniquely. Section 3 investigates the asymptotic behaviour of the number of
these Sperner families, determining the closure £ uniquely.

2. ON THE NUMBER OF CLOSURES OF FIXED RANK

Let L be a closure. The closed sets C are defined by £(C) = C. It is known
that the family Z = Z(L) of closed sets possesses the following properties:

0,XeZ, (2.1)
A,Be Z implies ANBe€Z. (2.2)

The families satisfying (2.1) and (2.2) are called intersection semi-lattices.
It is shown in [8] that the function f : £ — Z(L) is a bijection between the
set of closures and the set of intersection semi-lattices. Thus the number
of closures is equal to the number of intersection semi-lattices. It is proved
in [5] that the partially ordered set P defined in the introduction has a
rank function and the rank of a closure £ €P is equal to the number of
closed sets with respect to £ minus 2. We have to subtract 2 because the
smallest closure must have rank 0 but it has two closed sets () and X). So
the number a(n, k) of closures on n elements with rank % is equal to the
number of intersection semi-lattices on n elements and consisting of k + 2
members. E.g. a(n,0) = 1 and the only closure of rank 0 has two closed
sets: ) and X. If k = 1, then the number of closed sets is 3, they are (), X
and any set A different from them. Therefore a(n,1) = 2™ — 2.
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Let 2 = {Z1,...,Zm} be a family of subsets. The non-empty ones of
the sets
27 NZgn.. . g5

are called atoms, where ¢ is either 0 or 1 and Z! = Z,Z% = Z. It is easy to
see that the atoms form a partition of X.

Lemma 1. If Z is an intersection semi-lattice of k + 2 members then it has
at most k + 1 atoms.

Proof. We use induction on k. If & = 0 then the statement is trivial.
Suppose that & > 0 and that the statement is true for smaller values of
k. Take a member A € Z such that A # X and there isno B € Z,B D
A,B # X. We may suppose that Z2 = {Z1,..., Zx42} where A = Z;,,.
Consider a fixed sequence (eq,...,ex+1). Suppose that £; = 1 for some
i(1<i<k+1). Then Z;*N A € Z and consequently Z:* N A = Z; hold
for some j (1 < j < k+1). This implies

ZNZENA=2Z;nZH,

ZyNEFN A =F; NED,

and either
k+1 k+1
NzenA=()ze (2.3)
r=1 r=1

or
k+1 k+1
(zrnAd=() 2. (2.4)
r=1 r=1

It is obvious that the atoms of Z form a refinement of the partition defined
by Z—{A}. However (2.3) and (2.4) show that the atoms of Z—{A} defined
by at least one ¢; = 1 are also atoms of Z. The only atom of Z — {A} which
could be cut into two parts is

Z1NZaN...NZpy1.

Therefore the number of atoms could be increased by at most one. The
number of atoms of Z — {A} is at most k, since it is an intersection semi-
lattice and hence the number of atoms of Z is at most £+ 1. m

We call two families Z; and 25 weakly isomorphic (in notation 2, = 23)
iff there are bijections f and g between the sets of atoms and members, resp.,
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such that f(A) C g(Z) iff AC Z (A is an atom of Z1, f(A) is an atom
of 29, Z € 21,9(Z) € 2Z3). A family A is called atomic iff all of its atoms
have size 1. Z; is a contraction of Z; iff Z, ~ Z5 and Z; is atomic. It is
easy to see that the weak isomorphism is an equivalence relation and that
there is an atomic family in each equivalence class. On the other hand, it
is clear that one class contains either only intersection semi-lattices or none
of its elements has this property. Denote by C,(Z) the class of families on
n elements, weakly isomorphic to Z.

Denote by I(n, k) the set of intersection semi-lattices on n elements and
consisting of k42 members. Partition this set collecting all elements, having
the same (= strongly isomorphic) contraction, into one class:

I(n,k) = | Ca(A) (2.5)

AER

where R=R(n, k) is a set of atomic families representing each equivalence
class of k+2-member intersection semi-lattices on n elements, exactly once.

Let A €R and use the notation {a1,as,...,a,} for the groundset of
A. Denote by s(.A) the number of permutations i1,...,7, such that the
permutation a; — a;; brings A into itself. (That is, s(A) is the order of the
group of automorphism of A.)

Lemma 2. Suppose that A €R is a family on r elements. Then

|Co(A)] ~ W

holds (r is fixed, n — 00).

Proof. Let {a1,as,...,a,} be the groundset of A. Suppose that Z € C,,(A)
and that its groundset is X = {z;,23,...,2,}. A and Z and are weakly
isomorphic, therefore there are functions f and g mapping their atoms and
members, respectively, preserving inclusion. Define the function h(z) (z €
X) by h(z) =i iff z € f(a;). In this way we defined a function h for each
pair of (weakly isomorphic) A and Z. A can be chosen in s(A) ways, Z
can be chosen in |C,(A)| ways, independently. That is, the number of such
functions is s(.A)|C,(A)|. The atoms are non-empty, so the functions take
on all possible values from 1 to r. On the other hand, as it is easy to see,
all such functions can be obtained from some pair A, Z. The number of
functions defined on an n-element set, taking on integer values from 1 to r

and having all values at least once can be obtained by the inclusion-exclusion
formula:
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r +§:()ouﬂ )*(—1)* = 5(A)|Cn(A)].

The statement of the lemma easily follows. m

Let us introduce the following notation:

1
A€ES s(A)
where Si is the set of non-isomorphic atomic intersection semi-lattices with
k + 2 members and exactly k + 1 atoms.

Theorem 1. The number a(n,k) of closures on n elements and having
rank k satisfies

a(n, k) ~ n(k)(k+1)"
where k is fixed, n — co.

Proof. (2.5) implies
a(n, k) = Y |Ca(A)l.

A€ER
The number of terms depends only on k, therefore their asymptotic be-
haviour can be considered separately. The asymptotic behaviour is given
in Lemma 2. Only the terms with » = k + 1 count, by Lemma 1, the
rest is o((k 4+ 1)™). Collecting these terms we obtain the statement of the
theorem. m

Now we will investigate a(n,2" — 2 — k) for fixed k and large n. If
k = 0, we must have all sets in the family of closed sets, a(n,2" — 2) = 1.
Let k = 1. Only one set is missing from 2% . Since the family of closed sets is
an intersecting semi-lattice, the missing set must have n — 1 elements. This
missing set can be chosen in n different ways, a(n,2" — 3) = n.

For general k, let Z be a family of closed sets which is an intersection
semi-lattice consisting of 2" — k members. As the case k£ = 1 indicates, it
is better to consider the family of the complements of the complementing
family:

C={A: Ae2X -2}

It is easy to see that C possesses the following properties:

0, X ¢C, (2.6)
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IC| =k, (2.7)
AeC, A= BUC implies either Be Cor C €C. (2.8)

Now we prove some more properties about its inner atoms, that is, the
atoms contained in at least one member of C. The atom contained in no
member (if it is non-empty) is called the outer atom.

Lemma 3. If C satisfies (2.6)—(2.8) then the sizes of its inner atoms are 1
and their number is at most k.

Proof. Suppose that one of the inner atoms, say D has at least two
elements. There is a set A such that D C A € C. It has a partition A = BUC
dividing D into two non-empty parts. Then, by (2.8), either B or C is in C,
contradicting the assumption that D is an atom. This contradiction proves
that the inner atoms are of one element.

We prove the second statement of the lemma by induction on k. It is
trivial for k = 0, suppose that it is true for ¥k — 1 > 0 and prove it for k.
Suppose that C satisfies (2.6)—(2.8). Choose a maximal member A of C.
Then C — {A} satisfies (2.6)-(2.8) with k — 1. By the induction hypothesis,
the number of inner atoms of C — {A} is at-most k — 1. As each of these
atoms has only one element, A cannot cut them. The only new inner atom
formed by adding A to the family is the atom which is the intersection of
A and the complements of all other members of the family C. The number
of inner atoms is at most k. m

Let J(n,k) denote the set of families C satisfying (2.6)-(2.8) on n
elements. We will classify them according to their contractions. Let
U=U(n, k) be a set of possible contractions, representing each isomorphism
class exactly once. Then

I(n,k) = | Da() (2.9)
A€eU
where D,,(A) denotes the set of families on n elements, weakly isomorphic
to A and having all inner atoms of size 1. (That means, that only the outer
atom is blown up.)

Lemma 4. Suppose that A € U is a family on r + 1 elements. Then

n'f‘

IDn(A)I i S(A)

holds (r is fixed, n — 00).



98 G. Burosch et al.

Proof. Let {ao,a1,...,ar} be the groundset of A. Suppose that C € D, (.A)
and that its groundset is X = {z1,...,z,}. We may assume r < n, thus
the members of D, (A) have an outer atom, consequently so does A, as
well. Suppose that it is ag. A and C are weakly isomorphic therefore there
are functions f and g mapping their atoms and members, resp., preserving
inclusion. Define the function h(z) (z € X) by h(z) = ¢ iff z € f(a;).
In this way we defined a function h for each pair A,C. A can be chosen
in s(A) ways, C can be chosen in |Dy(A)| ways, independently. That is,
the number of such functions is s(A)|D,(A)|. The function h takes on the
values 0,1,...,r, and there is exactly one z € X such that h(z) = 7 for
1 =1,2,...,7. On the other hand, it is easy to see that all such functions can
be obtained for some pair A, C. The number of such functions is obviously

nn—1)...(n—r+1) = s(A)|D,(A)|.

The statement of the lemma easily follows. m

Let us introduce the following notation:

1
6(k)= > ——,
AET), S(A)
where T}, is the set of non-isomorphic atomic families satisfying (2.6)-(2.8)
on a (k + 1)-element set.

Theorem 2. The number a(n,2™ — 2 — k) of closures on n elements and
having rank 2™ — 2 — k satisfies

a(n, 2" — 2 — k) ~ 8(k)n*
where k is fixed, n — oo.

Proof. (2.9) implies

a(n,2" —2—k) = |Dn(A).
Aeu
The number of terms depend only on k, therefore their asymptotic behaviour
can be considered separately. The asymptotic behaviour is given in Lemma
4. Only the terms with r = k count, by Lemma 3, the rest is o(nF).
Collecting these terms the statement of the theorem is obtained. m

There is an apparent similarity between n(k) and 8(k). The families in
Sk and Ty, become very similar if ) and the groundset are omitted from the
families belonging to the latter one: they have k members different from
@ and the groundset, they are atomic with k + 1 atoms. However (2.2)
and (2.8) are really different as the following examples show for k£ = 3 :

{12}, {1,3}, {2}, {33}, {{1},{1,2}, {1, 2,3} }.
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Problem 1. Give good estimates on n(k) and (k).

Theorems 1 and 2 show that the sizes of the lowest levels grow ex-
ponentially while starting from the top the sizes grow only polynomially.
Although this is more or less true for the first and last cn levels where ¢ is a
small positive constant, this observation makes it probable, that the lowest
part of the partially ordered set P is much fatter than the upper part, for
a longer interval.

Problem 2. Determine the level of largest size in P.

3. THE NUMBER OF CLOSURES UNIQUELY DETERMINED BY THEIR
KEYS

The system K = K(£) of minimal keys of a closure L is determined uniquely
by the closure L. It is a non-empty Sperner family. Conversely, for any non-
empty Sperner family S there is a closure £ satisfying S = K(£). This is,
however, not unique. Denote by 3(n),v(n) and §(n) the number of Sperner
families, Sperner families determining the closure uniquely and saturated
Sperner families, resp. The inequality

é(n) < y(n) < B(n) < o(n)

is obvious. Korshunov [11] gave very good estimates on 3(n). However, we
need here only the simpler estimate of Kleitman [10]:

n n clnn

o(15)) < Bn) < 5P+ 4]

In this section 4(n) is investigated. First we prove that it is not much
smaller than 3(n).

Theorem 3. "
n)(1 4+ o(1
2(L5J)( all)} < y(n).

In the proof, we use bipartite graphs. Let G = (A, B; E) be a bipartite
graph, denote the minimum degree of the vertices in B and the maximum
degree of the vertices in A by dg and Dy, resp. A set C C A is called a
covering iff each vertex of B is connected to some vertex in C. Its minimum
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size is denoted by T4. A fractional covering is a non-negative real valued
function determined on A such that the sum of the values associated with
the vertices connected to any given vertex in B is at least 1. The minimum
of the total sum of the values of a fractional covering is denoted by 7}. It
is easy to see that any covering defines a fractional covering, if 1 and 0 are
associated with the elements of C and C, resp. Hence 74 < 74 follows.
Lovasz [12], Sapozhenko [13] and Stein [14] independently proved that

TA<(1+1n DA)TZ. (3-1)

The function associating 313 with each vertex is a fractional covering. This
implies
A
<A (3.2)
dp

(3.1) and (3.2) prove the following lemma.
Lemma 5. Let G = (A, B; E) be a bipartite graph and assume that the

degree of any vertex in B is at least dg (> 1). Then there is a subset C C A
such that each vertex of B is connected to some vertex of C' and

ICl <1+ lnDA)ﬂ.
dp

Lemma 6. Let G be a bipartite graph like in Lemma 5. Then there is
a subset C C A such that each vertex of B is connected to at least two
vertices of C' and

€l <2(1+m DA
dp—1

Proof. Choose C; according to Lemma 5. Let B’ the set of vertices in B
having exactly one neighbour in Cj. Define A’ = A — C, and let G’ be the
graph induced by A’ U B’. It is easy to see that the degree of any vertex

from B’ (in G’) is at least dg — 1. Apply Lemma 5 for G'. There exists a
C5 such that each vertex of B’ is connected to some vertex of C3 and

4]

AI
|Czi$(1+lnDAr) | I <(1+1nDA)——.
dg — 1

dg—1—

(3.3)

It is easy to see that C = C; U C; satisfies the requirements of the lemma.
The inequality is a consequence of the inequality for |C;| and (3.3). m



On the Number of Closure Operations 101

Lemma 7. There is a family F of | %|-element subsets of the n-element

X (n > 1) such that
Inn / n
s—( )= |F 3.4
= (15) 2V =

for any (l%J = 1) -element subset A of X there (3.5)

are two distinct members of F containing A.

Proof. We use Lemma 6. Let A and B be the family of all |%] and
[5] — 1-element subsets of X, resp. Then

dg = [;] +1and Dy = [g]
hold. An easy calculation shows the inequality in the lemma. m

Remark. If | < k < n are positive integers, then the Turdn number
T(n,k,l) is the minimum number of [-element subsets of an n-element set
such that every k-element subset contains at least one of them. There are
many papers on these Turdn numbers, see e.g. the survey of Brouwer and
Voorhoeve [4]. Corollary 2 of [9] gives

1 n n n
[%]—“(L% |) ST 21+ 1,73,

Our Lemma 7 gives an upper estimate which is weaker up to a factor Inn,
only. This upper estimate appeared in [3].

Proof of Theorem 3. If S is a Sperner family on X, define S~ to be
the family of subsets of X containing no member of S and maximal for this
property (that is, A is in S~ iff there is no member B of S such that B C A,
but for any proper superset C of A one can find such a B). Theorem 4 of [5]
states that the non-empty Sperner family S determines the closure £ (by
S = K(£)) uniquely iff

B C A € § implies that B is an

] ) _ (3.6)
intersection of some members of S.

It is easy to see that if S~ is equal to F of Lemma 7 then S determines a
closure uniquely, by (3.5) and (3.6). Furthermore, F C S~ has the same
implication. The number of such families S~ is at least

by (3.5). However, S; # S, implies S; # Sz. Hence we have the desired
number of families S determining the closure uniquely. m
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Theorem 4.

lim M = 0.

w0 B(n)

Proof. It is essentially based on the definitions and results of [11]. Denote
by By the family of all k-element subsets of an n-element set. Let A C B}.
The vertices of the graph G(.A) are the members of A and two vertices are
connected iff their intersection is of size kK — 1. A subfamily of A correspond-
ing to the vertices of a connected component of G(A) is called a component
of A. Let M(n) denote the set of all Sperner families on n elements. Two
cases are distinguished in the proof.

Case 1. n = 2q. Put

L(n) = {A € M(n) : A satisfies conditions (7) — (#44)}

where

(1) AC By UByUBE,

(12) ANB;_, and AN B}, are non-empty,
(2i1) both AN B_; and AN By, have only

components of cardinality 1 or 2.

It is easy to see that M°(n) C L(n), where M°(n) is defined on page
83 in [11]. Since M°(n) = M?*(n) (defined on page 70 in [11]), thus
Theorem 1, Lemma 14.5, (16.1) and (16.2) prove that |[M°(n)| and [M(n)|
are asymptotically equal. Hence the same holds for |L(n)|, that is,

[IL(n)| ~ [M(n)|.

We will now verify that S~ € L(n) implies that there are BC A€ &~
not satisfying (3.6), supposing n = 2¢ > 2. Choose A from S~ N By, ;. Two
cases are distinguished: A is a member of a component of size either 1 or
2. In the first case, a g-element subset B cannot be a subset of any other
member of §7, therefore it cannot be an intersection. In the second case,
let A = A; and As be the two elements of the component. If B C A; but
B # A;N Az then B is not contained in any other member of S, therefore
it cannot be an intersection. Such a B exists since ¢ + 1 > 1.

This proves that there are asymptotically as many families S~ not

satisfying (3.6) as the number of Sperner families. However, S; # S5
implies §7 # S;, thus the same statement is true for the number of families
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S not satisfying (3.6). That is, by Theorem 4 of [5], almost all Sperner
families are such that they do not determine the closure uniquely. The
proof in this case is complete.

Case 2. n = 2q + 1. The proof in this case is basically the same as in the
previous case, but the structure is more tedious. Put

Li(n) = L(n)
and
Lz(n) = {A € M(n) : A satisfies conditions (iv) — (vi)}
where
(1v) AC By UBy, UB,,,
(v) AN B} and AN By, , are non — empty,

(vi) both ANBj and ANBg, , have only components of cardinality 1 or 2.

Observe that complementation of all members of a family is a bijection
(denoted by f) between Li(n) and La(n). In [11], a certain set M) (n) is
introduced (page 96). It is a subset of L;(n). Theorem 1 and (17.1) of [11]
prove that the size of MY (n) is ~ %ﬁ(n) Therefore the size of L;i(n) is at
least this much. Since f(M?'(n)) C f(Li(n)) = La(n), the same can be
stated about the size of Ly(n). We obtained

L1 (n) ULz (n)| = |Li(n)| + |L2(n)|>B(n). (3.7)
However,
[L1(n) ULy (n)| < [M(n)| = B(n).

This and (3.7) imply that almost all Sperner families belong to L; (n)UL2(n).
One can see, as in case 1) that S~ € Ly(n) ULy(n) implies that S does not
determine a closure uniquely. The proof can be finished like in the previous
case.

Problem 3. Give better estimates on y(n) and give non-trivial estimates

on é(n).
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