EXTREMAL COMBINATORIAL PROBLEMS OF DATABASE MODELS *

Janos Demetrovics
Computer and Automation Institute, Hungar.Acad. Sci.

1111, Budapest, Kende u. 13-17.,Hungary

Gyula O. H. Katona
Mathematical Institute, Hungar. Acad. Sci.

1364, Budapest, P.f. 127, Hungary

1. INTRODUCTION

One possible model of a database is a matrix.
E.g. a database may contain the name, the place of birth,
the date of birth, and so on... of different persons.
The possible data are called attributes while the whole
of the data of one individual is its record. In the above
example the name, the place of birth, the date of birth
are attributes. The whole of data of one person is a re-
cord. It is rather natural to describe this system by a
matrix whose rows and columns correspond to the records
and attributes, respectively.

It is clear that the actual entries of the

matrix are unimportant from the point of view of the

* Research supported by Hungarian National Foundation for Scientific
Research, grant number 1.066



100

structure of the database. We have to consider, whether
they are equal or unequal, only. A further relaxation of
the model is when certain interrelations of the columns
are considered, only: which columns are determined by the
entries of given sets of columns. These models suggest
several combinatorial problems of extremal nature. Name-
ly, given some parameter(s) of the database (for instance
the number of attributes), determine the maximum or mini-
mum of another parameter (for instance the maximum number
of minimal keys; see the definition later). The aim of
the recent paper is to survey these extremal combinato-
rial results found by the authors and their coauthors. It
is a refreshed version of [8].

In Section 2 we give the necessary definiti-
ons and study the models and their relationships. The
proofs can be found in [3] and/or in [8].

In Section 3 we survey the combinatorial
problems mentioned above.

In the last section we introduce a partially
ordered set in which the databases (more precisely their
models) are ordered in a natural way. Some combinatorial
data of this partially ordered set are determined.

Both in Sections 3 and 4, one can find more

open problems than final results.
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Z2.THE MODEL

The concepts and results of this section
(except. Theorems 2.10,2.11) are either published by other
authors (see e.g. [11,[4]1) or belong to the folklore. We
repeat them here, the proofs can be found in [3] and/or
in [8].

The basic model of a database is a matrix M
with m rows and n columns. The set of columns is denoted
by Q. Let A,BCR. We say that B functionally depends or
shortly depends on A if M has no two rows equal in A but
different in B.

The notation A -+ B 1is used for this case.
It is called a functional dependency or shortly a depen-
dency. In other words A - B means that the data in the
columns belonging to A uniquely determine the data in B,
that is, knowing A the attributes in B do not give any
new information. If B 1is a one-element set, B={b}, we
write simply A -+ b.

It is clear that different matrices may give
the same system of functional dependencies, therefore
this model is less fine than the matrix model. However,
in many cases it contains sufficient amount of informa-
tion. The system of functional dependencies can be consi-

dered as a model of all matrices in which these dependen-
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cies hold. So the rows of the actual matrix might be

changed during the life of the database, but these depen-
dencies are unchanged.
Q
Define the function £ on 2 by

L(A)={b: A -+ b}.

This function possesses some simple proper-

ties:

Lemma 2.1. Let A,BCQ. Then
(2.1) AC 2(A);
(2.2) ACB implies L(A) C £(B);
(2.3) L(L(A)) = L(A).

The combinatorial literature calls a func-

tion satisfying (2.1)-(2.3) a closure. Lemma 2.1 makes

us able to call ¢ a closure.

Obviously, the fuctional dependency can be

defined by %:

Lemma 2.2. A + B iff B C L(A).

Lemmas 2.1 and 2.2 imply the following pro-

rverties of the dependencies:
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Lemma 2.3. Let A,B,C,DC R. Then

(2.4) A5 A;
(2.5) A+ B and B -+ C imply A - C;
(2.6) ACC, DC Band A -+ B imply C - Dj

(2.7) A+ Band C -+ D imply A U C -+ B U D.

Suppose now, in general, that a system 7 of
pairs (A,B) ofsubsets of @ is given which satisfies
conditions (2.4)-(2.7). Such a system is called a full
family. Lemma 2.3 expresses the fact that the functional
dependencies form a full family.

We defined the above closure with the func-
tional dependencies determined by a matrix. It also can

be done with an arbitrary full family 7:
£(A) = (b: (A,b) € T}.
Lemma 2.1 can be restated for the so defined

function £, consequently it is a closure. So a full fami-

ly defines a closure and the converse is also true:
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Theorem 2.4.
(2.8) T 4 L£(A) = (b: (A,b) € T}

is a one-to-one correspondence between the set of full

families and the set of closures on the same ground set.

The inverse of (2.8) is determined by
(2.9) L+ T = {(A,B): BC 2(A)}.

The structure of the full family of a given

database can be very useful in handling and compressing

the database. However, this structure, as we saw, could

be uniquely characterized by the corresponding closure.

This latter one is a simpler structure. In what follows,

we will give other (even simpler) equivalent structures.

The set A C @ 1is said to be closed (with
respect to the closure &) if ¢(A) = A.

The next theorem
determines the family 7 (=z3(2£)) of the closed sets

with respect to the closure £.

Theorem 2.5. Let i be a family of different

subsets of Q. i is the family of closed sets with respect

to some closure & iff
{2.10) Qe 7,

{Z2.11) A,B € 3 implies AN B €

F e
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Property (2.11) can be formulated as 3 1B
closed under intersection”. The families i satisfying
(2.10) and (2.11) are called intersection semi-lattices.
The next theorem shows that a closure can be uniquely re-

covered from its closed sets.

Theorem 2.6.

(2.12) L s i = {72 L(3) = 3}

is a one-to-one correspondence between the set of clo-
sures and the set of intersection semi-lattices on the

same ground set. The inverse of (2.12) is determined by

(2.13) T 9 Lf4) = n & .
ACZe G

Due to property (2.11) an intersection semi-
lattice 7 can be determined by much less of its members.
Let M(3) denote the family of those members C € i which
are not intersections of two other members of ;, that is,

AZ C=#? B, A,Be€e i imply A N B # C.

Lemma 2.7. Any member A € i is an intersec-
section of some (>0) members of M(3i)-{)}, but no proper

subfamily of M(3i)-{) has this property.
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The next theorem characterizes the families

M(z).

Theorem 2.8. A family & is equal to M(3)

for some intersection semi-lattice 3 iff

(2.14)

2
m
Ty

and

(2.15) A= 58 A, (r>1), A,A.,...,A € &
i=1 1 1 r

imply A = Ai for some i (1<£i<lr).

The families satisfying (2.14) and (2.15)

are called intersection-free families.
Theorem 2.9.
(2.16) i M(3F)

is a one-to-one correspondence between the set of inter-
sections semi-lattices and the set of intersection-free

families. The inverse of (2.16) is determined by

{2.17) & + (AN...NA , r>1, A_,...
1 r 1 r

The following equivalent description of a
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closure is rather unusual. Let HC Q, H 4§ 7 and suppose

that both 7 and U (H} are closed under intersection.
Consider the sets A satisfying A € 7, HC A. The inter-
section of all these sets is in 3, therefore it is dif-
ferent from H. Denote it by L(H). H g L(H) is obvious.

Let ¥#(;i) denote the set of all pairs. (H,L(H)) where
HC 2, H¢ i but i U (H} 1is closed under intersection.

The following theorem characterizes the possible sets

H(z):

Theorem 2.10.[3] ‘he set {(A.,B.)J}" i
I 1 1=l
equal to #(7) for some intersection semi-lattice 7 if and
only if the following conditions are satisfied:
(2.18) g+ A, C B, C Q,
1 # 1
(2.19) A. C A, implies either B, C A, or B, D A _,
i b i J i J
(2.20) A, C B, implies B, C B _,
1 J 1 J
(2.21) for any i and C C Q satisfying Ai ¢ C¢ Bi
there is a j such that either C = A, or A_ C C;

J J
Bj §f C, Bj D C all hold.

The set of pairs (Ai'Bi) satisfying (2.18)
to (2.21) is called an extension. Its definition is not
really beautiful but it is needed in some applications.
On the other hand, there is, again, a one-to-one corres-

pondence between the extensions and the intersection
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semi-lattices. So the extension is an equivalent form of
the closure. But we do not say that it is a simple one.
Only useful.

Theorem 2.11.
(2.22) F =+ ®(3F)

is a one-to-one correspondence between the intersection

semi-lattices and the extensions. The inverse of (2.22)

is given by

(2.23) # 4+ i=

(A: ACQ, HCA + L(H)CA for all (H,L(H)) € R}

We have seen several concepts equivalent to
the full families, however we did not show yet that the

full families are exactly the functional dependencies de-

fined by matrices:

Theorem 2.12 Let I be a full family on $.
There exists a matrix M with |Q| columns in which the

family of functional dependencies coincides with .

Beside the functional dependencies the lite-

rature knows many different dependencies (see e.g. [15]).
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We call the attention to two, not really studied types.

As an example let A:(aj,az}, b ¢ AC Q. Sup-

pose that we do not know the actual entry of the attri-
bute aI for a given individual, but we know that it is

either rI or r2. We know that the entry of the attribute

32 of the individual is either r3 or r4,

entries belong to a fixed two-element set. Suppose that

that is, the

this always implies that the entries of the same indivi-
dual must belong to a two-element set {PS'PG} (depending
on rl,rz,r3,r4). We say in this case that b two-depends
on A. The formal definition of the two-dependency is the
following. A +2 B if and only if there are no three
rows of the matrix having at most two different entries
in every column in A and three different entries in one
of the columns of B. In general, we say that B i-depends
on A, in notation A ﬁi B, if and only if +the matrix
contains no i+l rows having at most i different entries

in any column belonging to A and having i+l different en-

tries in a column belonging to B.

Obviously, 41 is the same as -. 41 has a

nice property:

Lemma 2.13. &i(A):{b: A 4i b} is a closure.

Unfortunately, A 4i b does not imply

l4i+1 b, as the following example shows it for i=1," Ag
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{a ,32} and bca

1 i

0 1 0
o .0 1
1 0 2.

The other dependency is much weaker than the

usual ones. Suppose that the entries r1 and r2 of the at-

tributes aI and 82' respectively, determine uniquely the

entry of the attribute b. Then we say that

(aI,a b

271" T2/
determines (b,r3), in notation {al,az;rj,rz) —+ (b,r3).

In general, denote the set of possible entries in the co-

lumn ai by Dj. a:(al,...,ak;rI,...,rk) is called a par-

1

We write o - ﬁz(b]""’bl;sl""'sl) and say that p de-

tial function if a. are distinct elements of & and riEDi.

pends on « if any row having r, in the column a. (1<i<k)
has the entry Si in the column bi (1<i<1). Introduce Z(w)

as the largest possible p satisfying o -+ p (that is,

the one maximizing the size of {bl,...,bl}). If there is
no such row then « = and £(x) are not defined.

Let mz(al,...,ak;rI;...,rk) and B&
(b1,...,b1;31,...,sl). « C p denotes that [aI,...,ak} C
{(b.,...,b.} and a.=b ., implies r_=s .. We have an analogue

1 1 i J 1 J

of Lemma 2.1:

Lemma 2.14.

(2.24) o C 2(w);
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(2:.25) v C p idimplies &L(w) C L2(p);

(2.26) L(t(w)) = £(w).

A basic difference between Lemma 2.1 and the
present one is that £(A) is defined for all subsets A C 2,
while £ () is defined only for some partial functions.
However these partial functions have a structure. We say

that a set P of partial functions is a downset iff

(2.27) « € P and p C « imply p € P
and
(2.28) for any « € ? there is a 4y € ? such that
y={c_,,+¢:e5€ ;...) where ‘fc.,...,c }=8.
1 n 1 n

If a function €, defined on a downset of par-
tial functions, satisfies (2.24)-(2.26) then it is called
a function-closure. The theory of closures presented in

this section can be generalized for function-closures.
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3. INEQUALITIES FOR THE PARAMETERS OF A DATABASE

Let us first indicate what kind of problems
are aiscussed in this section. A database (or matrix) has
different parameters like the number of columns (attribu-
tes), number of rows (individuals), number of possible
entries of the matrix, etc. More generally, the total
structure 7 of dependencies can also be considered as a
"generalized parameter"”. Knowing some parameters of M we
will look for the minimum or maximum value of another pa-
rameter.

The easiest example concerns the number of
minimal keys of a database. A key is a set of attributes
determining the values of all other attributes. Formally,
ACQ 1is a key, iff A+ @, that is, if (A,Q) is a func-
tional dependency or equivalently, £(A4)=R. Moreover, K is
a minimal key iff it is a key but no proper subset of it
has this property. Our first problem is to determine the
maximum number of minimal keys if the number n of attri-

butes is given. For this purpose we need the following

theorem.



Theorem 3.1. ([5]) Given a family X of sub-
sets of  there is a matrix in which the family of mini-

mal keys is K iff R satisfies

L , E F L
(3.1) K, ,K,eR, K, B, s B F K,
The families satisfying (3.1) are called
Sperner families. Our original problem is now reduced
to the determination of max|R| under (3.1). This problem,

however, has been solved many years ago by Sperner [12].

n

[Ln/ZJ

The answer is ]. So we can formulate

Theorem 3.2. ([5]1) The maximum number of mi-

nimum keys in a database (matrix) with n attributes (col-

) n
umns) 1is {Ln/ZJ]'

Theorem 3.1 states that there is a matrix M,
for any X, in which the family of minimal keys is X. We
did not consider the number of rows. Now, let s(R) de-
note the minimum number of rows in such a matrix M,
where X is any Sperner family. s(X) should not be un-
derstood as the number of individuals in the whole data-
base, but as the minimum number of individuals generating

¥ as the set of minimal keys. There is a general upper

bound on s(X):
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Theorem 3.3. ([5])

n
s(R < 1 + [ ].
(B} % \n/2]
The next theorem states that there 1is a

® for which s(X) is close to the upper bound given in

Theorem 3.3.

Theorem 3.4. ([7}) For any n, there is Sper-
ner family on an n-element set such that

(1/n%) | ¢ s(%).

n
I.M/Z..I‘l
We cannot construct a Sperner family which
has such a large s(X). There is, however a class of Sper-
ner families for which s(X) is exactly determined. Let
Fﬁ denote the family of all k-element sets of an n-el-
ement set. It is cbvious that Fﬁ_ is a Sperner family.

Let us see first an easy lemma:

Lemma 3.5. ([61)

=

s(Fz)

IV

(0 < k < n).
2 k-

This leads to the exact solution 1in some

easy cases:
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Theorem 3.6. ([6])

s(F))=2, s(F )=[(1/2)(1+\1+8n)1,
s(F n )=n, s(Fn): n + 1,
n-1 n
S(Fg)zn, S(Fg):n if n=12r+1 or 12r+4.

Conjecture 3.7.
S(F'I;) =n if n>7.

4
Let us remark that s(F3)=4. The above exact
results on S(Fg) are based on some construction of cer-
tain triple systems. We were able to prove the following

conjecture (using a theorem of Hanani [9]) for n=12r+l

and n=z12r+4:

Conjecture 3.8. There is a system of 3-el-
ement subsets of an n=(3r+1)-element set {(1,2,...,n} sa-
tisfying the following conditions:

(1) Any pair of elements 1is contained in
exactly two 3-sets.

(2) The family of 3-sets can be divided into
n subfamilies where the ith subfamily is a partition of
(1;,2y.00asn}={i}.

(3) Exactly one pair of members of two dif-
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ferent subfamilies meet in 2 elements.

Andrea Rausch (Greifswald) [11] proved that
this is not true for n=z10 (r=3). But we still believe
that the conjecture is valid for n>13.

The difficulties with k=3 indicate that only

asymptotic results might be expected for other k's. Lemma

3.5 gives

(k-1)/2
, £ S(Fi)

where CI depends on k but not on n. It can be proved that

this is asymptotically sharp:

Theorem 3.9. ([6])

:, n(k-10/2 S(Fi) <o, p(k-1)72

where CI and 02 do not depend on n.

Let us consider now the analogous problem
{or dependencies in place of keys. Due to the results of
Section 2 we may consider the closures. Let £ be a closu-
re on an n-element set Q. According to Theorem 2.12 there
is a matrix M in which the closure is exactly %£. We say
that M realizes 2. The minimum number of rows of such ma-

trices M is denoted by s(i).

In fact, we know s(%f) for some 2. Let
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$ dF A2k,

n
L (A) =
k( )

L A if |A|<k.

It is easy to see that a matrix M realizes

iz‘iff the family of minimal keys in M 1is exactly Fﬁ.

Hence we have
(3.2) s(mz) = s(F").

Let Q:QIUQZ be a partition of & and let $1
and $2 be closures defined on QJ and 92, respectively.

The direct product $1X$2 is defined by

(£1X$2)(A) = iI(A N QI) U $2(A N 92).

Theorem 3.10. [6]
s($1X32) = s($1) + s(mz) - 1.

(3.2) and Theorem 3.10 make us able to deter-
mine s({) for several other closures.

Another interesting question is the follow-
ing. Fix the size of the set of minimal keys, what is the

range of the possible values of s(K)?
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Problem 3.11. Determine

s(k)= max s(R)
[R| =k
and
rik)= min s(kX).
| R| =k

We know very 1little about this problem.
However there is a connection to another, probably easier
problem. Let A T & be an antikey iff it is not a key.

-1
The family of maximum antikeys is denoted by R

] It
is known [6] that
s(R)
- -1

Ik 1< and ls(R)|<1 + |[R |,
2

. . ) -1

that is, there is a strong connection between |R |

and s(X). This leads to another open problem:

Problem 3.12. Determine

max |%_1|
|R| =k

and
min x4,

|| =k
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As regards the minimum, we think that it is
attained for the family X consisting of i and it+l-element

subsets, where i is determined by

(7)< w13

The next problem tries to determine the
"most complex"” system of functional dependencies in a da-
tabase with n attributes. Due to the results of Section 2
we can speak about full families instead of dependencies.
Let 7 be a full family. The pair (A,B) € T 1is called

basic if

1)A # B,

2)there is no A'C A, A’ % A, (A',B) € 7T,

3)there is no B' 2 B, B' ¥ B, (A,B’' ) € 7.
Let N(n) denote the maximum number of basic pairs 1in a
full family in an n-element set. We know only the follo-
ing estimates on N(n):

Theorem 3.13. ([2] and [101])

Y logzlogzn

2'(1 - (1 + 0(1)))<

logze logzn
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logs/zn

N(n) < 2°(1 - 9

150 Yn’

The proper second term is an open question.
Another possible complexity of a database is
defined in the forthcoming book of Thalheim [14]. Other

interesting combinatorial problems of databases are con-

sidered in [13] and [14].

4 .PARTIALLY ORDERED SET OF DATABASES OF A GIVEN SET OF

ATTRIBUTES

By a database we mean here the equivalent
models of Section 2, namely, the full families, the clo-
sures, etc. The most convenient one for our purposes is
to start with the model of closures.

A natural condition is added: no attribute
is known in advance. By terms of matrices, the matrix has
no constant column. It is easy to see that this is equi-
valent to the condition

(4.1) L(g) = #.



121

A database is constantly changing during its
life. It also changes the corresponding closure. A typi-
cal change is to delete the data of some individuals. If

A -+ a is true then it remains true after the change.

This implies
(4.2) &I(A) C mz(A) (for all A C R

if 11 and iz denote the closures before and after the

change. We write &1 > iz in this case. It is easy to see
that this property is transitive, consequently the clo-
sures of a fixed n-element set { form a partially or-
dered set (poset) for the ordering given in (4.2). The
aim of the present section is to study this poset P.

Now we reduce the model to the families of
closed sets. They form an intersection semi-lattice ¢
satisfying the condition # € 2 which 1is equivalent to
(4.1). 2(L£) denotes the family of closed sets in the

closure 2.

Lemma 4.1. &1 < &2 iff 2(&1) C ?(32).

We say that £2 covers $1 and write £1 < 32

iff $1< iz and there is no $3 satisfying &1($3($2.
The function r associating non-negative integers with the

elements of a given poset satisfying the following condi-

tions is called a rank-function:



122

(4:3) r is zero for some element,
s i § — + 1.
(4.4) if 22 covers 31 then r(&z) r(il) 1

The following lemma shows the structure of P

more clearly.

Lemma 4.2. L, <L, iff (L) cC 2(2,) and
l?(iﬁz)—?(ﬁl)lzl-

Now it is easy to deduce

Lemma 4.3. r(f) = |3(£)|-2 1is a rank-func-

tion on P.

Now we are able to pose the main problem of
of this section. Consider the closures of a fixed rank in
P and try to find the minimum (maximum) number of neigh-
boring closures from above (from below). That is, lower
and upper estimates of the degrees (from above and from
below) in a fixed level of the Hasse-diagram of P are
sought. The database motivation for this question is the
following. A temporary state of the database correspond
to an element P. A change in the database correspond to a
move along an edge of this Hasse-diagram. The life of the
database therefore corresponds to a random walk along the

Hasse-diagram of P. As a first model, we might suppose
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that all the edges at a given element are chosen with
equal probabilities. To obtain any (probabilistic) state-
ment in this model we obviously need information about
the degrees.

Let dega(ﬁ) and degb(i) denote the number of
elements of P covering ¢ and covered by &, respectively.

We define the following functions:

fl(n,k) = max[dega(i): r(l) = k)
fé(n,k) = min{dega(i): r(t) = k)
f3(n,k) = max{degb(i)-‘ r(t) = k)
f,(n,k) = min{deg (2): r() = k)

(1 <n, 0<k< 2" - 2).

fl(n,k) is fully determined, there are esti-
mates for fz(n,k) and f4(n,k). However we know practi-
cally nothing about fs(n,k),

Theorem 4.4. [3]

£ (n,k) = 2" -k - 2.
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Theorem 4.5. [3]

fz(n,k) = 0 Iiff k = 2 ~ B,
-a-1
£ (n,k) = 1 iff k = g =2 T a2
for some 0 < a < n.
-1
If k > 2n + 2 then fz(n,k) < number of
bits 1 in the binary expansion of Zn - k - 2. What is at

most n-1.
The proof is based on Theorems 2.11 and 2.12.
Theorem 4.6. [3]
[log, (k+1)) < £ (n,k)

< Liogz(k+2)J - 1 + (number of non-zero digits in the

binary form of (k+2)).
rf4(n,k) = rlogz(k+1)] if n > k+2.

The proof is based on the fact that only the
members of M(7) - () can be omitted from the intersec-
tion semi-lattice ¥ if we want to obtain another inter-

section semi-lattice.
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