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§ 1. Introduction

Tet A,, ..., A, be a system of different subsets of a finite set H, where
[H| =h and |4, =1 (1 << =) (|4| denotes the number of elements of
A). We ask for a system 4, .. ., 4, (for given &, I, n) for which the number
of sets B satisfying |B|=1[7— 1 and B A4, for some ¢ is minimum. The
first lower estimation for this minimum is given by SPERNER ([1], Hilfssatz).

His estimation is L:_—i . This depends on k. However, if n = L3 , it is

expected that the minimizing system is the system of all /-tuples chosen

from a subset of N elements of H. In this case the number of B’s is { N ]

which does not depend on 4. A. HAJNAL proved this statement in the case of
{ = 3 (unpublished). In this paper I prove for all cases that this is, indeed,
the minimum, and find the (more complicated) minimum also for arbitrary
n. The theorem is probably useful in proofs by induction over the maximal
number of elements of the subsets in a system, as was SPERNER’S lemma in
his paper [1].

Krerrman told me in Tihany (Hungary) that he thought I could solve
the following problem of Erpés by the aid of the above theorem and the
“marriage problem”: Let 4,, ..., A4, be subsets of H, where |H| = 2k and
|A;| = k. For what #’s is it always possible to construct a system By, ...,
B, with the properties B; C 4,, |B;|=Ah—1 (1 <7 <n). § 3 contains
the solution of this problem in a more general form.

§ 2. The main result

Before the exact formulation of the theorem we need the following simple
but interesting

LEMMA 1. If n and [ are natural numbers, we can write the number n uni-
quely in the form
(1) - “f(";" g

ap—y (n’ l)
I—1

J+

} leis s o [0 05 ”] :

t(n,l)

>1, a4 > a_ 1> ... > @y are natural numbers and a;(n,l)>
n

1,
D B T b el

187

where t(n, 1

=1 ('izt)(
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Proor. The existence of form (1) is proved by induction over . For
{ =1 the statement is trivial. Assume that for / = & — 1 it is true also and
prove for I = k. Let a; be the maximal integer satisfying the inequality

(c;:] < n. If here equality holds, we are ready. If it does not, using the induc-

tion hypothesis we have for the number n — {a}:] the following expression:

a ay, a
(2 n— k]: o EEE S
) (k k—1 T T t
where t > 1, a, ;> ... >a, ¢, >1 (i=¢t+1, ..., kE—1). (2) gives
an expression for »n, we have to verify only a, > a;_, and a;, > k. If a;, <
<L a;_, held, then
e @y—1 Qe @ a;+ 1
n ——
=[)+ )= G+ 62 -3
would hold also, which contradicts choosing of a;. On the other hand,
ay > k follows from a; > a;_, and a,_; > & — 1.
The unicity of Form (1) is proved also by induction over Z. For I = 1 the

statement is trivial. Assume that for / = & — 1 it is also true and prove for
! = k. If, on the contrary, there exist two forms:

S 7 Q1 78
(3) fa—[k]+(k_l]+...+(t]_

ay @y—y ar
fc)+{k—1l+"'+[r

’

we may separate two different cases. If @, = aj,, we can obtain two different

Qy

forms of n — , which contradict our induction hypothesis. If a;, < aj,

the contradiction follows from

- ak]+(ak—1]+"'+[ak-—f+1J:(akz_1J_1<

<[ <[+ -+

at+1)
e

k k

Thus we proved the lemma.
In the future we will use the following two notations:

a(n, 1) — 1 (a’l—l(nr ) —1 Ayn,iy (0s 1) — ]J

o =
1) [ fe 1 =8 ]+ +(t(n,l)—l

and

a,(n, 1)

1’1"(n) e (l"- i ] 4 a’l——'l(n, l)] e, ol [a[(n,l) (n, l)] )

l—2 tn,l) — 1

These numbers are uniquely determined by Lemma 1.
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Let us consider now the problem. Let H be a finite set with & elements,
and

S {0 iy}
a system of different subsets of H, where the number of elements of A4, is
| ;| =1 1<i<n).

Obviously, /is a fixed integer between 1 and k. Let ¢(-#) denote the following
system
¢(€)={B:|B|=1—1 and BC 4, for at least one j}.

The problem is to determine the minimum of |¢(#)|, if A, » and [ are given.
TPheorem 1 gives the exact solution of this problem.

THEOREM 1. Let b, n and I be given integers with the properties

h>1, 1<I<h and lgng(};].
If H is a set of h elements, and
el Y AR (¢=1,...,n)

a system of different subsets of H, then
min | ¢(#) | = F(n),
where the minimum runs over all such systems €.

REMARK. It is interesting, that min|c(<#)| does not depend on A. For
example, SPERNER’s estimation [1]:

n-l
e(HA) > —o-
e +1
depends on A.
Before the proof we shall give another theorem. We will prove them to-
gether.

THEOREM 2. Let h, n and I be given integers with the properties
h>1, 1<I<h and {?Jgngz(;‘}

Further G and H are disjoint sets of h elements. If
e S 3 7 S

is a system of A;’s, where
A;,CG or A,CH (1<<e<n)

| 4| =1 1<i<n),

min |¢(#) | = (l_" 1) + F, (n— (;‘))

and

then
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Proor. 1. First we construct the minimizing system of Theorem 1. Denote
this system by <# (%, n, I). Obviously, it is sufficient to construct the system
M (af(n), n, l), where af(n) is the least integer satisfying

[G'T (n)
l
The construction will be carried out by induction over l. Ifl = 1, a¥(n) =

= nand # (af(n), n, l)consists of all the sets of one element. Assume we
constructed already the system <#(af,(n), n, I — 1) for all n. Construct

>

now # (af(n),n, l). Ifn= al(t’ J , then the minimizing system consists

(n, 1)

of all the subsets having [ elements. If n>> e ,let H be a set of aff(n) =
=ay(n,l)+1 elements, and e an element of H. Since a; > a;_,, we can con-
struct the system # (al(n, 0, n— (a,(n":, l)] , I —1)on H—{e} by the induc-

tion hypothesis. Define the system #" in the following manner:
J:{N U {e}:NEM(a,(n, l),n—[al(?’l)), I — 1)}

If & denotes the system of all subsets of H — {e}, having [ elements, then
& and /" form together the system <#(af(n), n, 7). Indeed, the number of

sets is [al(n, l)J +n— [a,(n, U
! [

=n and we have only to verify

a,(n, 1)

(4) |e(A (at(n),m,1))| = [ oy
However, it is easy to see, that

(A (at(n), n, 1))| = {azl(i i)} s

and by the induction hypothesis
}c(t//? an, 1), n — (a,(?;, l)) = 1})

which proves (4).
2. The minimizing system of Theorem 2 consists of a complete system in

G, and A [k,n —_ (];J ) l) in H.
3. In the previous two points we showed that in the case of Theorem 1
min | ¢(€) | < Fy(n),

]

t(n, 1) — 1] ()

c(% an,l), n — (al(?'l)],l— 1])!

- @ —1(n, 1) @yn, 1y (M 0)
( -2 ]+"'+(t(n,l)—l,’
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and in the case of Theorem 2

mmnpahghf1y+mh-{?n.

Thus, it is sufficient to verify

(5) |e(t) | > Fifn)
and
h I3
©) |o<a€>|z[l_l)+F,n—,l)],

tespectively. These statements will be proved by induction over /. If I = 1,
both statements are trivial. Assume we have proved for all numbers < /
and prove for /.

4. First we prove the inequality

(7) Fi(n) < Fyny) + Fiy(n),

if

(8) n =1y 41y, n >0, n>0
are integers, and

(9) ny < By(n).

The statement will be proved for fixed / and for every =, n;, n, using the
induction hypothesis for { — 1. For the sake of simplicity we use the follow-
ing notations:

t =t(n,l) a; = a;(n, 1) ¢ << af =af(n),

r=t(n1) by = ay(ny, 1) r<i<)) bf =af(n),

s=tmy,l—1) ¢=ayny,l—1) (s<i<I—1) cf=af(n).
It follows from (8) and (9) that

1) mzn—Emr:ﬁ;*y+u.+F:”y
Because of (10)
(11) B > — 1

must hold, since in the contrary case it would be
a — 2 (@, — 3 a,— ({+1) a —1
n - s = =1,
lg(l J [LJJ+ +( 1 (l
what contradicts (10). On the other hand
(12) a>b
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because of (8). Applylng (11) and (12) we can distinguish two different cases:
(a) b = a; and (b) b, = a; —

(a) In this case (7) has the form

el

l—l I—2 t—l‘g

@ bl—l b F
g[l_l] +[l_2]+ ...+(r_1]+ a(ns)

a;

(13) F,_l[n = ("l’)

Let H,and H,be disjoint sets. Construct the system # [biul +1,n — (‘;’) )

Decreasing both sides by (l 1) we have

<Fi,|n

—ﬁn+ﬂ4m-

!/ — 1l on H, and the system «#(cf_;, ny, I — 1) on H,. In this manner we

nbtaln a system /" on H, |J H,. Applying the induction hypothesis (Point
3. (5)) for /" and I — 1 we have

P, ln = [‘;')] <|c(A)|=

= c(.,///(b,_1+ 1, 5= (“l’),z— 1])' + |e( A (cfor, e, I — 1))

However, we know (Point 1. (4)) that

s e (sz O 1]) , =Fia fu— (%))
and '
(16) |e(AM(eFys oy T — 1))| = Fi_s(n,) .

Finally, (13) follows from (14), (15), and (16).

(b) b, = @, — 1. We separate this case into two subcases:

1 iy
(ba)nzz{l_l] (bb) n2<{‘;’“1].
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(ba) In this case (7) has the form

& a— a— 1 by

Fad e vl il e el B
o —1 €12 Cs
+[l—2J+[l—3]+“'+[s—1]’

since ¢,_, = @, — 1, because of (9) and the supposition (ba). Decreasing

both sides by L P e + T we have
I—1 1—1 1—2

i (n - m) < Fp_, (nl i ("’f n 1]) + P, (nz e [“lf __11]).

We can prove (17) by using of the induction hypothesis if

R e

holds. However (9) gives

Cg a,—l
(19 oty B Pt RaE g W i
a;_ at"_"l
b )+ (1)
Decreasing both sides by all )We obtain
(20) a3 UYL “’—1_1]+...+{“‘“1]
l1—2 s l—2 t—1

and (20) is equivalent to (18).
(bb) In this case (7) has the form

ey ekl = el

b[ =1

+(l_2]+...+[7_’1]+F1_1<n2).

. ] we have

@) (47 A - “;])gm_l(nl— & 1])+F,_1(n2>.

13 Graph

Decreasing both sides by {a; 5
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Let G and H be two disjoint sets of @, — 1 elements. Construct the system

u/(a, —1,n — [a, l_ 1] s 1). We can it construct if n, -—[al l— 1] <

= (j’ _11) . But this follows from @, — 1 = &, > b,_;, since

a—1 by b,
Ny — = ces .
: ( I ] (l - 1] A (
Construct further the system #(cf_,, m,, I — 1) on H. The possibility of

this construction follows from the assumption (bb). In this manner we obtain
a system /" on G |J H. Applying the induction hypothesis (Point 3. (6))

for /" and I — 1 we have
a—1 a, a—1

—1,n, — ,1—1
(1—2 l])g o ( ! ) ])
(22) + |e(et (ct_q, Np, T — 1))F s

However, we know (Point 1. (4)) that

]+Fl—1(n_‘ +

(23) c(uﬁ (a,[ SO, B e (arll— 1)’ i 1])} Lk Fl—1(”’1 - (a; l— 1])
and
(24) lc(‘/ﬁ("f—p Ny, l— 1))| e F;_l(nz) y

further, (21) follows from (22), (23) and (24). Thus we proved the inequality
for 1.

5. However, we need (7) under the condition
n-l
af

(25) Ny <

instead of (9). Thus we are going now to prove the inequality

n-l

(26) < Ejn).

af

We prove (26) by induction over /, but we should like to mention that the
proof of (26) is independent from the whole proof of the theorems. For
I =1 the statement is trivial. Assume we proved it for the integers < I,

and prove for I. If n= (all) then af = @, and E,(n) = C;’ _11] , thus (26)

holds with equality. We may assume a} = a; + 1. Obviously
l a; — 1]
a; "i" 1 l—— 1

@

(27) ;

<
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and by the induction hypothesis

I—1 a a a,_, — 1 a, — 1
28 —1 e (g 1—1 SN r .
: )al—l""l[(l—l}—*— +(”’”£(l—2]+ +(’-"—1]

l 1—1

If ol , summarizing (27) and (28) we obtain (26). In the
o+1  a+1
contrary case
l 1—1
(29) =
a+1 @

holds because of @, > @;_; + 1. Let us set out from the identity

a, PRRINEE ot I et l a,]
[l_.l} {ﬂ"t'{‘l a )_(1—1 a,-l-l(

The expression in the bracket is positive because of (29), thus we can write

= bl Al I e )

5 : I—1 =
since a; > a;_;. Write ——— instead of ¢
@+ 1 @

l aQ; a;_; a; — 1
el hEs) e s
I1—1 a1 a,
il e
Finally, from the above inequality (26) follows by (28).

6. Now let us prove statement (5) for ! by induction over % if A =1
is trivial. Assume we have proved (5) for all sets |H| < %, and prove for A.

. , and reorder the ine-

quality

There exists an element e of H, contained by at most % sets 4,. We

define the following systems:
B={A: A€ e¢ A}

and
€ ={A—{e}: A€ A ec A}
where
A

(30) Lo P

af(n)
Naturally,

c(B) C c(2)

and

¢(@) (U) eCe(H),

13*



196 G. KATONA

where 7)(|J)a denotes in general the system {D{a} : D¢ =_@} Thus the
inequality ,
(1) le( )| > |e(£)| + [c(@)]

holds. However, .% is a system in H — {e}, we may apply the induction
hypothesis for 2 — 1

(32) [e(B)| = Fi(n —ny) .

Further, applying the induction hypothesis for / — 1 we obtain
(33) [e(@)| = Fia(n,) .

It follows from (31), (32) and (33) that

(34) Fin —ng) + Fiy(ny) <|e(H)].

Using the result of Point 5, inequality (5) follows from (34) and (7) by (30),
since (7) is proved already for /.

7. Now prove statement (6) for I by induction over . If 2 = 1, it is trivial.
Assume we have proved (6) for all sets |G| = |H| < &k, and prove for .
The proof will be similar to the proof of the previous point.

Let <% and <%, be given by

Ay ={A:4¢cH ACG},
and
y={A:Acot, AC H}.
If |#£)| = r and |-%,| = s, there are two elements e ¢ & and f € H, such
that e is contained by at most fk—l , and f is contained by at most % sets
A;. Define the following systems:
B={A:Ac A e¢ A, f¢ A},
€, ={A4 —{e}: Ac A, e€ A}

and
€, ={4—{f}: AdcA, fc 4},
where
-l
(35) 72=|@1|g%
and
-l
(36) 32:[@2|§i}7-
Naturally,
c(B) Cc(H),
c(@) (U) eCe(HA)
and

¢(@) (U) [ C c().
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Thus the inequality

(37)  le(t)| > |e(B) |+ [e(@) ]+ |e(€y) | = |c(B) |+ |c(€, U &y) |

holds. However .8 is a system in @ JH — {e} — {f}, we may apply our in-
duction hypothesis for A — 1:

(38) Ld%”zbmJ]+F%n~@w% {kjj}

Further, applying the induction hypothesis for / — 1 we obtain

(@u@1>[ ]+Fﬂkﬁqz f‘jy

) e

It follows from (37), (38) and (39) that

-
(40) (l_l]—}‘Fz(n”"‘z_gz—[ 11])4—
‘1'"1”1—1(7'24‘32 = (‘:L:ll])g}('(afﬂ

Now we should like to use inequality (7) which is valid under condition
(25) (Point 5). For this reason we have to verify only
h—1

[n—rz——sz— hZ—I}—i—rz—l—sz—r;—ll)]l
"2+82“(l_1}£ - =
af |n —
(41) (

)

e
(= ()
|

h
,P+8~(J

However

Jr_ =l

is an immediate consequence of (35) and (36). Since n < 2 ] is a condition

h—1
{1—1

(42) m+%~(

,[
(

of Theorem 2, af (n — (I;]) < h holds and (42) results (41). Thus we can use
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(7) for this case:

3 F,(%(’;J)g,(n_,z;sz_[h;l]‘)+F,_I(WZ_(’;:;J).

Finally, (40) and (43) gives the desired inequality, and the whole proof is
finished.

Now we consider a natural generalization of the problem of Theorem 1.
The problem is to determine the minimum of |c*(_€)|, where 1 <k <1,
cM(A) = c(ck~Y#)) and c(#) = c(-#£). It is not difficult to conjecture
what is the result. To the theorem we need the following notation:

k() — a(n, ) a4(n, ) @yn,1y (1, ) Lt T
Fl(n) (l—k]+(l~—1—k]+“'+(t(n,l)—-k 1<k<l),

where (Z] =0if b < 0.

TaEOREM 3. Let %, n, I and k be given integers with the properties
B2l LbkLish and T<ns

h
4!
If H is a set of h elements and
H={4,...,4,}, | 4| =1 (3=1,...,n)
a system of different subsets of H, then
min | ck( ) | = Ff(n),
where the minimum runs over all such systems .

Proor. It is easy to see by induction over 7, that | KA (R, m, 1))| = Fl(n).
Thus, we have to prove only

(44) |(A) | = Fi(n) .

This will be proved by induction over . For & = 1 Theorem 3 gives Theorem
1. Assume now (44) is true for values smaller than %, and prove for &. Obvi-

ously,
o(A) = c(cF1(A))
holds and using the induction hypothesis and Theorem 1 we obtain
(45) | k() [ e ol iy (F{‘—l(n)) .
(a) If é(n, I) — (k — 1) > 0, then

k—1 - a(n, 1) ] : ( Qyen,1y (n,1) ]
Firin) {“(k—l) TR tn, 1) — (& — 1)
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is an expression of type (1). That is
(F5 (), 1 — k4 1) =i(mn, 1) —k+1

e a;(F§1(n), 1 —k+ 1) = a4y (0, ]) (0, ) —k+1 < <I—k+ 1)
and
Fz—k+1(F’f_1(n)) >, [ a;(F¥1(n), ll— k4 1] =
(47) s i—t(n D—k+1 : )
5 S ai+lf—1 (n, 1) = ( j(ms l)] — Fl(n),
i=H(n,1)—k+1 Gt =\ 1—Fk

which proves (44) and (45).
(b) If {(n, I) — & + 1 < 0, then (46) does not hold. However in this case

Fk—1 ey f a,(n, l) ] ot ak(n’ l)]
1 (n) (l—k—l— : e 1
t(F5n) —1,1—k+ 1)) =1
a(F1i(n) — 1,1 —k+ 1) =a;4m]) 1Li<I—k+1)
hold. Further, the equation

Fl k+1(Fl n)—l)

and

-kt (a(F¥-'(n) — 1,1 — & + 1)] =

(48) = i—1
_E @ D)) g (e D) 5 () ) = Ff
51 ( i—1 ) ;é:(j—k] j=%z)[7._k i(n)

is true in this case instead of (47). If we prove
49) Fiinr T 57Yn) = Fiya (FF ) — 1),

then (44) follows from (45), (49) and (48). (49) will be proved by the follow-
ing simple lemma.

Lemma 2. If t(m, r) = 1, then
Foim+1) = F,(m).

Proor. Let s be the least index such that a m, r) > as_,(m,7) 4+ 1
(2 < s < r). If thereis not such s, let s be equal to » 4 1. Thus, we can write

— (a’r(mr ?’)] + LA + (a’s-—l(m? T)] + [us—l(m 7‘) ] + +
r s—1

g el [a,s__l(m, r)l— (s-—2)]
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and
a,(m, r)

m+1:{

as—l.(m: T) + 1J

L

r

Now it is not difficult to see, that

Fmy = (7)o Pt it (“S‘lfgmj;_l] > A
a’s——l(m: r) _(8—42) P a,(m, ?‘) a’s~—1(m’ T)+I ks
S B e IR

:Fr(m‘l”l):

which proves the lemma and Theorem 3.

§ 3. Solution of an Erd@s-problem
Let H be a finite set of 4 elements, and <# a system of subsets of H:
A={4,4,, ..., 4.}, A,CH, |4 =1 (1<i<n).

Erpds proposed the following problem. For which numbers » can we con-
struct a system & with the properties

B=iB, B, ....B}, Bed, [Bl=1—5 L.

In the solution we use the well-known marriage problem. It is clear in this
connection, that it is a very important question, in which cases does
Ff(n) < n, Fi(n) = n or F¥n) > n hold. The following sequence of lem-
mas deals with this problem.

Lemma 3. If 1 < k <l and z are positive integers, then

x
l
&s @ monotone increasing function between { and 21 — k — 2 but it is a monotone

decreasing function from 21 — k— 1. The values f(21 — k — 2)and f(21 —k — 1)
are equal.

x
—k

fl2) = (

ProoF. Let 0 <<a < b<xbe integers. It is easy to see that {m} =3 (:) <0,
a

T x

a b
and @ 4 b > x, respectively.

] =0 and (ac] — (:] >0, respectively, if a+b<x, atb=2x
a
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Consider the difference f(x 4+ 1) — f(z) = [l : 1] — (l . 1] . Using

the above remark we obtain that
fle+1) —flzy<o if 21—Fk—2<uw,

fle+1)—fxy=0 if 2i—k—2=u,
and finally,
fe+1) —f@) >0 if 201—k—2>c.

This completes the proof.
The following two lemmas are immediate consequences of Lemma 3.

‘ LemMa 3a. If 1 < k <<l and x are positive integers, then

P o i i

LeEmMA 3b. If 1 <k <1l and x> 21 — k + 1 are positive integers, then

(2= =P )P

LeEMMA 4. If 1 < k < m, then

m-1r2; —fk—1 2t —k—1 _(2m —k—1 2m —k — 1

el o 7 e

Proor. Let @ and b be positive integers, where o < b<a — 1. Then
2

S ¥ e Y R | e e e

and similarly

(51) a2 _[a+2]=[a+2][ a—b—}—l]_ a -+ 2 2bﬁ~a-{—l_]
b1 b1+2 b1 b2 b+1)[ b+2 |
Further

(52) (a—]—2][26—a+1] ( }[26—@—}—1 3 (a+ 2) (a+ 1)
b4+1]| B+2 b+1 ] [(b+2)(a—b+1)]’
where

a-+1
b+ 2

a—[i)—2 2.5;—{-2
a—b+1 %+1

le

and

=2.
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That is

R )
(53) [b +1 b1 2 = b b+1
follows from (50), (51) and (52).

Applying (53) for a =21 =k — 1, and b=:i— 1, (1 <k<1), we
obtain

20 4+1)—&k—1) (2(64+1)— =9 20—k —1) (26—k—1
( i ][ z+1]_(i—1](z‘]’

or

204+ 1)—k—1) (2(i+1)—k—1 >z 2i—k—1) 2¢—k—1]'
(z‘+1—k][ it 1 ] [z‘—kJ[ i)

(54)

Prove now the lemma by induction over m. If m = k, the statement is
trivial. Let the lemma be true for m and prove it for m -+ 1.

o[ i o | [Py o i |

11—k 7
+[2m lc—l] 2m —k —1

m

and by induction hypothesis and (54)

S -t ) -

i=k r— 7 m—=5k
< 2(m—|—1)—k——l)_ 2(m—l—1)—]c—-l]
m41—4Fk m—+1

holds, which proves Lemma 4.

Levma 5. If 1 <k <land 21 — k < ay(n, l) then
(55) Fi(n) <n.

Proor. We may use Lemma 3b:

a,(n,l)] B a,(n,l)) i [2l—k+1] B [2z—k+1]_

(56)
I —Fk ! I —k l

On the other hand, by Lemma 3a

)PP ) e
i—k
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holds and summarizing it we obtain

(D) _ (an,1) (R ==k=1] Pr—=l—1

Applying now Lemma 4 and (54):

L[ (an, D)) (auln, ) U ~k—1) [21—E—1]
gllime) - =000 ) =0 )<
- 2(l+1)—k—1J_ 2(l+1)—k—1)
[ b1 —k ( I+1 '
Obviously,

(57) E?Hf;i(f ]lc)] i {ar(?, )

i=1

<2g+n—¢—1yﬂza+n—k—1]
e o e

also holds, since we added a nonpositive number to the left side. If we sum
(56) and (57) the obtained inequality

m@yﬁﬁiw—w+j_wm—k+1y+ra+n—k—1y_
I1—% ! I+1—k
_2U+Umk~q_0
[ 141 o5

results (55).

Levmma 6. If 1 < k <land 21 — k > a)(n, l) then

(58) F¥n) > n.
Proor. We know that
(59) a;(n, 1) < ay(n, 1) — (I —1).

Ifl>i>an,l) — (I — k), then a,(n, 1) — (I — i) < 2 — & and by (59)
a;(n,l) <2t —k

holds. In this case, obviously

a;(n, 1)

- {“1(7’% l)] >0
?
follows. If & << 2 < ay(n, ) — (I — k), then by (59) and Lemma 3

a;(n, 1) . a;(n,1) a(n,l) — (I — %) . a;(n,l) — (I —9)
R i B i ] S ol

holds, but it is trivially true for ¢ << k, too.
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Sum (60) and (61)

D[l  (ainl) an, ’”‘ T ay(n,l) —(l——z] =
-1 Py Bt B | - [
 (an, )—(l—z)” 2a,(n, Iy — 2 + & 2a,(n 2+k)
[ ( a(n, —l—l] [az( _l+k—1]

(2

That is

62) Fén)—n>

2a1(n,l)~—2l—|—k}_[2a,(n,l)—2l—|—k]+l+
an,l) —1—1 an,l) —I+k—1
a(n, 1) _ (a(nD)
e
s true. Here
2ay(n, 1) — 20 + k) 2al(n,l)—2l—i—lc]
a,(n,l)—l—l] a(n,l) —1+k—1
. a(n, 1) —1 ]
an,l) — L+ k— 1]

(63) ( 2( an,l) — 1 ]_

ta(n,l) —1 —1

because of Lemma 3. However we can write the right hand side of (63) in
the form

(64) ( a; (n,l) — 1 ) - [ a,(n,l) — 1 ] .
aml) —1—1 \aml)—I+k—1

e a(n,l) — 1 is an,l) —1
[ ! ] [l—k y

an,l))  ((n,l) a(n,l) — 1)
l I—k J 1—1
- (al(n, l)—1
l—k—1
and since 2l — &k — 1 > aq)(n, 1) — 1 by supposition of the lemma, thus

an,l) —1)  (an,1) —1 a(n, 1)) (a(nl)
O i e i

Here

ay(n,l) — 1 . a(n,l) — 1 _
o el o b

Finally, (65), (64) (63) and (62) give
F¥n) —n >1

which proves our lemma.
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Levma 7. If
o k) (20 —1)—k I
(66) n>( ; J-l—( ) ]++[k)
then
Fkn) <n.

On the other hand, if

2l —k 20 —1) —k k
67 n < oy ;
¥l S s R R
then

FKn) >n
with equality only if
its| n:(zz k]+{2(l 1) k}er +[2s k}
l 1—1 ) s

for some s (k < s <1).

Proor. Consider first the case of (66). If a;(n, ) = 2¢ — k (b < i < 1),
then #(n, I) < k and

(21 —F k E—1 t(n, 1)} .
"*[z]+””4d+u—J+”ﬁﬁmﬂ
Obviously,

Mm:{

thus Ff(n) < n holds.
In the contrary case

2l —k
1

a,(n,l) >2r—Fk

anl) =2 —k r<i<l)
hold for some r (£ < r << {). Since
a,(n,l (1, 1
e {2
r r—k
the statement follows by Lemma 5:

a(m, Z)J L, 5 Fﬁf[[ar("’l)] 4 ]

n—F?(n)=[

r r
The case (67) may occur in two different ways.

1. If (68) holds, then obviously Fk(n) = n
2. For some r (k < r < 1),
a(n,l) <2r—Fk,
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and
an, 1) — 2% — k r<i<l).

n — F¥(n) = H“’(’;’ l)] i ]— [[“;(f’]? - T ]

the statement follows by Lemma 6:

) <) 1)

TaEOREM 4. Let 1 < k < 1 < h be positive integers, H a set of h elemeni
and

Since

=14y, ..., 45}, |A]|=1 1<
a system of subsets of H. If
2] — 20—1)—k k
69 .
(69) g( ]+[ e ]+ +(k]
there exists a system
(70) H=1{By, ..., B}, |B|=1—k, BiCcd (1<i<n)
but in the case of
21—k l—1)— k
71
(11) n>( : ]+[ e |+ +[k}

not necessarily .

Proor. First we prove the latter case. If (71) holds then by Lemma 7
Ff(n) < n. We know (Theorem 1) that there exists a system # such that
|c¥(«#)| = Ff(n). Thus, a system .6 satisfying (70) does not exist.

In the proof of the existence of &% in the case of (69) we use the well-known
marriage problem [2]:

THEOREM OF ORE. Let E and F be disjoint sets and G a graph on E(YF
Assume G has the property that for arbitrary D C E there is a set H — F such
that every element of H is connected with at least one element of D and |H| > | D).
Then there exists a one-to-one mapping between E and a subset K of F, such
that the associating vertices are comnnected in G.

In our case B = #, F = c¥(#) and A € #, B ¢ ¢*(.#) are connected
if and only if 4 D B. Thus, it is sufficient to verify that for every subsystem

e={d4,, ..., 4,}C A

there are at least m sets in ¢*(<€), which are contained in one of A4;(1 < j <
< m). However, m < n, thus by (69)

<) )
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and Lemma 7 gives
(12) Pl (m) = m.

Use now Theorem 1:

[c“(@)| = Fii(m) .

This and (72) results |c*(€)| > m, which means that our graph has the prop-
erty prescribed in the used theorem. Applying the theorem the obtained
one-to-one mapping gives just the desired system .

CoroLrARY. If 2/ — k& > h, then (69) always holds and a system %
satisfying (70) always exists.

This is an immediate consequence of the inequality

=< )

and the fact that < has at most (’;) elements.
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