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The aim of this paper is to prove the following theorem, which was posed as a
conjecture in [1].

THEOREM: Let o/ = (A4,, A,, ..., 4,) be an n-member family of subsets of an

n-element set X and % = {|);c; 4 1<={1, 2, ...,n}} the set of unions. If
|%|> 2", then|#|=2""'+2"forsomem=0,1,...,n— 1.

A somewhat related result is a special case of a theorem of Tverberg [4]: If the
family of = (4,, ..., A;) of subsets of the n-element set X has f> n + 1 members,
then there exist disjoint nonempty I, I, = {1, ..., f} such that | J);c;, 4; = ic1, 4
(see also Lindstrom [2]). Recently, Lindstrom [3] has found that for f> n + 2 even
Uier, 4i=Uier, 4 and (Vioy, A; = ()ic1, 4; simultaneously can be achieved.
Their proofs use linear algebraic technique.

Our proof is straightforward. We determine all possible families of sets for which
the hypotheses of the theorem are satisfied:

SUPPLEMENT TO THE THEOREM: |% | > 2"~ ! if and only if there exist a p-element
subset C = X (0 < p < n) and a p-member family € of subsets of C (called the core
of .o7) such that € is one of the families listed in TABLE 1 and .« consists of the
members of ¢ and the n — p one-element subsets of X\C.

The strong constraint for the number of unions is quite surprising if contrasted
to the many ways the possible values can be attained.

CoroLLARY: The number of essentially different families for which
|| =2""1 2" ks

k? +k—4

5 for 6 <k <n,
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TABLE 1. Possible Cores
Number of
Points/Sets Unions®
Name Family? (r) (u) 27Py
%] o 0 1 1
%.(p, 9), ég 1 1
p=>3, - p 27-1 41 =
: 2 2°
p=q=3 \o
(gl(p! 2)’ e 1 1
271 4 1 ol =
p=3 ¥ Loty
(gl(p, 1)9 O =1 1 1
. 2P 1 - —
p=>2 . P + 2 + 2F
(gz(P, q: r)a
p=4,
p—1=2qg23,
0 e 1. [0...0 07..d] > %14 1 __+__l
T 2 2rF
except . ~~ p
p—1l=qr=1 q
(62@’ 2’ 2)’ mef 1 1
p>3 P 2t 41 5 + 5;
€, 2, 1), 1 1
p—1 - =
Bt P 2 +1 5 + >
€ 4 10 ) + =
® 216
4 9 P
€. *——0 —0 5 + TE
% 5 17 1+ .
1 1
¢ 5 17 e
° 1 ) TRy
1 1
€ = 5 17 S e
’ * o I 2732

“Notation: e one-element set; o—o two-element set; lo _ o! g-element set (g > 3).

*The number of unions can be determined by direct calculations.
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and for 1 < k < 5t is given by the following table:

k 1 2 3 4 5
5ifn>4

Number of families 1 1 9 16
4ifn=3

REMARK: In the theorem it is an important assumption that the number of
members of ./ is the same as the number of elements of X, as shown by the follow-
ing examples.

The Number of

Family Points Sets Unions
*r——O0o—¢ 3 4 7
oO——0—0—0 4 3 7

We start with four simple lemmas.

LeEMMA 1: No member of &/ is the union of some other members of .. In

particular, the members of &/ are pairwise different and none of them is the empty
set.

Proof: If A;=\J;., A; for some 1 <j<n, I <{1,2,...,n},j¢I, then in any
union A; can be substituted by | Jicr 4:. Hence, |%| <2""!. 0O

LEMMA 2: Let # =(4;,,..., A4;) (1 <i; < -+ < iy < n) be a subfamily of .« and
¥ ={{Jies Ai: I < {iy, ..., is}} the set of unions in #. Then

275 = 27" ).

Proof: As U =1{V 0 J;c, A;:V ey, J{1, ..., n]\{iy, ..., i} we have
|| <2*%|¥’}. O

LeMMA 3: If |%| > 3 - 2" 2, then «/ consists of the one-element subsets of X
and so |% | = 2".

Proof: If |A;| =2, then |#|<|{Y < X: Y2A1}|+|{U,-E,A,-: refs ...
njls 2% 42" = 3-23%%, OO

LemMA 4: If |%| > 2"~ 1, then | 4;| > 3 for at most one member A; of <.

Proof: 1f |A;| >3 and |A,| >3, then |%|<|{Y <= X: Y2 A4,}|+|{Y S X:
Y2 A} + [{{ ies AT (3,....n}} <2 3 203 4 2 =01, g

Now we turn to the proof of the theorem and its supplement. In virtue of
Lemma 4 we shall distinguish two cases:

Casel: |A;| < 2foreachi=1,...,n;
Case2: |A;|=q>3and |4;|<2fori=2,...,n

(Here and in the forthcoming considerations we freely use renumbering of members
and subfamilies of .«7.)
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TABLE 2. Some Families with Few Unions

Number of
Points Sets Unions
Name Family (p) (s) (u) 27 %

4 4 8
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B, ey s i) 5 4 12 <3
2,2 | 6 5 23 <3

Referring to Case 1, let us regard the two-element members of ./ as edges of a

graph. First suppose that this graph is connected. Then it has at least n — 1 edges;
hence there are two possibilities:

Possibility 1: |A,|=1and |4;| =2fori=2,...,n;
Possibility 2: |A;| =2foreachi=1,...,n.

In Possibility 1 o is a rooted tree. Owing to Lemma 2, it cannot contain a
subfamily @,, #,, or #; (see TABLE 2). We prove by induction on n that this forces
o to be €,(n, 1), €,(n, 2), or €,(n, 2, 1) (see TABLE 1). If n = 2, then o/ = €,(2, 1).
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TABLE 3. Rooted Tree on n Vertices

The Remaining Rooted Tree on n — 1 Vertices

Distance
of x from €(n—1,1) €n—1,2) €xn—1,2,1)
the Root €2, 1) n—1>=3) %,(3, 2) n—-1>49 n—1>4)

1 €,3, 1) €.(n, 1) B, =) 24,

2 €., 2) 2%, %,4,2) €,(n, 2) 2%,

3 — — €,4,2,1) 24, €,(n, 2, 1)

4 S = — — 2%,

Let n > 3. Deleting a nonroot vertex x of valency 1 and the edge incident to it, we
obtain a rooted tree on n — 1 vertices. By the induction hypothesis it is €,(n — 1, 1),
€1(n—1,2), or €,(n — 1, 2, 1). Then the rooted tree on n vertices is given by TABLE
3.

In Possibility 2 the graph is connected and it has n edges; hence, it contains a
unique circuit. If the length of the circuit is 3, then . cannot contain B, or Bs, s0
& is €y(n, 2, 2). If the length is 4, then the exclusion of Be, B,, Bg, and #, means
that o/ can only be € or €. If the length is 5, then o7 is the pentagon, €, as it
cannot contain %, .

Now we show that for any circuit of length p > 6 the number of unions is less
than 2°7'; hence, by Lemma 2, it cannot be contained in .. Let u(p) denote the
number of unions for the circuit of length p, and v(p) for the path of length p (with p
vertices, p — 1 edges). Let the vertices of the path be in order x,, x,, x5, ..., .
Grouping the possible unions V into three sets according to x, ¢ V, x;, x, € V, but
x3 € V or x;, x,, x5 € V, we obtain the recurrence formula

op) =vp— 1)+ ovlp —3) + (vp — 1) — v(p — 2))
=2up—1)—v(p — 2) + vip + 3), )

for p > 4. Now consider a circuit of length p: Xg»> X1, X2, +--5 X,_3, X,_ 4. Count the
unions U in the following five groups: (i) xo ¢ U, (ii) xo € U, and U\{x,} is a union
of some edges of the path on {x,, ... Xp—1}, (iii) Xo, X, € U, x, ¢ U, and U\{x,, x,}
is a union of some edges of the path on {%4, L By B U xoon E U,
and U\{x,, x,_,} is a union of some edges of the path on {x, ..., x,_3}, (V) x,_1,
Xo,X; € U, x,_,,x, ¢ U. Then we obtain

up)=vp = 1)+ (@p — 1) — vlp = 3)) + v(p — 3) + v(p — 3) + v(p — 5)

=20p— 1)+ v(p—3) + o(p — 5), (2
for p = 6. Combining (1) and (2), we get a recurrence formula for u(p) as well:
u(p) = 2ul(p — 1) — u(p — 2) + u(p — 3), A3)

for p > 9. Clearly, for p =1, 2, 3 we have v(p) =271, For p > 4 we can use (1) to
obtain
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For p = 3, 4, 5 u(p) can be determined by direct calculation (cf. TABLE 1) and then (2)
can be applied to get:

P 3 4 5 6 7 8
up) S 10 17 29 51 90

By induction (3) yields u(p) > u(p — 1) and u(p) < 2u(p — 1); hence, u(p) < 27! for
p =6, as we have claimed. (We remark that u(p) = z§ + z5 + z§, where z, =
1.75488, z, = 0.12256 + 0.74486i, z, = 0.12256 — 0.74486i are the
22—-22242z—-1=0)
So far we have determined the structure of o/ if the graph formed by the two-
element members of o is connected. Now suppose that the graph is disconnected.
Let the connected components be X, ..., X, (¢ > 2), and let n; = | X |, </; be the
family of those members (including the one-element sets) of .o/ that are contained in

roots of

X; and %; be the set of unions of &/, j =1, ..., c. Obviously,  ={Y; v --- U ¥.:
Y,e¥,,..., Y. €U}, hence,
27| = H 27" (4)
j=1

By assumption, 27"|#% | > }; hence, each factor 27%|4%; > 3. Thus |%;| > 2%, so
|.o/;| = n;. Now

n=|o|

Il
et
2
v
1
K

il
=

implies that | .o7;| = n; for each j = 1, ..., c. Hence the assumptions of the theorem
are satisfied by the n-member family .o/; on the n;-element set X;, j =1, ..., ¢. Our
previous considerations tell us that any connected component &/; is either one of
%1(n;, 1) (for n; > 2), €,(n;, 2) (for n; = 3), €,(n;, 2, 1) (for n; = 4), €,(n;, 2, 2) (for
n; > 3), €, (for n; = 4), €5 (for n; = 5), and € (for n; = 5) or n; = 1. Thus the factors
on the right-hand side of (4) have the form 1/2 + 1/2%, except for &/; = €5, when
27"|9;| = § (see TABLE 1). Their product is greater than one-half only in the fol-
lowing cases: |#,|>2""" and |%;|=2"% for j=2, ...,c, or |%,|=32""?
|%,)=3-2""2 and |%;|=2"forj=3,...,c,since - §<}and 3-3 3<%
By Lemma 3, |%;| = 2" implies n; = 1. Moreover, |%;| =3 - 2%~ ? for only n; = 2,
& ;= €,(2, 1). Hence, in Case 1 the core of o/ can be &, €,(p, 1) (2 < p <n), €,(p,
2B<p<n),é,(p,2,1)(4<p<n),¥,p, 2,2 (3<p<n), ¥, (for n > 4), ¢ (for
n>35), €¢ (for n>5), and ¢, (for n > 4) (the last one yielded by the second
possibility). If the core has p elements, then

2"~1 4 2""P except when the core is & or €;,
|%|=02""1+2""1,  if the coreis &, 5)
27~1 4 273 if the core is €;.
Referring to Case 2, let |A,|=¢ >3 and |4;| <2 for i =2, ..., n. We shall

consider the subfamily o' = {4,, ..., A,} and the set of its unions %’ = {| J; 4;:
I1c{2, ...,n}}. Since 2" ' < |%|<|U |+ |{Y S X: Y2 A} <|%|+2"73 it



156 ANNALS NEW YORK ACADEMY OF SCIENCES

TABLE 4. Result of Adding a New Vertex and Edge

The Tree on n — 1 Vertices

Distance of the New Vertex G, (n—1) G (n—1)
from the Leftmost Vertex %.(1) %.2) (n—1>=3) %,(4) {n-—12=23)
1 %.2) %.03) % .(n) @, 2%,

2 == %,(3) % ,(n) %,(5) 28,

3 = o = G5)  Gyn)

4 — - - B 2%,

follows that |%’| > 3 - 2"~ 2. Similarly, as in Case 1, we consider the graph formed
by the two-element members of «/’. If this graph is connected, then it is a tree. By
Lemma 2 this tree cannot contain #,, or %,, (see TABLE 2). Then we can prove by
induction on n that .o/’ is one of the two graphs shown in FIGURE 1. Indeed, adding
a new vertex and edge yields the result contained in TABLE 4.

If the graph formed by the two-element members of ./’ is disconnected, then let
the connected components be X, ..., X, (¢ = 2). Let n; = | X;|, &/} be the family of
those members (including the one-element sets) of ./’ that are contained in X;, and
A'; be the set of unions of members of </, j = 1, ..., ¢. Obviously, %' = Y, uru
Y..Y,e,..., Y. € U.}; hence,

27| = ] 27" |%;l. (6)

ji=1
By assumption 1 >27"|%’| > 3. Each factor in the right-hand side is <1. If
| ;] < n; — 2, then 27" |%:| < %, and similarly, if | &Z}| =n; — 1 and | o/} | =n, — 1
(i # k), then 27™| ;| < % and 27 ™|} | < %; hence, in both cases [ [-, 27| %}| <

%, so these cases cannot occur. On the other hand, &' has n—1=35_,n;—1

members; hence, we infer that | /| =n, —1 and |&/}| =n; for j =2, ..., c. Then
27M| | < §; thus, 27| U > 3 (j=2,..., ¢). Lemma 3 applied to the n;-member
family o/ on the n;-element set X; yields that n;=1 for j=2, ..., ¢. Hence

27m |9, | =2""|%| > 2. From the previous considerations it follows that .« is a
tree of the form %,(n,) (for 1 <n, < n; %,(1) is an empty family) or ¥,(n,) (for
4 < n, <n)

Now we take into account the set 4,(| A, | = g = 3) as well. For notational con-
venience, let k =n,. If the tree &/ is 4,(k) for some 1 < k < n, then already
|%'| = 2"~ ! and A, can be any set not belonging to %' (cf. Lemma 1). If o/, is %,(1),
then 4, 2 X,, and we obtain that the core of & is ¢,(q, q) (3 < g < n) (see TABLE

tn—l

1.
gl(n)’ n?l ge(n), n24
FIGURE 1.
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TABLE S.
The Value of N The value of 2™"N
A, n{x,y, z} Ifr=0 Ifr>0 If# =0 Ifr>0
@ 0 2 0 2n—q—k+r+1
{x} 2k—3 2k‘3'r o 2 2"”!]*2 2n“q—2 =3 2n—q—k+r+2
{y} 1 2 2n-—q-k+1 25—q—k+r+2
{2} 1 0 ekl 0
{x’ y} 0 1 0 2n—q—k+r+2
{x’ Z} 2k—3 2k—3—r 2n-q-—1 2n—q—1
{y, z} 0 0 0 0
{x, ¥V, 2} 0 0 0 0

1. If o/ is %,(2), then |4, n X,|=1 and the core of &/ is €,(q+ 1, q)
B<g<sn—1).1If ) is 9,(k) for k > 3, then let r = | A, N {t;, ..., t,_,}| (for the
notation, see F1G. 1). We have two possibilities: (i) 4, n X, = {z}, and (ii) z ¢ 4,,
r > 0. In the first case, the core of & is€(q+k—1,9) (3<g<n—k+ 1);in the
second, it is €,(q+k—r, ¢ 1) 3<qg<n—k+r,1<r<gq,r<k-—1). In any
case, if the core has p elements, then
|¥'|=2""1 42" P (7
(cf. TABLE 1).
Now suppose &/, = %,(k), 4 <k <n(see F1IG. 1). Then let g = |A,|, r =4, N
{ty, ..., t_3}l, m=|X\(4, u X,)|. Direct calculations show that

|%'| = (3 -2 3+ 1)2"¥ and for the number of unions that can be obtained only

by using A,, we obtain |#%\%'| = N - 2™, where N depends on 4, n X,, as shown
in TABLE 5.

Hence we have
|#%|=@B-23 412"k N-2™ 8)

Except for the case 4; N {x, y, z} = {x}, r >0, we have 2"N <2""* as g >3
and k —r > 3. Then by (8) and k > 4,

¥ g3 234244 4=,
So the only remaining possibility is A; N {x, y, z} = {x} and r > 0. Then
|| =3-2°"3 4 20~k 4 on-a=2 4 pa=g-ktrdd

Here 20F sz Do—a o=~ 2 g 3, Joa—~btrtd o 29~% The sum. is grester than 2¥1
ifand only if n—k=n—4andn—qgq—k+r+2=n—4,that is, k=4, r=1,
g = 3. Thus we obtain the five-element core €. For this

=2t 42 9
(cf. TABLE 1). This concludes the proof of the theorem. [

Proof of the Corollary: If the core of </ is empty, then the number of unions is
2" =2""1 4 2" 1 1If the core has p members, 1 < p <n, then |#%|=2""1 4+ 2""7,
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TABLE 6.
k |%|=2""'+ 2""* for the Cores
1 %]
2 €,2, 1)
3 €.3,9,a=1,2,3;%,03,2,2);%,(fn=49
4 €.4,9,9=1,2,3,4;%4,4,3,r,r=2,3; €,4,2,1,r=1,2;%¢,
5 €.5.9,9=1,2,3,4,5;6,5,4,1r,r=2,3,4; €,53,nrnr=1,23;
€,5.2,1,r=1,2;%€5; €s; €,

except for the core €3 when |%| =2""" + 2”3 [see (5), (7), and (9)]. The possible
cores listed in TABLE 1 are pairwise different. Hence we have TABLE 6. Thus the
number of possibilities is as given in the corollary. [
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