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Abstract

Burosch, G., J. Demetrovics, G.O.H. Katona, D.J. Kleitman and A.A. Sapozhenko, On the number
of databases and closure operations (Note), Theoretical Computer Science 78 (1991) 377-381.

Closure operations are considered as models of databases. Estimates on the number of closure
operations on n elements (or equivalently, on the number of databases with n attributes) are given.
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Codd [3] and Armstrong [1] introduced the system of functional dependencies
as a model of a database. We, however, prefer another equivalent variant, the closure
operation (see. e.g. [2]). Let X be the (finite) set of attributes, that is, the set of
types of data. The elements of X are words like “name”, *“date of birth”, “age”,
ctc. Some of the data determine some other data uniquely. For instance, the date
of birth determines the age. Let A< X, a € X. We say that A defermines a and write
A~ a iff the set of data in A determines the data in a, more precisely, there are no
two individuals having the same data in A and different in a. The function #:2% - 2%
is defined by

L(A)={a:A->a}.
This function obviously possesses the following properties:
Ac Z(A),
A< B implies Y(A)< L(B),
L(L(A)) =ZL(A).

Such a function is known as a closure operation or briefly a closure. Therefore a
closure is a possible model of a database.

L(0) =0

is a rather natural assumption for closures formed from databases. In the present
paper we will use the name closure for the functions satisfying this additional
condition.

Let A, B< X. Following [1], we say that A determines B iff the set of data in A
determines the data in B uniquely, more precisely, iff there are no two individuals
having the same data in A but different in B. We write A B in this case and A > B
is called a functional dependency. The functional dependencies satisfy four natural
conditions, the so called Armstrong axioms. In the present paper we add one more
axiom:

#- B implies B =0,

A set of pairs A- B satisfying these five axioms is called a system of functional
dependencies.
It is easy to see that

A- B iff B ¥(A)

holds for the system of functional dependencies and the closure, respectively, defined
by a given database. It is easy to see [4] that this is a bijection between the set of
closures and the set of all systems of functional dependencies defined on the same
groundset. That is, we have the right to consider the closures only, instead of the
systems of functional dependencies.

In the present note we investigate a very natural question: what is the number of
closures on an n-element set?
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Let 7 be a closure. The closed sets C are defined by £(C)= C. It is known that
the family Z = Z(%) of closed sets possesses the following properties:

W, XeZ, (1)
A, Be Z implies AnBe Z. (2)

The families satisfying (1) and (2) are called intersection semi-lattices. It is shown
in [4] that the function f:.%¢ - Z(.¥) is a bijection between the set of closures and
the set of intersection semi-lattices. Thus the number of closures is equal to the
number of intersection semi-lattices.

If Z is an intersection semi-lattice, let #((Z) denote the family of those members
C € Z which are not intersections of two other members of Z, that is, A# C # B,
A, BeZ imply AnB# C. It is obvious that M =.4((Z) satisfies the following
properties:

X e M, (3)
(N A=0, (4)

A=A, AA,...,Aecd, (r=1)

i=1
imply A=A; forsome i (1<i<r). (5)

The families satisfying (3), (4) and (5) are called intersection-free families. It is
also proved in [4] that the function f: Z - #(Z) is a bijection between the set of
intersection semi-lattices and intersection-free families. Thus the number of closures
is equal to the number of intersection-free families.

Kleitman [6] proved that if the family & < 2¥(|X|= n) contains no three distinct
members A, B, C satisfying An B = C then

o

n
s(n/z)(1+o(l)). (6)

This inequality already implies that the number of intersection-free families cannot
be too large. The following proposition should be used, only, which can be proved
by a straightforward but tedious calculation.

Proposition. The number of families st = 2™ of subsets of an n-element set X, satisfying

I.c*llic( ) )
n/2

is at most

2 he(, ) tor 1 +o(1) (7)

Equations (6) and (7) prove that the number of intersection-free families is at most

o

2("’/’2) log n(1+0(1))

We can, however, improve this upper estimate.
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Theorem. The number «(n) of the closures (databases, intersection semi-lattices,
intersection-free families) satisfies the Jollowing inequalities:

207’ < () < 223070 o), (8)

Proof. Any family consisting of [n/2]-element members is intersection-free, there-
fore the number of intersection-free families exceeds the left hand side estimate of
the theorem. ‘

To prove the right hand side, partition the ground-set into two subsets X, and
X, of the same cardinality (suppose that n is even). Let F be an intersection-free
family. Define ‘ : '

F,={F. Fe %, AGe Fst. FnX,=Gn X, and FnX,2cGn X,} (9)
and
E»":zr-{F:Feﬂ’,ZGE?Fs.t.Fr'\X2=GnX2and FnX,cGnX,}. (10)

Suppose that F¢ %, and F¢ %, but Fe %, By (9) and (10) there exist two subsets
G, and G, in Z satisfying Fn X, = GNnX\,FnX,c G nX,, FnX,= G, X,
and Fn X, = G,n X,. F=G,n G, is obvious and contradicts the assumption that
F is intersection-free. This proves

F=F,UF,. (L)

Let F and G be members of %, such that F A X, =Gn X,=A. By (9) we have
FnX,2GnX;,and FAX,2 Gn X, that is,

F(A)={B: Bc X,,AuBe %,}

is inclusion-free (no member contains another member as a proper subset) for any
A< X,. It is known ([5], see also the sharper result [7]) that the number of
inclusion-free families on an n-element set is at most

2 (a1 +at1))

This implies that the number of possible families F(A) (for a fixed A) is at most

2(1:;j§] Y(1+0(1)

F, is determined by the families F.(A). In the worst case they can be chosen
independently, so the number of possible families Z, is at most

n/2 yan/20q 4 (!
9 (nd)? (Hn(m:2~/2(,,;2)(|+mn)_ (12)

The same is true for the number of choices of F,. By (11) % is determined by #,
and F,. Therefore the number of possible intersection-free families 7 is upper-
bounded by the square of (12). The statement is proved for even n. The case of odd
n is analogous. [J
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Conjecture, The constant 232 can be omitted in the exponent of the right hand side

of (8).

Remark. If the condition Z(¢)) =¢ is omitted from the definition of the closure then
the total (real) number of closures can be expressed as

2, ( " .)a(i)-
i=o0o \N—1

This expression satisfies the estimates of the Theorem, again.
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