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1. INTRODUCTION

Let X be a finite set of n elements. We say that the family A = {A4,,...,4Am}
of its distinct subsets is sntersecting if A; N A; # @ holds for any 1 < i < j < m.
A classic theorem of Erdfs Ko and Rado[2] states that an intersecting family A con-
sisting of k-element subsets, where k < n/2, has at most (:::) members.

Actually, they proved a more general theorem. The family A is called Sperner (see
[9]) if A; € A; never holds for i # j, that is, 4 is inclusion-free. It is proved in [2] that
an intersecting Sperner family consisting of subsets of size at most k(< n/2), has at
most (:::) members. This paper of Erdés, Ko and Rado (together with [9]) started a
new area of combinatorics. Here we present only the results significant from our point
of view.

The next major step is due to Bollobds [1]. Let p; = p;(A) denote the number of

i-element members of A.

BOLLOBAS'S INEQUALITY. If A is an intersecting Sperner family then the following

holds:
Yy o< (1)

(n—l = =
i<n/2 \i-1

Two subsets of size k > n/2, always intersect, so it is not interesting to investigate
the maximally sized intersecting families consisting of such subsets. However, if all sizes
are allowed then the question becomes interesting. Milner (7] proved that an intersecting
Sperner family has maximally ([,;11) members. It is casy to see that the inequality
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of Bollobds implies both forms of the Erdés-Ko-Rado theorem, but it does nt imply
Milner’s one. This fact led Greene, Katona and Klestman [6] to the following inequality:

Pi Py
PR A RIP Y R o

This inequality implies Milner's theorem, but it is too weak to imply Erdds-Ko-
Rado. The reason of this annoying situation was shown in [3]. The vector (po,p1,... ' Pn)
= (po(A),P1(A),...,pn(A)) is called the profileof A. The extreme points of the con-
vex hull of the set of profiles of all intersecting Sperner families on nelements were
determined in [3]. As a by-product, a large set of inequalities was determined for the
intersecting Sperner families. Both (1) and (2) were particular cases in this class of
inequalities. However, the class was too wide. Many of the inequalities were conse-
quences of others. The authors of [3] did not notice that a minimal set of inequalities
could have been easily deduced. This work is done in Section 2 of the present, paper.
These inequalities determine the hyperplanes bordering the convex hull of profiles of

the set of all intersecting Sperner families.

2. MINIMAL SET OF INEQUALITIES

If a family A is intersecting then it does not contain the empty set as a member.
Therefore po is zero. We modify the definition of the profile omitting this superflous
component: (py,...,pn). Consider the set of profiles of all intersecting Sperner families
in the n-dimensional Euclidean space, where n is the size of the ground set of the families.
Take the convex hull of this set of profiles. The vertices of this convex hull are called
briefly the eztreme points of the class of intersecting Sperner families. The starting

point of our investigations is the following theorem:

THEOREM. [3] The extreme points of the class of intersecting Sperner families are

vj=(0$“'101(n-’)101~--90) (n/2<15n),

w; = (0,...,0, (t__l),o,...,O) (1<i<n/2),

- il | . c
w;; :(0,...,0, (?__ :),0,...,0, (nj. ),0,...,0) (l <t Sn/Q, n<t+j).

For two vectors r and y we write z < y if the inequality holds componentwise. zy

denotes the inner product.
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A polyhedron P in the n-dimensional Euclidean space is called anti-blocking type
if P#9, € P implies 0 < x and 0 < y < z € P implies y € P (see [8]). P is full
if it contains elements (0,...,0,7;,0,...,0) (0 < ;) forall ¢ (1 <1 < n). It is easy
to see that the polihedron determined by the points given in the Theorem (that is, the
convex hall of the class of intersecting Sperner families) is full and anti-blocking type.

Define (sece [8])

A(P)={2:0< 2, 2z < 1,forall z € P}.

By a theorem of Fulkerson [4], [5] (see Theorem 9.4 in [8]) A(P) is full and anti-
blocking type, again.

An extreme point z of a polyhedron P is called essential if there is no other extreme
point y € P,z < y. It is easy to see that an anti-blocking type polyhedron is uniquely
determined by its essential extreme points.

A bordering hyperplane of an n-dimensional polyhedron P is an n — 1-dimensional
hyperplane, given by an equation ajz; + ... + a,,:::nl =1 orayzy + ...+ anzy =0,
containing at least n extreme points of I and satisfying the inequality of the same
direction for all points of P.

If P is full and anti-blocking type then z; = 0 is a bordering hyperplane for each s
and no other bordering hyperplane have 0 on the right hand side. The latter ones are
the essential bordering hyperplanes.

LEMMA 1. Y. aiz; = 1 is an essential hyperplane of the full anti-blocking type polihe-
dron P iff a = (ay,...,an) is an essential extreme point of A(P).

PROOF: First we verify that if }, a;z; = 1 is a bordering hyperplane of P then a €
A(P). As 0 € P, the inequality az < 1 must hold for the elements x of P. To prove
a € A(P) we need to show 0 < a, only. The hyperplane contains at least n vertices of
P. If all these vertices had 0 as a first component then they would be in the (n — 2)-
dimensional intersection of the hyperplanes ax = 1 and z; = 0. This contradiction
ensures the existence of a vertex z = (x1,...,zn) With a positive first component, on
the hyperplane. (0,z3,...,2,) € P follows by the anti-blocking type property. However
ar=1,a; <0and 0 < z; imply 0xy + az22 +... +anzn > 1. This contradiction proves
a; > 0 and, in general, a; > 0.

Let us show now that if az = 1 is a bordering hyperplane then a is an extreme point
of A(P). Suppose that it is not true. Then there exists a non-zero n-dimensional vector
b such that a + b € A(P),a — b € A(P). Hence we have (a + b)r<1land (a—b)z <1
for each vertex of P contained in the bordering hyperplane az = 1. bx < 0,—bx <0
and consequently bz = 0 follow for these vertices. This is a contradiction, since these

vertices span a hyperplane not containing the origin.
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Finish this part of the proof showing that if az = 1 is a bordering hyperplane then
@ is an essential extreme point. Suppose the contrary: there is a b € A(P) such that
a <b a#b Let ar < br. We saw in the first section of this proof that there must
exist a vertex z € P with equality in ax = 1 and satisfying 0 < z;. For this vertex
bz > az = 1 holds, contradicting ez < 1. Therefore, if az = 1 is a bordering hyperplane
of P, a must be an essential extreme point of A(P).

Now we prove the other direction. Suppose that a is an essential extreme point of
A(P) and assume, in an indirect way, that az = 1 is not a bordering hyperplane. By
the definition of A(P), a satisfies ax < 1 for all points z of P, thus the vertices v of P
satisfying av = 1 are contained in a hyperplane H of dimension k less than n — 1. Then
all vertices v of P satisfying av = 1 are linear combinations of the vertices vy,.. w50
where av; = 1(1 <1 < k). For the other vertices w of P aw < 1 holds. Two cases are
distinguished.

1)Suppose that aj = 0 implies that there is a vertex « = (uy,...,u,) € P satisfying
at=1and 0 < u; for all 5. Then v’ = (uy,...,u;_1,0,u541,...,4,) € P holds by the
properties of P. The equation au’ = 1 implies ' € H. Let b be a non-zero solution of
the system bv; = 0 (1 < ¢ < k). Since both « and u' are linear combinations of v,,.. ., vk,
we have bu = bu' = 0. These two equations imply bju; = 0 and, by our assumption,
bj = 0 is true. Then e + &b consists of non-negative components if €« > 0 is small
enough. The equation (a £ eb}v = 1 is obvious for all elements of H and (a + eb)w < 1
for all other vertices of P if ¢ is small enough. Thus a + €b and @ — eb are in A(P), a
contradiction.

2)Let a; = 0 and let all vertices u = (u,,...,u,) of P satisfying au = 1 have
u; = 0. Then a’ = a+4(0,...,0,¢,0,...,0) (¢ is in the jth component) satisfies a’u = 1
for these vertices and a’w < 1 for other vertices, if ¢ is small enough. a’ € A(P) is a
contradiction. M

Let P be the convex hull of the points given in the theorem. Then v; (n/2 < j < n)
and w;; (1 <¢ < n/2, n <i+ ;) are then essential extreme points of P. A(P) consists
of the points z = (x,,...,2,) satisfying

(;)x, <1 (nf2<j<n), (3)

zy < 1, (4)

- -
(?_ l)x,- + (n ; l)xj <1 (25i<n/2,j<n,n<i+4y). (5)

By Lemma 1 we have to determine only the essential extreme points of A(P), that
is, the set of vectors x determined by (3),(4) and (5).
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The following easy lemma enables us to make a reduction. Let diag(cy,...,¢n)
denote an n X n matrix with these entries in the main diagonal and 0s otherwise. For

a polyhedron I, define

diag(eq,...,cn)P = {diag(cy,...,en)z: T € P).

LEMMA 2. Suppose that ¢y,...,c, > 0. If P is anti-blocking type then
diag(e1,...,¢n)P” has the same property. =z is an essential extreme point of P iff

diag(er,...,¢en)T is an essential extreme point of diag(c1,...,cn)l.

PROOF: It is trivial.

Let ¢; = (:‘::) (1<i<nf2), ¢;j= (";') (n/2<j<n), en=1 By (3),(4) and
(5) S = diag(ey,--. ,¢n)A(P) consists of the points y satisfying

= i
y,-Sl—% (n/2 < 7 < n), (6)
<1, yn<1, (7)
vi+y; <1 (25i5n/2,j<n,n<i+j). (8)

Now we try to find the essential extreme points of S (as it is anti-blocking type by

Lemma 2).

LEMMA 3. If (y1,.--,9n) is an essential extreme point of S then

n=yn=1, (9)
for every i (2 <i < n/2) there is a j such that (10)
0
n—i<j<nand yi+y;=1
for every § (n/2 < j < n) either y; =1—j/n (11)

or there isan 1 > n — j such that ¥ +y; = 1.

PROOF: y; and y,, occur in (7) but not in (6) and (8). If their values were < 1, y could
be increased, consequently it would not be an essential extreme point. (9) is proved.
(10) and (11) can be proved by the same argument: if there is a strict inequality at
all occurences of a variable g; in (6) and (8) then its value can be increased letting the
other components unchanged. This contradicts the assumption that y is an essential

extreme point. m
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LEMMA 4. Ify = (y1,...,¥n) is an essential extreme point of S theny;_; 2 y; (2 <
t < n).

PROOF: Suppose that y = (y1,...,yn) € S and y;_; < yj (n/2+ 1 < 5 < n). Then
we can show that (y1,...,¥j-2,¥j,¥js¥j4+1,--+,¥n) € S. (6) holds for the new (7 — 1)th
component since y; < 1 —j/n < 1 — (5 — 1)/n. (8) holds for it because 1 + 57— 1> n
implies i + 7 > n. The modified vector is larger than y, so y cannot be an essential
extreme point of S.

If yi—1 < y;j (2 < 5 < n/2) then the same argument is used to ensure the validity
of (8). The missing cases are 3 = "—'F and 7 = § + 1. In the first one of these cases

n—1 n

7 = 23" holds and ¥ag1 + Yk < 1 should be proved for —-g—' + k > n. This is, however,

a consequence of (6). The case j = § + 1 can be settled in the same way. =

LEMMA 5. If y = (y1,...,¥n) is an essential extreme point of S then
Yn—it1 =1—9 (2<iSn/2).

PROOF: Suppose the contrary: ¥ + yn—iy1 < 1 holds for some 2 < 1 < n/2. By

Lemma 4 we have
Yn-1 S Yn-25 ... < Yn—it1 < 1= Wiy

that is, (10) is violated for this s. |

LEMMA 6. (¥1,--.,¥n) is an essential extreme point of S iff y» = ¥y, = 1, and there
are some integers 1 =#; <f3 < ... <f#p41 = [ﬂ'{l] (1 < r) such that

o

Yi, =1- (1<k<r),

Yi = ¥, ("kS"<'.k+n15kST),

Yn—i4+1 = 1~ Yi, (2 <t < "/2) (12)
and
_ 1 1
s ™

PROOF: First, let us prove that the essential extreme points (y1,... , Yn) must have
this form. Lemma 5 and (6) imply

p — 1
AL

2<i< %). (13)

If n is even, then yg > %—{- L follows by (13) while yg4, < -;— — L s a consequence
of (6). Similarly, ya-1 2 %+ is'n' and Yap < %-— 5',—' hold for the odd ns. Our conclusion
is that these neighbouring ys must be different.
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So, if m is defined by y2 = ¥ym—1 > ¥m then the inequality m — 1 < 3 is obvious.
(13) implies 1 — L < y3. Suppose that 1 — L < y2 < 1. Then there is an € > 0 such
that both

(Lyz +&,.eey¥m—1 + & ¥my-roy L = Un—miryl — Yn-mp2 — &..., 1 —y2 — £, 1)

(I,yz — €.y Ym-1 ‘_51ymy---sl“yn—m+la1"3’n—m+2+E‘---,1"'!I2+5g1)

are in S. This contradiction shows that (yy,...,9,) cannot be an essential extreme
point. Consequently, y, is cither 1 — ;’; or 1. In the first case i3 = 2, in the latter one
i3 = m. Repeating this procedure we obtain that the essential extreme points satisfy
the conditions of the lemma. (If n is odd then ya4: < 1/2 — 1/2n. Choosing equality,
the vector is in S and is larger than the vectors with smaller y%x.)

It remained to prove that all these vectors are essential extreme points. Denote
their set by Y. No two of them are comparable (in the sense of <) so it is sufficient
to see that they are extreme points, that is, they are nat convex linear combinations
of other extreme points. In other words, if y € Y, z' ..., 2" # y are different extreme

points of S and ay, ..., ax are positive numbers (3 a; = 1) then
t
y= Z a2’ (14)
i=1

is impossible.

First prove this statement for the case if one of the 2's is a non-essential extreme
point. Then this z* satisfies z' < y',2' # y' for some y' = (y1,...,¥,) € Y. The
inequality y; + yh_i4q < 1 (or y',_P < 1/2 — 1/2n) is a consequence for some i. (14)
implies that the same holds for y, that is, y ¢ Y.

Therefore we may suppose that z!',...,2' € Y. An clement 2 of ¥ is uniquely
determined by the sequence i;(z) < §2(z) < ... <i.(2) (r = r(y)). If 2! # 2? then
these sequences are different, so there is an 1; = i;(z") which is not equal to any i,(2%)

(or the other way around). Clearly we have

1_*'.1'_1 1 o1

and

1 2 _ 2
zi;, < Zi; = %i;1

by the definition of the sequence ¢;. (14) results in 1 — '—LE—' < y,-’j < y,-’j_,, in contra-

diction withyec Y. W

To obtain A(P) Lemma 2 is used with diag™'(cy,...,ep). (See the lines after
Lemma 2.) The application Lemma 1 gives the final result.
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THEOREM. The essential bordering hyperplanes of the convex hull of the class of inter-
secting Sperner families are the following ones. Let 1 =4, < ... < trg1 = [Dgl] (1<)

be some integers.

r fpy—1 g &
):( 3 TL,,——) +.”_i:*_j+

k=1 \ i=i, (s'«-l n—ig 1 (’J:—'

¢
* X, ( > Tnp"—.—) <1,
k=1 n—i,+,+1<;'sn~i,+|( 5 )T{'T

where the middle term appears only for odd ns, the terms with $1(= 1) should be taken

to be 0 and the term with J = n is simply p,,.

Observe that 15 = [£4L] leads to Bollobas’s inequality (with a slight modification)
while the case iy = k(1 <k < [231]) gives the inequality of Greene, Katona and

Kleitman. The total number of inequalities in the tlle(')rcm is exponential.
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