On the Number of Unions in a Family of Sets^a

J. DEMETROVICS, G. O. H. KATONA, AND P. P. PÁLFY

^b Computer and Automation Institute Hungarian Academy of Sciences Victor Hugo u. 18-22 1132 Budapest, Hungary

c Mathematical Institute Hungarian Academy of Sciences Realtanoda u. 13-15 1053 Budapest, Hungary

The aim of this paper is to prove the following theorem, which was posed as a conjecture in [1].

THEOREM: Let $\mathscr{A} = (A_1, A_2, ..., A_n)$ be an *n*-member family of subsets of an *n*-element set X and $\mathscr{U} = \{\bigcup_{i \in I} A_i : I \subseteq \{1, 2, ..., n\}\}$ the set of unions. If $|\mathscr{U}| > 2^{n-1}$, then $|\mathscr{U}| = 2^{n-1} + 2^m$ for some m = 0, 1, ..., n - 1.

A somewhat related result is a special case of a theorem of Tverberg [4]: If the family $\mathscr{A}=(A_1,\ldots,A_f)$ of subsets of the *n*-element set X has $f\geq n+1$ members, then there exist disjoint nonempty $I_1,I_2\subseteq\{1,\ldots,f\}$ such that $\bigcup_{i\in I_1}A_i=\bigcup_{i\in I_2}A_i$ (see also Lindström [2]). Recently, Lindström [3] has found that for $f\geq n+2$ even $\bigcup_{i\in I_1}A_i=\bigcup_{i\in I_2}A_i$ and $\bigcap_{i\in I_1}A_i=\bigcap_{i\in I_2}A_i$ simultaneously can be achieved. Their proofs use linear algebraic technique.

Our proof is straightforward. We determine all possible families of sets for which the hypotheses of the theorem are satisfied:

SUPPLEMENT TO THE THEOREM: $|\mathcal{U}| > 2^{n-1}$ if and only if there exist a p-element subset $C \subseteq X$ ($0 \le p \le n$) and a p-member family \mathscr{C} of subsets of C (called the core of \mathscr{A}) such that \mathscr{C} is one of the families listed in Table 1 and \mathscr{A} consists of the members of \mathscr{C} and the n-p one-element subsets of $X \setminus C$.

The strong constraint for the number of unions is quite surprising if contrasted to the many ways the possible values can be attained.

COROLLARY: The number of essentially different families for which $|\mathcal{U}| = 2^{n-1} + 2^{n-k}$ is

$$\frac{k^2 + k - 4}{2} \quad \text{for} \quad 6 \le k \le n,$$

^aThis research was supported by Hungarian National Foundation for Scientific Research Grant 1812.

TABLE 1. Possible Cores

		Numb	per of	
		Points/Sets	Unions ^b	
Name	Family ^a	(p)	(u)	$2^{-p}u$
$\mathscr{C}_1(p, q),$	Ø	0	1	1
$p \geq 3$,	• • •	p	$2^{p-1}+1$	$\frac{1}{2} + \frac{1}{2^p}$
$p \ge q \ge 3$	q o			$2 2^p$
$\mathscr{C}_1(p, 2),$, , , , , , , , , , , , , , , , , , ,		$2^{p-1}+1$	1 1
$p \ge 3$		p	2. +1	$\frac{1}{2} + \frac{1}{2^p}$
$\mathscr{C}_1(p, 1),$				1 1
$p \ge 2$		p	$2^{p-1}+1$	$\frac{1}{2} + \frac{1}{2^p}$
$\mathscr{C}_2(p, q, r),$	٨			
$p \ge 4,$ $p - 1 \ge q \ge 3,$				
$q \ge r \ge 1$,	•• od	p	$2^{p-1}+1$	$\frac{1}{2} + \frac{1}{2^p}$
except $p-1=q, r=1$	<u> </u>			2 2 ^p
$\mathscr{C}_{2}(p, 2, 2),$	8 6			1 1
$p \ge 3$		p	$2^{p-1}+1$	$\frac{1}{2} + \frac{1}{2^p}$
$\mathscr{C}_{2}(p, 2, 1),$	٥			1 1
$p \ge 4$	•	p	$2^{p-1}+1$	$\frac{1}{2} + \frac{1}{2^p}$
\mathscr{C}_3	γ—-γ	4	10	1 2
	<u> </u>	4	10	$\frac{1}{2} + \frac{2}{16}$
C ₄	•—•	4	9	$\frac{1}{2} + \frac{1}{16}$
\mathscr{C}_{5}	p	5	17	$\frac{1}{2} + \frac{1}{32}$
-	bb		.,	2 32
\mathscr{C}_{6}		5	17	$\frac{1}{2} + \frac{1}{32}$
				2 32
\mathscr{C}_{7}	• •	5	17	$\frac{1}{2} + \frac{1}{32}$
	<u> </u>			2 32

[&]quot;Notation: • one-element set; o—o two-element set; $\boxed{\underbrace{\circ \cdot \cdot \circ}} q$ -element set $(q \ge 3)$.

^bThe number of unions can be determined by direct calculations.

4 if n = 3

k	1	2	3	4	5
			5 if $n \ge 4$		
Number of families	1	1		9	16

and for $1 \le k \le 5$ it is given by the following table:

REMARK: In the theorem it is an important assumption that the number of members of \mathcal{A} is the same as the number of elements of X, as shown by the following examples.

	Th	e Numbe	er of
Family	Points	Sets	Unions
•—•	3	4	7
0-0-0-0	4	3	7

We start with four simple lemmas.

LEMMA 1: No member of \mathscr{A} is the union of some other members of \mathscr{A} . In particular, the members of \mathscr{A} are pairwise different and none of them is the empty set.

Proof: If $A_j = \bigcup_{i \in I} A_i$ for some $1 \le j \le n$, $I \subseteq \{1, 2, ..., n\}$, $j \notin I$, then in any union A_j can be substituted by $\bigcup_{i \in I} A_i$. Hence, $|\mathcal{U}| \le 2^{n-1}$. \square

LEMMA 2: Let $\mathscr{B} = (A_{i_1}, \ldots, A_{i_s})$ $(1 \le i_1 < \cdots < i_s \le n)$ be a subfamily of \mathscr{A} and $\mathscr{V} = \{\bigcup_{i \in I} A_i : I \subseteq \{i_1, \ldots, i_s\}\}$ the set of unions in \mathscr{B} . Then

$$2^{-s}|\mathcal{V}| \geq 2^{-n}|\mathcal{U}|.$$

Proof: As $\mathscr{U} = \{V \cup \bigcup_{j \in J} A_j : V \in \mathscr{V}, J \subseteq \{1, ..., n\} \setminus \{i_1, ..., i_s\}\}$ we have $|\mathscr{U}| \leq 2^{n-s} |\mathscr{V}|$. \square

LEMMA 3: If $|\mathcal{U}| > 3 \cdot 2^{n-2}$, then \mathcal{A} consists of the one-element subsets of X and so $|\mathcal{U}| = 2^n$.

Proof: If $|A_1| \ge 2$, then $|\mathcal{U}| \le |\{Y \subseteq X : Y \supseteq A_1\}| + |\{\bigcup_{i \in I} A_i : I \subseteq \{2, ..., n\}\}| \le 2^{n-2} + 2^{n-1} = 3 \cdot 2^{n-2}$. \square

LEMMA 4: If $|\mathcal{U}| > 2^{n-1}$, then $|A_i| \ge 3$ for at most one member A_i of \mathcal{A} .

Proof: If $|A_1| \ge 3$ and $|A_2| \ge 3$, then $|\mathcal{U}| \le |\{Y \subseteq X : Y \supseteq A_1\}| + |\{Y \subseteq X : Y \supseteq A_2\}| + |\{\bigcup_{i \in I} A_i : I \subseteq \{3, ..., n\}\}| \le 2^{n-3} + 2^{n-3} + 2^{n-2} = 2^{n-1}$. \square

Now we turn to the proof of the theorem and its supplement. In virtue of Lemma 4 we shall distinguish two cases:

Case 1: $|A_i| \le 2$ for each i = 1, ..., n;

Case 2: $|A_1| = q \ge 3$ and $|A_i| \le 2$ for i = 2, ..., n.

(Here and in the forthcoming considerations we freely use renumbering of members and subfamilies of \mathcal{A} .)

TABLE 2. Some Families with Few Unions

Name	Family	Points (p)	Number of Sets (s)	Unions (u)	$2^{-s}u$
ℬ ₁	<	4	4	8	$\leq \frac{1}{2}$
\mathcal{B}_2	← ~~	5	5	15	$\leq \frac{1}{2}$
\mathcal{B}_3	•	5	5	16	$\leq \frac{1}{2}$
\mathscr{B}_4		5	5	15	$\leq \frac{1}{2}$
98 ₅		5	5	15	$\leq \frac{1}{2}$
B ₆		6	6	28	$\leq \frac{1}{2}$
B 7		6	6	28	$\leq \frac{1}{2}$
ℬ 8		6	6	28	$\leq \frac{1}{2}$
B 9		6	6	31	$\leq \frac{1}{2}$
\mathcal{B}_{10}		6	6	29	$\leq \frac{1}{2}$
\mathscr{B}_{11}	0-0-0-0	5	4	12	$\leq \frac{3}{4}$
B ₁₂		6	5	23	$\leq \frac{3}{4}$

Referring to Case 1, let us regard the two-element members of \mathcal{A} as edges of a graph. First suppose that this graph is connected. Then it has at least n-1 edges; hence there are two possibilities:

Possibility 1: $|A_1| = 1$ and $|A_i| = 2$ for i = 2, ..., n; Possibility 2: $|A_i| = 2$ for each i = 1, ..., n.

In Possibility 1 \mathscr{A} is a rooted tree. Owing to Lemma 2, it cannot contain a subfamily \mathscr{B}_1 , \mathscr{B}_2 , or \mathscr{B}_3 (see Table 2). We prove by induction on n that this forces \mathscr{A} to be $\mathscr{C}_1(n, 1)$, $\mathscr{C}_1(n, 2)$, or $\mathscr{C}_2(n, 2, 1)$ (see Table 1). If n = 2, then $\mathscr{A} = \mathscr{C}_1(2, 1)$.

Distance		The Remaini	ng Rooted Tre	se on $n-1$ Verti	ces
of x from the Root	$\mathscr{C}_1(2, 1)$	$\mathcal{C}_1(n-1, 1)$ $(n-1 \ge 3)$	$\mathscr{C}_{1}(3, 2)$	$\mathcal{C}_1(n-1, 2)$ $(n-1 \ge 4)$	$\mathscr{C}_2(n-1, 2, 1)$ $(n-1 \ge 4)$
1	$\mathscr{C}_{1}(3, 1)$	$\mathscr{C}_1(n, 1)$	B 1	⊇%₁	⊇81
2	$\mathscr{C}_{1}(3, 2)$	$\supseteq \mathscr{B}_1$	$\mathscr{C}_{1}(4, 2)$	$\mathscr{C}_1(n,2)$	$\cong \mathscr{B}_1$ $\cong \mathscr{B}_2$
3			$\mathscr{C}_{2}(4, 2, 1)$	$\supseteq \mathscr{B}_{2}$	$\mathscr{C}_{2}(n, 2, 1)$
4	-			= 50 2	$ \begin{array}{c} \mathscr{C}_{2}(n,2,1) \\ \supseteq \mathscr{B}_{3} \end{array} $

TABLE 3. Rooted Tree on *n* Vertices

Let $n \ge 3$. Deleting a nonroot vertex x of valency 1 and the edge incident to it, we obtain a rooted tree on n-1 vertices. By the induction hypothesis it is $\mathscr{C}_1(n-1, 1)$, $\mathscr{C}_1(n-1, 2)$, or $\mathscr{C}_2(n-1, 2, 1)$. Then the rooted tree on n vertices is given by TABLE 3.

In Possibility 2 the graph is connected and it has n edges; hence, it contains a unique circuit. If the length of the circuit is 3, then \mathscr{A} cannot contain \mathscr{B}_4 or \mathscr{B}_5 , so \mathscr{A} is $\mathscr{C}_2(n, 2, 2)$. If the length is 4, then the exclusion of \mathscr{B}_6 , \mathscr{B}_7 , \mathscr{B}_8 , and \mathscr{B}_9 means that \mathscr{A} can only be \mathscr{C}_3 or \mathscr{C}_5 . If the length is 5, then \mathscr{A} is the pentagon, \mathscr{C}_6 , as it cannot contain \mathscr{B}_{10} .

Now we show that for any circuit of length $p \ge 6$ the number of unions is less than 2^{p-1} ; hence, by Lemma 2, it cannot be contained in \mathscr{A} . Let u(p) denote the number of unions for the circuit of length p, and v(p) for the path of length p (with p vertices, p-1 edges). Let the vertices of the path be in order $x_1, x_2, x_3, \ldots, x_p$. Grouping the possible unions V into three sets according to $x_1 \notin V$, $x_1, x_2 \in V$, but $x_3 \notin V$ or $x_1, x_2, x_3 \in V$, we obtain the recurrence formula

$$v(p) = v(p-1) + v(p-3) + (v(p-1) - v(p-2))$$

= $2v(p-1) - v(p-2) + v(p+3)$, (1)

for $p \ge 4$. Now consider a circuit of length $p: x_0, x_1, x_2, \ldots, x_{p-2}, x_{p-1}$. Count the unions U in the following five groups: (i) $x_0 \notin U$, (ii) $x_0 \in U$, and $U \setminus \{x_0\}$ is a union of some edges of the path on $\{x_1, \ldots, x_{p-1}\}$, (iii) $x_0, x_1 \in U, x_2 \notin U$, and $U \setminus \{x_0, x_1\}$ is a union of some edges of the path on $\{x_3, \ldots, x_{p-1}\}$, (iv) $x_0, x_{p-1} \in U, x_{p-2} \notin U$, and $U \setminus \{x_0, x_{p-1}\}$ is a union of some edges of the path on $\{x_1, \ldots, x_{p-3}\}$, (v) $x_{p-1}, x_0, x_1 \in U, x_{p-2}, x_2 \notin U$. Then we obtain

$$u(p) = v(p-1) + (v(p-1) - v(p-3)) + v(p-3) + v(p-3) + v(p-5)$$

= $2v(p-1) + v(p-3) + v(p-5)$, (2)

for $p \ge 6$. Combining (1) and (2), we get a recurrence formula for u(p) as well:

$$u(p) = 2u(p-1) - u(p-2) + u(p-3),$$
(3)

for $p \ge 9$. Clearly, for p = 1, 2, 3 we have $v(p) = 2^{p-1}$. For $p \ge 4$ we can use (1) to obtain

p	1	2	3	4	5	6	7	
v(p)	1	2	4	7	12	21	37	

For p = 3, 4, 5 u(p) can be determined by direct calculation (cf. TABLE 1) and then (2) can be applied to get:

p	3	4	5	6	7	8	
u(p)	5	10	17	29	51	90	

By induction (3) yields u(p) > u(p-1) and u(p) < 2u(p-1); hence, $u(p) < 2^{p-1}$ for $p \ge 6$, as we have claimed. (We remark that $u(p) = z_1^p + z_2^p + z_3^p$, where $z_1 = 1.75488$, $z_2 = 0.12256 + 0.74486i$, $z_3 = 0.12256 - 0.74486i$ are the roots of $z^3 - 2z^2 + z - 1 = 0$.)

So far we have determined the structure of \mathscr{A} if the graph formed by the twoelement members of \mathscr{A} is connected. Now suppose that the graph is disconnected. Let the connected components be X_1, \ldots, X_c $(c \ge 2)$, and let $n_j = |X_j|$, \mathscr{A}_j be the family of those members (including the one-element sets) of \mathscr{A} that are contained in X_j and \mathscr{U}_j be the set of unions of \mathscr{A}_j , $j = 1, \ldots, c$. Obviously, $\mathscr{U} = \{Y_1 \cup \cdots \cup Y_c :$ $Y_1 \in \mathscr{U}_1, \ldots, Y_c \in \mathscr{U}_c\}$; hence,

$$2^{-n}|\mathcal{U}| = \prod_{j=1}^{c} 2^{-n_j}|\mathcal{U}_j|.$$
 (4)

By assumption, $2^{-n}|\mathcal{U}| > \frac{1}{2}$; hence, each factor $2^{-n_j}|\mathcal{U}_j > \frac{1}{2}$. Thus $|\mathcal{U}_j| > 2^{n_j-1}$, so $|\mathcal{A}_j| \ge n_j$. Now

$$n = |\mathcal{A}| = \sum_{j=1}^{c} |\mathcal{A}_j| \ge \sum_{j=1}^{c} n_j = n$$

implies that $|\mathcal{A}_j| = n_j$ for each $j = 1, \ldots, c$. Hence the assumptions of the theorem are satisfied by the n_j -member family \mathcal{A}_j on the n_j -element set X_j , $j = 1, \ldots, c$. Our previous considerations tell us that any connected component \mathcal{A}_j is either one of $\mathscr{C}_1(n_j, 1)$ (for $n_j \geq 2$), $\mathscr{C}_1(n_j, 2)$ (for $n_j \geq 3$), $\mathscr{C}_2(n_j, 2, 1)$ (for $n_j \geq 4$), $\mathscr{C}_2(n_j, 2, 2)$ (for $n_j \geq 3$), \mathscr{C}_3 (for $n_j = 4$), \mathscr{C}_5 (for $n_j = 5$), and \mathscr{C}_6 (for $n_j = 5$) or $n_j = 1$. Thus the factors on the right-hand side of (4) have the form $1/2 + 1/2^{n_j}$, except for $\mathcal{A}_j = \mathscr{C}_3$, when $2^{-n_j}|\mathscr{U}_j| = \frac{5}{8}$ (see Table 1). Their product is greater than one-half only in the following cases: $|\mathscr{U}_1| > 2^{n_1-1}$ and $|\mathscr{U}_j| = 2^{n_j}$ for $j = 2, \ldots, c$, or $|\mathscr{U}_1| = 3 \cdot 2^{n_1-2}$, $|\mathscr{U}_2| = 3 \cdot 2^{n_2-2}$, and $|\mathscr{U}_j| = 2^{n_j}$ for $j = 3, \ldots, c$, since $\frac{3}{4} \cdot \frac{5}{8} < \frac{1}{2}$ and $\frac{3}{4} \cdot \frac{3}{4} \cdot \frac{3}{4} < \frac{1}{2}$. By Lemma 3, $|\mathscr{U}_j| = 2^{n_j}$ implies $n_j = 1$. Moreover, $|\mathscr{U}_j| = 3 \cdot 2^{n_j-2}$ for only $n_j = 2$, $\mathscr{A}_j = \mathscr{C}_1(2, 1)$. Hence, in Case 1 the core of \mathscr{A} can be \mathscr{O} , $\mathscr{C}_1(p, 1)$ ($2 \leq p \leq n$), $\mathscr{C}_1(p, 2)$ ($3 \leq p \leq n$), $\mathscr{C}_2(p, 2, 1)$ ($4 \leq p \leq n$), $\mathscr{C}_2(p, 2, 2)$ ($3 \leq p \leq n$), \mathscr{C}_3 (for $n \geq 4$), \mathscr{C}_5 (for $n \geq 5$), \mathscr{C}_6 (for $n \geq 5$), and \mathscr{C}_4 (for $n \geq 4$) (the last one yielded by the second possibility). If the core has p elements, then

$$|\mathcal{U}| = \begin{cases} 2^{n-1} + 2^{n-p}, & \text{except when the core is } \varnothing \text{ or } \mathscr{C}_3, \\ 2^{n-1} + 2^{n-1}, & \text{if the core is } \varnothing, \\ 2^{n-1} + 2^{n-3}, & \text{if the core is } \mathscr{C}_3. \end{cases}$$
 (5)

Referring to Case 2, let $|A_1| = q \ge 3$ and $|A_i| \le 2$ for i = 2, ..., n. We shall consider the subfamily $\mathscr{A}' = \{A_2, ..., A_n\}$ and the set of its unions $\mathscr{U}' = \{\bigcup_{i \in I} A_i: I \subseteq \{2, ..., n\}\}$. Since $2^{n-1} < |\mathscr{U}| \le |\mathscr{U}'| + |\{Y \subseteq X: Y \supseteq A_1\}| \le |\mathscr{U}'| + 2^{n-3}$, it

		Th	e Tree on $n-1$	Vertices	
Distance of the New Vertex from the Leftmost Vertex	$\mathcal{G}_1(1)$	$\mathcal{G}_1(2)$	$\mathcal{G}_1(n-1)$ $(n-1\geq 3)$	$G_{2}(4)$	$\mathcal{G}_2(n-1)$ $(n-1 \ge 5)$
1	$\mathcal{G}_1(2)$	$\mathcal{G}_1(3)$	$\mathcal{G}_1(n)$	B ₁₁	⊇811
2		$\mathcal{G}_1(3)$	$\mathcal{G}_{2}(n)$	$\mathcal{G}_{2}(5)$	$\supseteq \mathscr{B}_{12}$
3				$\mathcal{G}_{2}(5)$	$\mathscr{G}_{2}(n)$
4		-		B 11	$\supseteq \mathscr{B}_{11}$

TABLE 4. Result of Adding a New Vertex and Edge

follows that $|\mathcal{U}'| > 3 \cdot 2^{n-3}$. Similarly, as in Case 1, we consider the graph formed by the two-element members of \mathcal{A}' . If this graph is connected, then it is a tree. By Lemma 2 this tree cannot contain \mathcal{B}_{11} or \mathcal{B}_{12} (see Table 2). Then we can prove by induction on n that \mathcal{A}' is one of the two graphs shown in Figure 1. Indeed, adding a new vertex and edge yields the result contained in Table 4.

If the graph formed by the two-element members of \mathscr{A}' is disconnected, then let the connected components be X_1, \ldots, X_c ($c \ge 2$). Let $n_j = |X_j|$, \mathscr{A}'_j be the family of those members (including the one-element sets) of \mathscr{A}' that are contained in X_j , and \mathscr{U}'_j be the set of unions of members of \mathscr{A}'_j , $j = 1, \ldots, c$. Obviously, $\mathscr{U}' = \{Y_1 \cup \cdots \cup Y_c : Y_1 \in \mathscr{U}'_1, \ldots, Y_c \in \mathscr{U}'_c\}$; hence,

$$2^{-n}|\mathscr{U}'| = \prod_{j=1}^{c} 2^{-n_j}|\mathscr{U}'_j|.$$
 (6)

By assumption $\frac{1}{2} \ge 2^{-n} |\mathcal{U}'| > \frac{3}{8}$. Each factor in the right-hand side is ≤ 1 . If $|\mathcal{A}'_i| \le n_i - 2$, then $2^{-n_i} |\mathcal{U}'_i| \le \frac{1}{4}$, and similarly, if $|\mathcal{A}'_i| = n_i - 1$ and $|\mathcal{A}'_k| = n_k - 1$ $(i \ne k)$, then $2^{-n_i} |\mathcal{U}'_i| \le \frac{1}{2}$ and $2^{-n_k} |\mathcal{U}'_k| \le \frac{1}{2}$; hence, in both cases $\prod_{j=1}^c 2^{-n_j} |\mathcal{U}'_j| \le \frac{1}{4}$, so these cases cannot occur. On the other hand, \mathcal{A}' has $n-1 = \sum_{j=1}^c n_j - 1$ members; hence, we infer that $|\mathcal{A}'_1| = n_1 - 1$ and $|\mathcal{A}'_j| = n_j$ for $j = 2, \ldots, c$. Then $2^{-n_1} |\mathcal{U}'_1| \le \frac{1}{2}$; thus, $2^{-n_j} |\mathcal{U}'_j| > \frac{3}{4}$ $(j = 2, \ldots, c)$. Lemma 3 applied to the n_j -member family \mathcal{A}'_j on the n_j -element set X_j yields that $n_j = 1$ for $j = 2, \ldots, c$. Hence $2^{-n_1} |\mathcal{U}'_1| = 2^{-n} |\mathcal{U}| > \frac{3}{8}$. From the previous considerations it follows that \mathcal{A}'_1 is a tree of the form $\mathcal{G}_1(n_1)$ (for $1 \le n_1 \le n$; $\mathcal{G}_1(1)$ is an empty family) or $\mathcal{G}_2(n_1)$ (for $1 \le n_1 \le n$).

Now we take into account the set $A_1(|A_1| = q \ge 3)$ as well. For notational convenience, let $k = n_1$. If the tree \mathscr{A}'_1 is $\mathscr{G}_1(k)$ for some $1 \le k \le n$, then already $|\mathscr{U}'| = 2^{n-1}$ and A_1 can be any set not belonging to \mathscr{U}' (cf. Lemma 1). If \mathscr{A}'_1 is $\mathscr{G}_1(1)$, then $A_1 \supseteq X_1$, and we obtain that the core of \mathscr{A} is $\mathscr{C}_1(q, q)$ ($3 \le q \le n$) (see Table

	The V	alue of N	The value of 2^mN		
$A_1 \cap \{x, y, z\}$	If $r = 0$	If $r > 0$	If $r=0$	If $r > 0$	
Ø	0	2	0	$2^{n-q-k+r+1}$	
$\{\widetilde{\mathbf{x}}\}$	2^{k-3}	$2^{k-3-r}+2$	2^{n-q-2}	$2^{n-q-2} + 2^{n-q-k+r+2}$	
$\{v\}$	1	2	$2^{n-q-k+1}$	$2^{n-q-k+r+2}$	
$\{z\}$	1	0	$2^{n-q-k+1}$	0	
$\{x, y\}$	0	1	0	$2^{n-q-k+r+2}$	
$\{x, z\}$	2^{k-3}	2^{k-3-r}	2^{n-q-1}	2^{n-q-1}	
$\{y, z\}$	0	0	0	0	
$\{x, y, z\}$	0	0	0	0	

TABLE 5.

1). If \mathscr{A}_1' is $\mathscr{G}_1(2)$, then $|A_1 \cap X_1| = 1$ and the core of \mathscr{A} is $\mathscr{C}_1(q+1,q)$ $(3 \le q \le n-1)$. If \mathscr{A}_1' is $\mathscr{G}_1(k)$ for $k \ge 3$, then let $r = |A_1 \cap \{t_1, \ldots, t_{k-1}\}|$ (for the notation, see Fig. 1). We have two possibilities: (i) $A_1 \cap X_1 = \{z\}$, and (ii) $z \notin A_1$, r > 0. In the first case, the core of \mathscr{A} is $\mathscr{C}_1(q+k-1,q)$ $(3 \le q \le n-k+1)$; in the second, it is $\mathscr{C}_2(q+k-r,q,r)$ $(3 \le q \le n-k+r, 1 \le r \le q, r \le k-1)$. In any case, if the core has p elements, then

$$|\mathscr{U}'| = 2^{n-1} + 2^{n-p} \tag{7}$$

(cf. TABLE 1).

Now suppose $\mathscr{A}_1' = \mathscr{G}_2(k)$, $4 \le k \le n$ (see Fig. 1). Then let $q = |A_1|$, $r = |A_1 \cap \{t_1, \ldots, t_{k-3}\}|$, $m = |X \setminus (A_1 \cup X_1)|$. Direct calculations show that $|\mathscr{U}'| = (3 \cdot 2^{k-3} + 1)2^{n-k}$, and for the number of unions that can be obtained only by using A_1 , we obtain $|\mathscr{U} \setminus \mathscr{U}'| = N \cdot 2^m$, where N depends on $A_1 \cap X_1$, as shown in Table 5.

Hence we have

$$|\mathcal{U}| = (3 \cdot 2^{k-3} + 1)2^{n-k} + N \cdot 2^{m}. \tag{8}$$

Except for the case $A_1 \cap \{x, y, z\} = \{x\}$, r > 0, we have $2^m N \le 2^{n-4}$ as $q \ge 3$ and $k - r \ge 3$. Then by (8) and $k \ge 4$,

$$|\mathcal{U}| \le 3 \cdot 2^{n-3} + 2^{n-4} + 2^{n-4} = 2^{n-1}.$$

So the only remaining possibility is $A_1 \cap \{x, y, z\} = \{x\}$ and r > 0. Then

$$|\mathcal{U}| = 3 \cdot 2^{n-3} + 2^{n-k} + 2^{n-q-2} + 2^{n-q-k+r+2}.$$

Here $2^{n-k} \le 2^{n-4}$, $2^{n-q-2} \le 2^{n-5}$, $2^{n-q-k+r+2} \le 2^{n-4}$. The sum is greater than 2^{n-1} if and only if n-k=n-4 and n-q-k+r+2=n-4, that is, k=4, r=1, q=3. Thus we obtain the five-element core \mathscr{C}_7 . For this

$$|\mathcal{U}| = 2^{n-1} + 2^{n-5} \tag{9}$$

(cf. Table 1). This concludes the proof of the theorem. \Box

Proof of the Corollary: If the core of $\mathscr A$ is empty, then the number of unions is $2^n = 2^{n-1} + 2^{n-1}$. If the core has p members, $1 \le p \le n$, then $|\mathscr U| = 2^{n-1} + 2^{n-p}$,

TABLE 6.

k	$ \mathcal{U} = 2^{n-1} + 2^{n-k}$ for the Cores
1	Ø
2	$\mathscr{C}_1(2,1)$
3	$\mathscr{C}_1(3, q), q = 1, 2, 3; \mathscr{C}_2(3, 2, 2); \mathscr{C}_3 \text{ (if } n \ge 4)$
4	$\mathscr{C}_1(4, q), q = 1, 2, 3, 4; \mathscr{C}_2(4, 3, r), r = 2, \overline{3}; \mathscr{C}_2(4, 2, r), r = 1, 2; \mathscr{C}_4$
5	$\mathscr{C}_1(5, q), q = 1, 2, 3, 4, 5; \mathscr{C}_2(5, 4, r), r = 2, 3, 4; \mathscr{C}_2(5, 3, r), r = 1, 2, 3;$
	$\mathscr{C}_2(5, 2, r), r = 1, 2; \mathscr{C}_5; \mathscr{C}_6; \mathscr{C}_7$
≥ 6	$\mathscr{C}_1(k, q), q = 1, \ldots, k; \mathscr{C}_2(k, k-1, r), r = 2, \ldots, k-1;$
	$\mathscr{C}_2(k, q, r), q = 2,, k-2, r = 1,, q$

except for the core \mathcal{C}_3 when $|\mathcal{U}| = 2^{n-1} + 2^{n-3}$ [see (5), (7), and (9)]. The possible cores listed in Table 1 are pairwise different. Hence we have Table 6. Thus the number of possibilities is as given in the corollary. \square

REFERENCES

- 1. Burosch, G., J. Demetrovics & G. O. H. Katona. The poset of closures. Order. Submitted for publication.
- 2. Lindström, B. 1972. A theorem on families of sets. J. Comb. Theory A13: 274-277.
- 3. LINDSTRÖM, B. 1984. Another theorem on families of sets. Preprint.
- 4. TVERBERG, H. 1971. On Equal Unions of Sets. Studies in Pure Mathematics (Festschrift in Honor of R. Rado) L. Mirsky, Ed.: 249-250. Academic Press, London.