On the Number of Unions in a Family of Sets^a J. DEMETROVICS, G. O. H. KATONA, AND P. P. PÁLFY ^b Computer and Automation Institute Hungarian Academy of Sciences Victor Hugo u. 18-22 1132 Budapest, Hungary c Mathematical Institute Hungarian Academy of Sciences Realtanoda u. 13-15 1053 Budapest, Hungary The aim of this paper is to prove the following theorem, which was posed as a conjecture in [1]. THEOREM: Let $\mathscr{A} = (A_1, A_2, ..., A_n)$ be an *n*-member family of subsets of an *n*-element set X and $\mathscr{U} = \{\bigcup_{i \in I} A_i : I \subseteq \{1, 2, ..., n\}\}$ the set of unions. If $|\mathscr{U}| > 2^{n-1}$, then $|\mathscr{U}| = 2^{n-1} + 2^m$ for some m = 0, 1, ..., n - 1. A somewhat related result is a special case of a theorem of Tverberg [4]: If the family $\mathscr{A}=(A_1,\ldots,A_f)$ of subsets of the *n*-element set X has $f\geq n+1$ members, then there exist disjoint nonempty $I_1,I_2\subseteq\{1,\ldots,f\}$ such that $\bigcup_{i\in I_1}A_i=\bigcup_{i\in I_2}A_i$ (see also Lindström [2]). Recently, Lindström [3] has found that for $f\geq n+2$ even $\bigcup_{i\in I_1}A_i=\bigcup_{i\in I_2}A_i$ and $\bigcap_{i\in I_1}A_i=\bigcap_{i\in I_2}A_i$ simultaneously can be achieved. Their proofs use linear algebraic technique. Our proof is straightforward. We determine all possible families of sets for which the hypotheses of the theorem are satisfied: SUPPLEMENT TO THE THEOREM: $|\mathcal{U}| > 2^{n-1}$ if and only if there exist a p-element subset $C \subseteq X$ ($0 \le p \le n$) and a p-member family \mathscr{C} of subsets of C (called the core of \mathscr{A}) such that \mathscr{C} is one of the families listed in Table 1 and \mathscr{A} consists of the members of \mathscr{C} and the n-p one-element subsets of $X \setminus C$. The strong constraint for the number of unions is quite surprising if contrasted to the many ways the possible values can be attained. COROLLARY: The number of essentially different families for which $|\mathcal{U}| = 2^{n-1} + 2^{n-k}$ is $$\frac{k^2 + k - 4}{2} \quad \text{for} \quad 6 \le k \le n,$$ ^aThis research was supported by Hungarian National Foundation for Scientific Research Grant 1812. TABLE 1. Possible Cores | | | Numb | per of | | |------------------------------------|---------------------------------------|-------------|---------------------|-------------------------------| | | | Points/Sets | Unions ^b | | | Name | Family ^a | (p) | (u) | $2^{-p}u$ | | $\mathscr{C}_1(p, q),$ | Ø | 0 | 1 | 1 | | $p \geq 3$, | • • • | p | $2^{p-1}+1$ | $\frac{1}{2} + \frac{1}{2^p}$ | | $p \ge q \ge 3$ | q o | | | $2 2^p$ | | $\mathscr{C}_1(p, 2),$ | , , , , , , , , , , , , , , , , , , , | | $2^{p-1}+1$ | 1 1 | | $p \ge 3$ | | p | 2. +1 | $\frac{1}{2} + \frac{1}{2^p}$ | | $\mathscr{C}_1(p, 1),$ | | | | 1 1 | | $p \ge 2$ | | p | $2^{p-1}+1$ | $\frac{1}{2} + \frac{1}{2^p}$ | | $\mathscr{C}_2(p, q, r),$ | ٨ | | | | | $p \ge 4,$
$p - 1 \ge q \ge 3,$ | | | | | | $q \ge r \ge 1$, | •• od | p | $2^{p-1}+1$ | $\frac{1}{2} + \frac{1}{2^p}$ | | except $p-1=q, r=1$ | <u> </u> | | | 2 2 ^p | | $\mathscr{C}_{2}(p, 2, 2),$ | 8 6 | | | 1 1 | | $p \ge 3$ | | p | $2^{p-1}+1$ | $\frac{1}{2} + \frac{1}{2^p}$ | | $\mathscr{C}_{2}(p, 2, 1),$ | ٥ | | | 1 1 | | $p \ge 4$ | • | p | $2^{p-1}+1$ | $\frac{1}{2} + \frac{1}{2^p}$ | | \mathscr{C}_3 | γ—-γ | 4 | 10 | 1 2 | | | <u> </u> | 4 | 10 | $\frac{1}{2} + \frac{2}{16}$ | | C ₄ | •—• | 4 | 9 | $\frac{1}{2} + \frac{1}{16}$ | | \mathscr{C}_{5} | p | 5 | 17 | $\frac{1}{2} + \frac{1}{32}$ | | - | bb | | ., | 2 32 | | \mathscr{C}_{6} | | 5 | 17 | $\frac{1}{2} + \frac{1}{32}$ | | | | | | 2 32 | | \mathscr{C}_{7} | • • | 5 | 17 | $\frac{1}{2} + \frac{1}{32}$ | | | <u> </u> | | | 2 32 | [&]quot;Notation: • one-element set; o—o two-element set; $\boxed{\underbrace{\circ \cdot \cdot \circ}} q$ -element set $(q \ge 3)$. ^bThe number of unions can be determined by direct calculations. 4 if n = 3 | k | 1 | 2 | 3 | 4 | 5 | |--------------------|---|---|----------------|---|----| | | | | 5 if $n \ge 4$ | | | | Number of families | 1 | 1 | | 9 | 16 | and for $1 \le k \le 5$ it is given by the following table: REMARK: In the theorem it is an important assumption that the number of members of \mathcal{A} is the same as the number of elements of X, as shown by the following examples. | | Th | e Numbe | er of | |---------|--------|---------|--------| | Family | Points | Sets | Unions | | •—• | 3 | 4 | 7 | | 0-0-0-0 | 4 | 3 | 7 | We start with four simple lemmas. LEMMA 1: No member of \mathscr{A} is the union of some other members of \mathscr{A} . In particular, the members of \mathscr{A} are pairwise different and none of them is the empty set. *Proof*: If $A_j = \bigcup_{i \in I} A_i$ for some $1 \le j \le n$, $I \subseteq \{1, 2, ..., n\}$, $j \notin I$, then in any union A_j can be substituted by $\bigcup_{i \in I} A_i$. Hence, $|\mathcal{U}| \le 2^{n-1}$. \square LEMMA 2: Let $\mathscr{B} = (A_{i_1}, \ldots, A_{i_s})$ $(1 \le i_1 < \cdots < i_s \le n)$ be a subfamily of \mathscr{A} and $\mathscr{V} = \{\bigcup_{i \in I} A_i : I \subseteq \{i_1, \ldots, i_s\}\}$ the set of unions in \mathscr{B} . Then $$2^{-s}|\mathcal{V}| \geq 2^{-n}|\mathcal{U}|.$$ *Proof:* As $\mathscr{U} = \{V \cup \bigcup_{j \in J} A_j : V \in \mathscr{V}, J \subseteq \{1, ..., n\} \setminus \{i_1, ..., i_s\}\}$ we have $|\mathscr{U}| \leq 2^{n-s} |\mathscr{V}|$. \square LEMMA 3: If $|\mathcal{U}| > 3 \cdot 2^{n-2}$, then \mathcal{A} consists of the one-element subsets of X and so $|\mathcal{U}| = 2^n$. *Proof:* If $|A_1| \ge 2$, then $|\mathcal{U}| \le |\{Y \subseteq X : Y \supseteq A_1\}| + |\{\bigcup_{i \in I} A_i : I \subseteq \{2, ..., n\}\}| \le 2^{n-2} + 2^{n-1} = 3 \cdot 2^{n-2}$. \square LEMMA 4: If $|\mathcal{U}| > 2^{n-1}$, then $|A_i| \ge 3$ for at most one member A_i of \mathcal{A} . *Proof:* If $|A_1| \ge 3$ and $|A_2| \ge 3$, then $|\mathcal{U}| \le |\{Y \subseteq X : Y \supseteq A_1\}| + |\{Y \subseteq X : Y \supseteq A_2\}| + |\{\bigcup_{i \in I} A_i : I \subseteq \{3, ..., n\}\}| \le 2^{n-3} + 2^{n-3} + 2^{n-2} = 2^{n-1}$. \square Now we turn to the proof of the theorem and its supplement. In virtue of Lemma 4 we shall distinguish two cases: Case 1: $|A_i| \le 2$ for each i = 1, ..., n; Case 2: $|A_1| = q \ge 3$ and $|A_i| \le 2$ for i = 2, ..., n. (Here and in the forthcoming considerations we freely use renumbering of members and subfamilies of \mathcal{A} .) TABLE 2. Some Families with Few Unions | Name | Family | Points (p) | Number of
Sets
(s) | Unions (u) | $2^{-s}u$ | |-----------------------|-------------|------------|--------------------------|------------|--------------------| | ℬ ₁ | < | 4 | 4 | 8 | $\leq \frac{1}{2}$ | | \mathcal{B}_2 | ← ~~ | 5 | 5 | 15 | $\leq \frac{1}{2}$ | | \mathcal{B}_3 | • | 5 | 5 | 16 | $\leq \frac{1}{2}$ | | \mathscr{B}_4 | | 5 | 5 | 15 | $\leq \frac{1}{2}$ | | 98 ₅ | | 5 | 5 | 15 | $\leq \frac{1}{2}$ | | B ₆ | | 6 | 6 | 28 | $\leq \frac{1}{2}$ | | B 7 | | 6 | 6 | 28 | $\leq \frac{1}{2}$ | | ℬ 8 | | 6 | 6 | 28 | $\leq \frac{1}{2}$ | | B 9 | | 6 | 6 | 31 | $\leq \frac{1}{2}$ | | \mathcal{B}_{10} | | 6 | 6 | 29 | $\leq \frac{1}{2}$ | | \mathscr{B}_{11} | 0-0-0-0 | 5 | 4 | 12 | $\leq \frac{3}{4}$ | | B ₁₂ | | 6 | 5 | 23 | $\leq \frac{3}{4}$ | Referring to Case 1, let us regard the two-element members of \mathcal{A} as edges of a graph. First suppose that this graph is connected. Then it has at least n-1 edges; hence there are two possibilities: Possibility 1: $|A_1| = 1$ and $|A_i| = 2$ for i = 2, ..., n; Possibility 2: $|A_i| = 2$ for each i = 1, ..., n. In Possibility 1 \mathscr{A} is a rooted tree. Owing to Lemma 2, it cannot contain a subfamily \mathscr{B}_1 , \mathscr{B}_2 , or \mathscr{B}_3 (see Table 2). We prove by induction on n that this forces \mathscr{A} to be $\mathscr{C}_1(n, 1)$, $\mathscr{C}_1(n, 2)$, or $\mathscr{C}_2(n, 2, 1)$ (see Table 1). If n = 2, then $\mathscr{A} = \mathscr{C}_1(2, 1)$. | Distance | | The Remaini | ng Rooted Tre | se on $n-1$ Verti | ces | |-----------------------|-------------------------|---------------------------------------|----------------------------|--|--| | of x from
the Root | $\mathscr{C}_1(2, 1)$ | $\mathcal{C}_1(n-1, 1)$ $(n-1 \ge 3)$ | $\mathscr{C}_{1}(3, 2)$ | $\mathcal{C}_1(n-1, 2)$
$(n-1 \ge 4)$ | $\mathscr{C}_2(n-1, 2, 1)$
$(n-1 \ge 4)$ | | 1 | $\mathscr{C}_{1}(3, 1)$ | $\mathscr{C}_1(n, 1)$ | B 1 | ⊇%₁ | ⊇81 | | 2 | $\mathscr{C}_{1}(3, 2)$ | $\supseteq \mathscr{B}_1$ | $\mathscr{C}_{1}(4, 2)$ | $\mathscr{C}_1(n,2)$ | $\cong \mathscr{B}_1$
$\cong \mathscr{B}_2$ | | 3 | | | $\mathscr{C}_{2}(4, 2, 1)$ | $\supseteq \mathscr{B}_{2}$ | $\mathscr{C}_{2}(n, 2, 1)$ | | 4 | - | | | = 50 2 | $ \begin{array}{c} \mathscr{C}_{2}(n,2,1) \\ \supseteq \mathscr{B}_{3} \end{array} $ | **TABLE 3.** Rooted Tree on *n* Vertices Let $n \ge 3$. Deleting a nonroot vertex x of valency 1 and the edge incident to it, we obtain a rooted tree on n-1 vertices. By the induction hypothesis it is $\mathscr{C}_1(n-1, 1)$, $\mathscr{C}_1(n-1, 2)$, or $\mathscr{C}_2(n-1, 2, 1)$. Then the rooted tree on n vertices is given by TABLE 3. In Possibility 2 the graph is connected and it has n edges; hence, it contains a unique circuit. If the length of the circuit is 3, then \mathscr{A} cannot contain \mathscr{B}_4 or \mathscr{B}_5 , so \mathscr{A} is $\mathscr{C}_2(n, 2, 2)$. If the length is 4, then the exclusion of \mathscr{B}_6 , \mathscr{B}_7 , \mathscr{B}_8 , and \mathscr{B}_9 means that \mathscr{A} can only be \mathscr{C}_3 or \mathscr{C}_5 . If the length is 5, then \mathscr{A} is the pentagon, \mathscr{C}_6 , as it cannot contain \mathscr{B}_{10} . Now we show that for any circuit of length $p \ge 6$ the number of unions is less than 2^{p-1} ; hence, by Lemma 2, it cannot be contained in \mathscr{A} . Let u(p) denote the number of unions for the circuit of length p, and v(p) for the path of length p (with p vertices, p-1 edges). Let the vertices of the path be in order $x_1, x_2, x_3, \ldots, x_p$. Grouping the possible unions V into three sets according to $x_1 \notin V$, $x_1, x_2 \in V$, but $x_3 \notin V$ or $x_1, x_2, x_3 \in V$, we obtain the recurrence formula $$v(p) = v(p-1) + v(p-3) + (v(p-1) - v(p-2))$$ = $2v(p-1) - v(p-2) + v(p+3)$, (1) for $p \ge 4$. Now consider a circuit of length $p: x_0, x_1, x_2, \ldots, x_{p-2}, x_{p-1}$. Count the unions U in the following five groups: (i) $x_0 \notin U$, (ii) $x_0 \in U$, and $U \setminus \{x_0\}$ is a union of some edges of the path on $\{x_1, \ldots, x_{p-1}\}$, (iii) $x_0, x_1 \in U, x_2 \notin U$, and $U \setminus \{x_0, x_1\}$ is a union of some edges of the path on $\{x_3, \ldots, x_{p-1}\}$, (iv) $x_0, x_{p-1} \in U, x_{p-2} \notin U$, and $U \setminus \{x_0, x_{p-1}\}$ is a union of some edges of the path on $\{x_1, \ldots, x_{p-3}\}$, (v) $x_{p-1}, x_0, x_1 \in U, x_{p-2}, x_2 \notin U$. Then we obtain $$u(p) = v(p-1) + (v(p-1) - v(p-3)) + v(p-3) + v(p-3) + v(p-5)$$ = $2v(p-1) + v(p-3) + v(p-5)$, (2) for $p \ge 6$. Combining (1) and (2), we get a recurrence formula for u(p) as well: $$u(p) = 2u(p-1) - u(p-2) + u(p-3),$$ (3) for $p \ge 9$. Clearly, for p = 1, 2, 3 we have $v(p) = 2^{p-1}$. For $p \ge 4$ we can use (1) to obtain | p | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | |------|---|---|---|---|----|----|----|--| | v(p) | 1 | 2 | 4 | 7 | 12 | 21 | 37 | | For p = 3, 4, 5 u(p) can be determined by direct calculation (cf. TABLE 1) and then (2) can be applied to get: | p | 3 | 4 | 5 | 6 | 7 | 8 | | |------|---|----|----|----|----|----|--| | u(p) | 5 | 10 | 17 | 29 | 51 | 90 | | By induction (3) yields u(p) > u(p-1) and u(p) < 2u(p-1); hence, $u(p) < 2^{p-1}$ for $p \ge 6$, as we have claimed. (We remark that $u(p) = z_1^p + z_2^p + z_3^p$, where $z_1 = 1.75488$, $z_2 = 0.12256 + 0.74486i$, $z_3 = 0.12256 - 0.74486i$ are the roots of $z^3 - 2z^2 + z - 1 = 0$.) So far we have determined the structure of \mathscr{A} if the graph formed by the twoelement members of \mathscr{A} is connected. Now suppose that the graph is disconnected. Let the connected components be X_1, \ldots, X_c $(c \ge 2)$, and let $n_j = |X_j|$, \mathscr{A}_j be the family of those members (including the one-element sets) of \mathscr{A} that are contained in X_j and \mathscr{U}_j be the set of unions of \mathscr{A}_j , $j = 1, \ldots, c$. Obviously, $\mathscr{U} = \{Y_1 \cup \cdots \cup Y_c :$ $Y_1 \in \mathscr{U}_1, \ldots, Y_c \in \mathscr{U}_c\}$; hence, $$2^{-n}|\mathcal{U}| = \prod_{j=1}^{c} 2^{-n_j}|\mathcal{U}_j|.$$ (4) By assumption, $2^{-n}|\mathcal{U}| > \frac{1}{2}$; hence, each factor $2^{-n_j}|\mathcal{U}_j > \frac{1}{2}$. Thus $|\mathcal{U}_j| > 2^{n_j-1}$, so $|\mathcal{A}_j| \ge n_j$. Now $$n = |\mathcal{A}| = \sum_{j=1}^{c} |\mathcal{A}_j| \ge \sum_{j=1}^{c} n_j = n$$ implies that $|\mathcal{A}_j| = n_j$ for each $j = 1, \ldots, c$. Hence the assumptions of the theorem are satisfied by the n_j -member family \mathcal{A}_j on the n_j -element set X_j , $j = 1, \ldots, c$. Our previous considerations tell us that any connected component \mathcal{A}_j is either one of $\mathscr{C}_1(n_j, 1)$ (for $n_j \geq 2$), $\mathscr{C}_1(n_j, 2)$ (for $n_j \geq 3$), $\mathscr{C}_2(n_j, 2, 1)$ (for $n_j \geq 4$), $\mathscr{C}_2(n_j, 2, 2)$ (for $n_j \geq 3$), \mathscr{C}_3 (for $n_j = 4$), \mathscr{C}_5 (for $n_j = 5$), and \mathscr{C}_6 (for $n_j = 5$) or $n_j = 1$. Thus the factors on the right-hand side of (4) have the form $1/2 + 1/2^{n_j}$, except for $\mathcal{A}_j = \mathscr{C}_3$, when $2^{-n_j}|\mathscr{U}_j| = \frac{5}{8}$ (see Table 1). Their product is greater than one-half only in the following cases: $|\mathscr{U}_1| > 2^{n_1-1}$ and $|\mathscr{U}_j| = 2^{n_j}$ for $j = 2, \ldots, c$, or $|\mathscr{U}_1| = 3 \cdot 2^{n_1-2}$, $|\mathscr{U}_2| = 3 \cdot 2^{n_2-2}$, and $|\mathscr{U}_j| = 2^{n_j}$ for $j = 3, \ldots, c$, since $\frac{3}{4} \cdot \frac{5}{8} < \frac{1}{2}$ and $\frac{3}{4} \cdot \frac{3}{4} \cdot \frac{3}{4} < \frac{1}{2}$. By Lemma 3, $|\mathscr{U}_j| = 2^{n_j}$ implies $n_j = 1$. Moreover, $|\mathscr{U}_j| = 3 \cdot 2^{n_j-2}$ for only $n_j = 2$, $\mathscr{A}_j = \mathscr{C}_1(2, 1)$. Hence, in Case 1 the core of \mathscr{A} can be \mathscr{O} , $\mathscr{C}_1(p, 1)$ ($2 \leq p \leq n$), $\mathscr{C}_1(p, 2)$ ($3 \leq p \leq n$), $\mathscr{C}_2(p, 2, 1)$ ($4 \leq p \leq n$), $\mathscr{C}_2(p, 2, 2)$ ($3 \leq p \leq n$), \mathscr{C}_3 (for $n \geq 4$), \mathscr{C}_5 (for $n \geq 5$), \mathscr{C}_6 (for $n \geq 5$), and \mathscr{C}_4 (for $n \geq 4$) (the last one yielded by the second possibility). If the core has p elements, then $$|\mathcal{U}| = \begin{cases} 2^{n-1} + 2^{n-p}, & \text{except when the core is } \varnothing \text{ or } \mathscr{C}_3, \\ 2^{n-1} + 2^{n-1}, & \text{if the core is } \varnothing, \\ 2^{n-1} + 2^{n-3}, & \text{if the core is } \mathscr{C}_3. \end{cases}$$ (5) Referring to Case 2, let $|A_1| = q \ge 3$ and $|A_i| \le 2$ for i = 2, ..., n. We shall consider the subfamily $\mathscr{A}' = \{A_2, ..., A_n\}$ and the set of its unions $\mathscr{U}' = \{\bigcup_{i \in I} A_i: I \subseteq \{2, ..., n\}\}$. Since $2^{n-1} < |\mathscr{U}| \le |\mathscr{U}'| + |\{Y \subseteq X: Y \supseteq A_1\}| \le |\mathscr{U}'| + 2^{n-3}$, it | | | Th | e Tree on $n-1$ | Vertices | | |---|--------------------|--------------------|---------------------------------------|------------------------|---------------------------------------| | Distance of the New Vertex from the Leftmost Vertex | $\mathcal{G}_1(1)$ | $\mathcal{G}_1(2)$ | $\mathcal{G}_1(n-1)$
$(n-1\geq 3)$ | $G_{2}(4)$ | $\mathcal{G}_2(n-1)$
$(n-1 \ge 5)$ | | 1 | $\mathcal{G}_1(2)$ | $\mathcal{G}_1(3)$ | $\mathcal{G}_1(n)$ | B ₁₁ | ⊇811 | | 2 | | $\mathcal{G}_1(3)$ | $\mathcal{G}_{2}(n)$ | $\mathcal{G}_{2}(5)$ | $\supseteq \mathscr{B}_{12}$ | | 3 | | | | $\mathcal{G}_{2}(5)$ | $\mathscr{G}_{2}(n)$ | | 4 | | - | | B 11 | $\supseteq \mathscr{B}_{11}$ | TABLE 4. Result of Adding a New Vertex and Edge follows that $|\mathcal{U}'| > 3 \cdot 2^{n-3}$. Similarly, as in Case 1, we consider the graph formed by the two-element members of \mathcal{A}' . If this graph is connected, then it is a tree. By Lemma 2 this tree cannot contain \mathcal{B}_{11} or \mathcal{B}_{12} (see Table 2). Then we can prove by induction on n that \mathcal{A}' is one of the two graphs shown in Figure 1. Indeed, adding a new vertex and edge yields the result contained in Table 4. If the graph formed by the two-element members of \mathscr{A}' is disconnected, then let the connected components be X_1, \ldots, X_c ($c \ge 2$). Let $n_j = |X_j|$, \mathscr{A}'_j be the family of those members (including the one-element sets) of \mathscr{A}' that are contained in X_j , and \mathscr{U}'_j be the set of unions of members of \mathscr{A}'_j , $j = 1, \ldots, c$. Obviously, $\mathscr{U}' = \{Y_1 \cup \cdots \cup Y_c : Y_1 \in \mathscr{U}'_1, \ldots, Y_c \in \mathscr{U}'_c\}$; hence, $$2^{-n}|\mathscr{U}'| = \prod_{j=1}^{c} 2^{-n_j}|\mathscr{U}'_j|.$$ (6) By assumption $\frac{1}{2} \ge 2^{-n} |\mathcal{U}'| > \frac{3}{8}$. Each factor in the right-hand side is ≤ 1 . If $|\mathcal{A}'_i| \le n_i - 2$, then $2^{-n_i} |\mathcal{U}'_i| \le \frac{1}{4}$, and similarly, if $|\mathcal{A}'_i| = n_i - 1$ and $|\mathcal{A}'_k| = n_k - 1$ $(i \ne k)$, then $2^{-n_i} |\mathcal{U}'_i| \le \frac{1}{2}$ and $2^{-n_k} |\mathcal{U}'_k| \le \frac{1}{2}$; hence, in both cases $\prod_{j=1}^c 2^{-n_j} |\mathcal{U}'_j| \le \frac{1}{4}$, so these cases cannot occur. On the other hand, \mathcal{A}' has $n-1 = \sum_{j=1}^c n_j - 1$ members; hence, we infer that $|\mathcal{A}'_1| = n_1 - 1$ and $|\mathcal{A}'_j| = n_j$ for $j = 2, \ldots, c$. Then $2^{-n_1} |\mathcal{U}'_1| \le \frac{1}{2}$; thus, $2^{-n_j} |\mathcal{U}'_j| > \frac{3}{4}$ $(j = 2, \ldots, c)$. Lemma 3 applied to the n_j -member family \mathcal{A}'_j on the n_j -element set X_j yields that $n_j = 1$ for $j = 2, \ldots, c$. Hence $2^{-n_1} |\mathcal{U}'_1| = 2^{-n} |\mathcal{U}| > \frac{3}{8}$. From the previous considerations it follows that \mathcal{A}'_1 is a tree of the form $\mathcal{G}_1(n_1)$ (for $1 \le n_1 \le n$; $\mathcal{G}_1(1)$ is an empty family) or $\mathcal{G}_2(n_1)$ (for $1 \le n_1 \le n$). Now we take into account the set $A_1(|A_1| = q \ge 3)$ as well. For notational convenience, let $k = n_1$. If the tree \mathscr{A}'_1 is $\mathscr{G}_1(k)$ for some $1 \le k \le n$, then already $|\mathscr{U}'| = 2^{n-1}$ and A_1 can be any set not belonging to \mathscr{U}' (cf. Lemma 1). If \mathscr{A}'_1 is $\mathscr{G}_1(1)$, then $A_1 \supseteq X_1$, and we obtain that the core of \mathscr{A} is $\mathscr{C}_1(q, q)$ ($3 \le q \le n$) (see Table | | The V | alue of N | The value of 2^mN | | | |------------------------------|------------|---------------|---------------------|-----------------------------|--| | $A_1 \cap \{x, y, z\}$ | If $r = 0$ | If $r > 0$ | If $r=0$ | If $r > 0$ | | | Ø | 0 | 2 | 0 | $2^{n-q-k+r+1}$ | | | $\{\widetilde{\mathbf{x}}\}$ | 2^{k-3} | $2^{k-3-r}+2$ | 2^{n-q-2} | $2^{n-q-2} + 2^{n-q-k+r+2}$ | | | $\{v\}$ | 1 | 2 | $2^{n-q-k+1}$ | $2^{n-q-k+r+2}$ | | | $\{z\}$ | 1 | 0 | $2^{n-q-k+1}$ | 0 | | | $\{x, y\}$ | 0 | 1 | 0 | $2^{n-q-k+r+2}$ | | | $\{x, z\}$ | 2^{k-3} | 2^{k-3-r} | 2^{n-q-1} | 2^{n-q-1} | | | $\{y, z\}$ | 0 | 0 | 0 | 0 | | | $\{x, y, z\}$ | 0 | 0 | 0 | 0 | | TABLE 5. 1). If \mathscr{A}_1' is $\mathscr{G}_1(2)$, then $|A_1 \cap X_1| = 1$ and the core of \mathscr{A} is $\mathscr{C}_1(q+1,q)$ $(3 \le q \le n-1)$. If \mathscr{A}_1' is $\mathscr{G}_1(k)$ for $k \ge 3$, then let $r = |A_1 \cap \{t_1, \ldots, t_{k-1}\}|$ (for the notation, see Fig. 1). We have two possibilities: (i) $A_1 \cap X_1 = \{z\}$, and (ii) $z \notin A_1$, r > 0. In the first case, the core of \mathscr{A} is $\mathscr{C}_1(q+k-1,q)$ $(3 \le q \le n-k+1)$; in the second, it is $\mathscr{C}_2(q+k-r,q,r)$ $(3 \le q \le n-k+r, 1 \le r \le q, r \le k-1)$. In any case, if the core has p elements, then $$|\mathscr{U}'| = 2^{n-1} + 2^{n-p} \tag{7}$$ (cf. TABLE 1). Now suppose $\mathscr{A}_1' = \mathscr{G}_2(k)$, $4 \le k \le n$ (see Fig. 1). Then let $q = |A_1|$, $r = |A_1 \cap \{t_1, \ldots, t_{k-3}\}|$, $m = |X \setminus (A_1 \cup X_1)|$. Direct calculations show that $|\mathscr{U}'| = (3 \cdot 2^{k-3} + 1)2^{n-k}$, and for the number of unions that can be obtained only by using A_1 , we obtain $|\mathscr{U} \setminus \mathscr{U}'| = N \cdot 2^m$, where N depends on $A_1 \cap X_1$, as shown in Table 5. Hence we have $$|\mathcal{U}| = (3 \cdot 2^{k-3} + 1)2^{n-k} + N \cdot 2^{m}. \tag{8}$$ Except for the case $A_1 \cap \{x, y, z\} = \{x\}$, r > 0, we have $2^m N \le 2^{n-4}$ as $q \ge 3$ and $k - r \ge 3$. Then by (8) and $k \ge 4$, $$|\mathcal{U}| \le 3 \cdot 2^{n-3} + 2^{n-4} + 2^{n-4} = 2^{n-1}.$$ So the only remaining possibility is $A_1 \cap \{x, y, z\} = \{x\}$ and r > 0. Then $$|\mathcal{U}| = 3 \cdot 2^{n-3} + 2^{n-k} + 2^{n-q-2} + 2^{n-q-k+r+2}.$$ Here $2^{n-k} \le 2^{n-4}$, $2^{n-q-2} \le 2^{n-5}$, $2^{n-q-k+r+2} \le 2^{n-4}$. The sum is greater than 2^{n-1} if and only if n-k=n-4 and n-q-k+r+2=n-4, that is, k=4, r=1, q=3. Thus we obtain the five-element core \mathscr{C}_7 . For this $$|\mathcal{U}| = 2^{n-1} + 2^{n-5} \tag{9}$$ (cf. Table 1). This concludes the proof of the theorem. \Box Proof of the Corollary: If the core of $\mathscr A$ is empty, then the number of unions is $2^n = 2^{n-1} + 2^{n-1}$. If the core has p members, $1 \le p \le n$, then $|\mathscr U| = 2^{n-1} + 2^{n-p}$, TABLE 6. | k | $ \mathcal{U} = 2^{n-1} + 2^{n-k}$ for the Cores | |----------|---| | 1 | Ø | | 2 | $\mathscr{C}_1(2,1)$ | | 3 | $\mathscr{C}_1(3, q), q = 1, 2, 3; \mathscr{C}_2(3, 2, 2); \mathscr{C}_3 \text{ (if } n \ge 4)$ | | 4 | $\mathscr{C}_1(4, q), q = 1, 2, 3, 4; \mathscr{C}_2(4, 3, r), r = 2, \overline{3}; \mathscr{C}_2(4, 2, r), r = 1, 2; \mathscr{C}_4$ | | 5 | $\mathscr{C}_1(5, q), q = 1, 2, 3, 4, 5; \mathscr{C}_2(5, 4, r), r = 2, 3, 4; \mathscr{C}_2(5, 3, r), r = 1, 2, 3;$ | | | $\mathscr{C}_2(5, 2, r), r = 1, 2; \mathscr{C}_5; \mathscr{C}_6; \mathscr{C}_7$ | | ≥ 6 | $\mathscr{C}_1(k, q), q = 1, \ldots, k; \mathscr{C}_2(k, k-1, r), r = 2, \ldots, k-1;$ | | | $\mathscr{C}_2(k, q, r), q = 2,, k-2, r = 1,, q$ | except for the core \mathcal{C}_3 when $|\mathcal{U}| = 2^{n-1} + 2^{n-3}$ [see (5), (7), and (9)]. The possible cores listed in Table 1 are pairwise different. Hence we have Table 6. Thus the number of possibilities is as given in the corollary. \square ## REFERENCES - 1. Burosch, G., J. Demetrovics & G. O. H. Katona. The poset of closures. Order. Submitted for publication. - 2. Lindström, B. 1972. A theorem on families of sets. J. Comb. Theory A13: 274-277. - 3. LINDSTRÖM, B. 1984. Another theorem on families of sets. Preprint. - 4. TVERBERG, H. 1971. On Equal Unions of Sets. Studies in Pure Mathematics (Festschrift in Honor of R. Rado) L. Mirsky, Ed.: 249-250. Academic Press, London.