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A 3-PART SPERNER THEOREM
P. L. ERDOS and G. O. H. KATONA

1. Introduction

Let X be a finite set of n elements and let & c2X be a family of different sub-
sets of X such that every pair of members F,, F, of & (F,#F,) satisfies F,d¢ F,.
Sperner [6] proved that in this case

Q) IFlélléll-

If the inequality is realized by equality then either

©) e {FCX: |F| = l;]} or

gr:{FcX: |F| = [%]} if n=1 (mod2).

Kleitman [5] and Katona [4] independently proved: If X is divided into two
disjoint parts (X=X;UX,, X;NX;=0) and the family & contains no two dif-
ferent members F;, F, such that:
€)) F,c F, and FNF,cX; (i=1or?2)
then (1) holds.

By an analogous way, the more-part Sperner problem can be defined. Let X
be a finite set of n elements and X=X,U...UX, where X,NX;=0 (i#/). The
set # c2X of subsets of X is an M-part Sperner family, if no two members of &
satisfy:

4 F,c F, and F,\F, c X; for some i€{l,..., M}.

As it is shown in [4], if M=3, then inequality (1) is not true for every M-part
Sperner family . Fiiredi [2] Griggs, Odlyzko and Shearer [3] found good asymptotlc
results for the maximum size of M-part Sperner families. But the exact value is not
known even for M=3.

The aim of this paper is to determine this exact maximum size for the very
modest case M=3 and |X;|=1. Exactly, we prove
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THEOREM 1. Let X=X,UX,UX; be a partition, where |X)|=n,=|X,|=n,;
|Xsl=1; ny+ny+1=n. Then

max {|#|: & is a 3-part Sperner family} =

[l_’;]] if nm $mn, (mod2),
2

G =42 n:I if m=n=1 (mod2),
2

n—1 n Hy Ry Ry
2l n—1|—||m+2|-— ny ny+2|— ny if np=mny,=0 (mod 2).
Z ] 2 2 2 2

In the proof, the next theorem of Griggs, Odlyzko and Shearer [3] has a funda-

mental role. (A new proof of this theorem and a generalization of it to the extreme
points of the polytop of the M-part Sperner families can be found in [1].)

THEOREM (GOS [3]). There is an M-part Sperner family F such that
|#| = max {|#’|: #’ is an M-part Sperner family}
and FeF implies that all sets GC X satisfying
IFNX; = |GNX,|
Sor all j (1=j=M) belong to %.

2. Proof of the main theorem

Let #c2¥ be a family of subsets of the set X=X,UX,UX,. The 3-dimen-
sional matrix P(F)=(py,i,,:,(#))i;=0, ..., n;is called the profile-matrix of &, where

(6) Piin,ts(F): = |{FE-9"‘5 ViIFNX;| = ij}]‘

According to the theorem of Griggs, Odlyzko and Shearer there is a2 maximum
sized 3-part Sperner family & such that

i = [(’!:] () (3.

or 0.

Let J={(is, iz, i3): Py, ip,i,7%0}. Then according to the definition of the 3-part
Sperner families the set J is a partial transversal, that is, if (iy, iy, is), (i}, i, ()€
and they are identical in at least two components; then (iy, iy, is)= (i, i3, i3).

To the proof of Theorem 1 we need several lemmas. It is easy to see that the
projection of a partial transversal (it is an (m,+1)X(n,+1)X2 matrix) into its
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(ny+ 1)X (ny+1) ““face” has at most 2 elements in each row and each column. This
justifies the following definition. Ic{l, ...,u}X{l, ..., v} is a partial 2-transversal
iff no column or row contains more than 2 elements of /. Let the values g, =...=q,=1,
by=...=b,=1 be fixed. We will consider the matrix (a;b;);<i<4,1<j<o- 1he partial
2-transversal I will be called optimal iff
1) it maximizes
)] 2 aib i
i,Jjel
among all partial 2-transversals;
2) It minimizes
6)) = D
@, el
among all partial 2-transversals satisfying 1) and
3) it maximizes
©) . F]
G, her

among all partial 2-transversals satisfying 1) and 2).
In the proofs of the lemmas the following 3 transformations of partial 2-trans-
versals will be used.

Transformation 1. If I contains at most one element in the i-th row and at
most one in the j-th column, add (i,j) to I. This transformation increases (7).

Transformation 2. Move the element (i, )€l into (i, k) if k<j and the k-th
column of I contains at most one element, or move (7, j)€l into (/,j) if I<i and
the /-th row contains at most one element. This transformation does not decrease
(7) but decreases (8).

Transformation 3. Let i<k and j<I. Suppose that (i, I), (k,j)€I. The trans-
formation changes I for I'=(I—{(i, I), (k, HD}U{G, j), (k, 1)}. It does not decrease
(7) because

aib_,-—— 2 a,-bj = aib_,+akb,—a;b,—akbj = (a,--—ak)(b_,—b;) = 0.
a.)er Giel
It does not change (8), but it increases (9):
i-j— 2 i-j=ij+kl—il—-kl=(i-k)(j—-1)=0.
G,her G, el
The following lemma is an easy consequence.

LEMMA 2.1. Transformations 1—3 cannot be applied for an optimal partial 2-trans-
versal.

In what follows, we will study the structure of the optimal partial 2-trans-
versals.

LeMMA 2.2. An optimal partial 2-transversal has non-increasing number of ele-
ments in the rows (columns).

25
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ProoF. The number of elements of I in the i-th row (column) is denoted by
0; (%) (0=¢,=2, 0=x,=2). Suppose that i<j and g;>¢;. Consider an element
(i, k)el. Transformation 2 with (i, k)~(j, k) could be applied contradicting
Lemma 2.1. ]

LEMMA 2.3. Let u=v. An optimal partial 2-transversal satisfies ¢,=...=g,_1=
=uy=...=%, =2 and either go,=x,=2 or g,=x,=1.

Proor. Suppose that I is optimal, consequently it satisfies the conditions of
Lemma 2.2.

(,=0 implies |7| = 2u—2. Hence x»,<2 follows. Transformation 1 could be
applied with (w,u). This is a contradiction by Lemma 2.1. g,=1 is proved.
%#,=1 can be seen in the same way.

Suppose that ¢,=x,=1. Let g,_,=1. Either (u,u)¢I or (u—1,u)¢I holds,
so Transformation 1 could be applied with one of them, contradicting the optimality
of I. This proves ¢,_;=2 and x,_,=2 can be proved analogously.

Suppose now that one of g, and %, equals 2. Then |I|=2u, thus all ¢’s and
»’s are equal to 2. ||

LEMMA 2.4. Let u<v. An optimal partial 2-transversal satisfies ¢,=...=g,=
=uy=..=%, =2, %y o=...=%,=0 and either »,=u,, ,=1 or x,=2, %,,,=0.

PrROOF. Suppose that I is optimal, consequently it satisfies the conditions of
Lemma 2.2.

0, =1 implies |I| =2u—1.Hencex,=1and x,,,=1 follow. One of (u, 1)
and (u,u+1) is not in I, thus adding it to / by Transformation 1 it leads to a
contradiction. ¢,=...=g,=2 is proved.

If x,=2 then |I|= 3 g/=2u= 3 x; implies s,=...=2,=2; %43 e p=0,
i=1 i=1

Suppose now that x»,=1. It implies x,,,=1. However, %,_,=1 leads to a
contradiction. Indeed, (i, u+ 1)€I holds for some i. Transformation 2 can be used
with (i, u+1) and with either (i, %) or (i, u—1), because both ones cannot belong
to I. Hence we have x,_,=2. %,,,=...=x,=0 trivially follows. [

LEMMA 2.5. Let u=v, 1=i<u and 1=j<u—1. Suppose that I is an optimal
partial 2-transversal and its subset ACI satisfies the following conditions:

A contains at most one element in the ith row, at most one in the jth column and
(10)

at most one in the (j+1)st column,

and

I—A has no element of the form (i, k), k<j or
an
j), l<i or (mj+1), m=<i.

Then either (i,j)€I or (i,j+1)€I holds. The roles of the rows and columns can be
interchanged.
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Proor. We use an indirect way. Suppose that
(i,j)¢I and (i,j+1)¢L

Lemmas 2.3, 2.4 and (10) imply the existence of an (i, k)€I—A. k=i, i+1 by the
assumption. On the other hand, (11) results in j+1<k. The same arguments
show the existence of an (s,/)¢/—A and a (f,j+1)€I—A where s,>i can be
assumed. We distinguish 2 cases:

(i) s=t. The j-th column contains two elements of I: (s,j) and (s,j+1).
Therefore we have (s, k)¢ I. Transformation 3 can be applied for (i, k) and (s, /).
This contradiction proves the statement in this case.

(ii) s#t. (s,k) and (1, k) cannot be both in I. Suppose e.g. that (s, k)¢ 1.
Transformation 3 can be applied for (i,k) and (s,/), again. This case is also
settled. |

LEMMA 2.6. Let u,v=2. If I is an optimal partial 2-transversal then
1, D, (1,2), (2, DeL

PrOOF. Suppose that u,v=4 and apply Lemma 2.5 with A4=0, i=1, j=1.
Either (1, 1)é7 or (1,2)¢l can be stated. We distinguish these two cases.

a) (1, 1)€L. Apply Lemma 2.5 with A={(1, 1)}, i=1, j/=2. Two subcases are
distinguished: aa) (1, 2)€1, ab) (1, 3)€1, (1, 2)4 1.

aa) (1,2)¢l. Lemma 2.5 can be applied, again, with A={(1, 1), (1, 2)} i=2,
j=1. If we obtain (2,1)¢l we are done. Suppose that (2,2)c], (2,1)¢l. By
Lemmas 2.3 and 2.4 there exists a (k, 1)€1, k=>2. Transformation 3 can be applied
with (2,2) and (k, 1) because (k,2)¢ /. This contradiction proves the lemma in
this case.

ab) (1, 3)el. Apply Lemma 2.5 with A={(1, 1), (1, 3)}, i=2, j=1. Two sub-
cases will be distinguished:

aba) (2, 1)€1. We may continue: either (2,2)cI or (2, 3)€1. In the first case
the change of (2,2) and (1, 3) (Transformation 3) leads to the desired contradic-
tion. In the latter case there is a (k, 2)€l (k>2) by Lemmas 2.3 and 2.4. (k, 2)
and (1, 3) give the contradiction.

abb) (2, 2)€1, (2, 1)¢ 1. Transformation 3 with (2, 2) (1, 3) gives rise to a con-
tradiction unless (2, 3)€1. In this latter case there is a (k, 1)€I (k=2). The applica-
tion of Transformation 3 for (k, 1) and (2, 3) settles this case.

b) (1,2)¢l but (1,1)4/. By Lemmas 2.3 and 2.4 there are (k, 1), (/, 1)€l
(k,I=1,k#1l). One of (k,2) and (I, 2), say (k,2), is missing from I, therefore
Transformation 3 can be applied with (k, 1) and (1, 2). A contradiction.

The cases when v=u=2,3 can be proved similarly.

LeEMMA 2.7. Let u,v=3. Suppose that I is an optimal partial 2-transversal and
(1, 1), (1,2), (2, D€L, 2,2)¢1. Then (2,3), (3,2), (3, 3¢l

PROOF. Suppose that u, v=5. Use Lemma 2.5 with A={(1, 1), (1,2), (2, 1)},
i=2,j=2. (2, 2) is not in I by the assumption, thus we have (2, 3)cI. Apply Lemma
2.5 now with A={(1, 1), (1,2), (2, 1), (2,3)}, (3,2) and (4,2). If (3,2)€l then
Transformation 3 could be used for (2,3) and (3,2) except in the case (3, 3)€L.
The statement is proved in this case.

25*
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If (4,2)cI then (4,3)€l can be supposed, again by Transformation 3. The
third row contains at least two elements, therefore there exists a (3, k)€l satisfying
k=4. (4,k)41 is obvious, thus Transformation 3 is applicable with (4,2) and
(3, k). This contradiction proves the lemma for u, v=35.

The cases v=u=3,4 can be proved similarly. [

LEMMA 2.8. If u=1=uv then the optimal partial 2-transversal I consists o f (1, 1)
and (1,2). If u=2=v then I={(1,1), (1,2), (2, 1), (2, 2)}.

The proof is trivial.

It is easy to prove by induction, using Lemmas 2.6—2.8, that the optimal
partial 2-transversal consists of blocks

11 110
11 101
011
along the diagonal (/,7) and it might end with an
11

if exactly one row remains at the end. Not making any additional condition on
the a’s and b’s nothing else can be said about the blocks. However, we want to use
these results for binomial coefficients. They are ordered in natural order, therefore
we have equal pairs among them. Under this condition the structure of the optimal
partial 2-transversal can be described rather well.

First we investigate some further transformations.

Transformation 4
11000 11000
10100 11000
01100-00110
00011 00101
00011 00011,

It is understood that this transformation is made somewhere along the diagonal
(7,7) of the matrix (a;-b;). Denote by ¢,=...=c¢; and d,=...=d, the values a,
resp. b corresponding the rows and columns, resp. The values of the subsums what
these submatrices give from (ijz),;la,-b j are

cdyteydytcodi+cady+ cyda+egds+ cydy+ cyds+csdy+cqd,
and
crdi+eidatcady 4 cody +cydy+cgdy + cydy+cqdg+csdy + e ds.

An easy calculation shows that the second sum is less than or equal to the first sum
under the assumption c¢,=c¢3, dy=dj.
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We say that the transformation is non-increasing. The constant and non-decreas-
ing transformations are defined analogously. Easy calculations show the following
lemmas.

LEMMA 2.9. Transformation 4 is non-increasing if c¢,=c3, dy=d,, non-decreasing
if cy=cy, dy=d, and constant if cy=cy, dy=d, or c3=cy, dy=ds.

LeMMA 2.10. Transformation 5 which is defined by
¢ 110000 110000
¢c;c 101000 110000
¢cgc 011000 001100
¢, 000110 001100
¢c 000101 000011
¢ 000011 000011,
dy dydy 4y dedy

is non-increasing if ¢y;=cs, €4=C5, dy=dy, dy=d;, non-decreasing if c;=c,, dy=d,
and constant if c;=cs, C4=c;, dy=d; or cy=c,, dy=dy, dy=d;.

LEMMA 2.11. Transformation 6 which is defined by

¢, 11000 1100(0
¢ 1010[o] 1100]0
¢ 01 10J0ofl 0011]0
e 0001l1) oo011l0

dydydgd, ds
is non-decreasing if cy=c,, dy=ds, (dy=d;) or cy=cy, dy=d, or c3=cy, dy=d,.
LEMMA 2.12. Transformation 7 which is defined by
¢ 1100 1100
cec 1010-1100
¢ 0110 0011
dydydsd,
Is constant if c;=c; and dy=d,.

LEMMA 2.13. Transformation 8 which is defined by

¢, 110(0 110(0
c; 110(0]-101]0
¢z 00111 01110

is non-decreasing if c,=c; and dy=ds.
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Using the above transformations we are now able to describe one of the optimal
partial 2-transversals. We know that an optimal partial 2-transversal consists of
2X2 and 3x3 blocks. It is called superoptimal iff (i) it minimizes the number
of 3X 3 blocks and (ii) it minimizes the sum of the coordinates of the starting
points of the 3X3 blocks among all optimal ones satisfying (i).

LemMA 2.14. Let u=m+1=n,+1=v and suppose that a,=...=a, and

b,=...=b, are the binomial coefficients (HI'] and (’:2] , resp. Then the superoptimal

partial 2-transversal consists of 2X2 blocks with two exceptions. If n,=n,=0 (mod,)

then the first block is a 3 X3 one. At the end of the diagonal a block of the form 1 or
11 can occur.

PROOF. Suppose that 7 is a superoptimal partial 2-transversal. Three cases will
be distinguished in the proof.

1) ny=%=n, (mod,). Transformation 5 is constant by Lemma 2.10. It decreases
the number of 3X3 blocks. This proves that I cannot contain two neighbouring
3x 3 blocks.

However, Transformation 4 is also constant inthiscase (Lemma 2.9). Applying
it backwards, it decreases the sum of the coordinates of starting points of the 3X3
blocks. Therefore I cannot contain a 3X3 block following a 2X2 one. Hence [
can have at most one 33X 3 block, at the beginning only.

We prove now that even this only one 33 block is excluded.

11) ny<n,=0 (mod,). As n,+1 is even, I ends with a block of the form 11.
Transformation 4 is constant in this case, we may move the 33 block toward the
end while I remains optimal. Finally we arrive to the configuration of the left-hand
side of Transformation 6. This is non-decreasing, but it decreases the number of
3% 3 blocks. I was not superoptimal. This contradiction proves the statement for
this case.

12) ny,<n,=1 (mod,). m+1 is odd. We can repeat the argument of case
11), but Transformation 7 should be used in place of Transformation 6. I cannot
contain any 3X3 block in this case.

2) my=n,=1 (mod 2). Consider a 3X3 block B, following a 2X2 block.
Transformation 4 can be applied backwards unless the coordinate of its starting
point of B, is odd. Thus we may suppose that this is the case. If B, is followed by
a 3X3 block then Transformation 5 gives rise to a contradiction. Denote by B,
the first 3X3 block occuring after B;. It is easy to see that the coordinate of the
starting point of B, is even. The converse of Transformation 4 leads to a contradic-
tion. Therefore B, cannot be followed by a 33X 3 block.

The first two blocks cannot be 3X3 ones because of Lemma 2.10. If the first
block is a 3X 3 one then the first other 3X 3 block following it (=B,) has an even
starting coordinate. This contradiction proves that there is at most one 3X3 block
in I and its starting coordinate is odd.

Suppose that there is a 33 block. By Transformation 4 we can move this
block until the end and 7 remains optimal. n;+1 is even, thus the end looks like the
left-hand side of Transformation 6. Lemma 2.11 gives the contradiction. I cannot
contain any 3X3 block in this case.
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3) m=n,=0 (mod,). If the first block is a 2X2 then Transformation 4 can
be used backwards for the first 3X3 block, with a contradiction. However, all
blocks could not be 2X2 because otherwise Transformation 5 would lead to a
contradiction, using it backwards. (If n,<5, this argument does not work. For
n,=2 and 4 Transformation 8 can be used.) This proves that the first block has
to be a 33 one. Disregarding the first block, the rest can be treated like case 2).
In this case we obtained that the first block is a 3X3 one, all other blocks
are 2X2. i

ProOF OF THEOREM 1. First we prove that max {|#|: & is a 3-part Sperner
family} cannot exceed the values given in the theorem. This maximum equals (by
Theorem GOS)

ez ()(5)()

where we sum over (i, j, k)éJ and the maximum is taken over all partial trans-
versals J in {0, ..., m}X{0, ..., m}x {0, 1}. It is easy to see that the set
i={(i.7): . ], k)EJ} isa part1a1 2-transversal in {0, ..., n}X {0, ..., ny}. There-
fore (12) can be upperbounded with

o, 2,40

where the max runs over all partial 2-transversals 1. (13) can be determined by
Lemma 2.14.

1) One of n, and n, is odd. Denoting by a; and b; the respective binomial co-
efficients, (13) can be expressed as

(149 Z(ai+air) (it bivd) =, 122, a;bi+ 123' aibin‘l‘i 12 @i41b;.
=1,2,... 1=1,3,... =1,3,...
If n, is odd then a,=a;,, (i=1,3,...) hence
, > Gba= 3 b= 25 ab
i=1,3, ... i=1,8,... i=2,4,...

and :
2 Guabi= 2 ab
1=1,8, - i=1,38;...
follow. Substituting these into (14) we obtain 2 > a;b;. The case when n, is
i=1,2,...

odd can be obtained in the same way.
Let n, be odd and n, be even. Then

ny
aibl= nl_l nz +[”1+1] 2]+["1_3 n2+2 +

i=1,2,... 2

n | ) ny+n,
+ n1+3 2—4 F e = n1+n2ml .
2 2 2

/
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Multiplying it by 2 we obtain

n1+n3+1 n
m+n+1| = n
2 2

The case when n, is odd and n, is even can be treated analogously.
Finally, if n;=n,=1 (mod,) then

n P nm+n, n—1
. a,-b,-z nl—l n2+1 + n1+1 '—l + = n1+n2 = n—l
i=1,3,... 2 2 2
proves the upper bound in this case.
2) m;=n,=0 (mod 2). Lemma 2.14 gives
alb1+alb2+a2b1+02b3+a3b2+a3b3+
+ '—423. (@i +a;41) (bi+biyy) =
— alb1+a1b2+azb1+azb3+a3b2+a3b3+2 aib,- =
i=4,5,6,...
= —a,by +a,by+asby —2ayby+ aby+azby—aghg+2 ai b;=
i= 1
ny | he m Ny
=—|m _11_2 + nl n2+2 + n1 n2 -2 nl na+21+
2 -2
n (ny+ 1,
+|n—2 2 + n1+2 n2+2 - n1+2 2 +2|n+n, | =
2 2
n—1 n ”1 Ny L)
=2|n=1|—-||m+2]|- n ny+2|— Ny
2 2 2 2 2

We have proved that the right-hand side in the theorem is an upper bound.
We need constructions proving the equality.

It is easy to check that the following families are 3-part Sperner families and
their size is optimal:

m+n—1
2

9*'={F_: |F| = |X3F‘IF|—0}

=_"_L__"L__1, |X,NF| = 1}

U{F: 1X,NF|—|X,NF| 5




A 3-PART SPERNER THEOREM 393

if n, is odd, n, is even,

f:{F; |F| ="1+_’2'=—_1_, |X,NF| =0}U
U{F: |X,NF|—|X,NF] =ﬁ1-__:’;1-i, X, N F| = 1}
if n, is even, n, is odc
.‘F={F: |F] =-’-’lfzr_"’-, !XaﬂF|=O}U

U{F: IX,NFl-1X,NF| =221 1x,nF|= 1}

2
if both n; and n, are odd and finally

1y,
2

ny

.9"‘={F: |F| = , |[XiNF| ;é%i, —2-+1, | X3NF| =0}U

U{F: 1X,NF] =%, |X,NF| =%— , |X.NF] =0}u

U{F: XN F] = ”71+1, |X,NF| = 225 |X,NF| = o}u

nz_nl

2

U{F: | X;NF|—|X,NF| = » | XN F| = 1}

if both n; and n, are even. |}
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