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COMBINATORIAL PROBLEMS OF DATABASE MODELS
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1. INTRODUCTION

One possible model of a database is a matrix. E.g. a database
may ccntain the name, the place of birth, the date of birth, and
so on .... of different persons. The possible data are called
attributes while the whole of the data of one individual is its
record. In the above example the name, the place of birth, the date
of birth are attributes. The whole of data of one person is a
record. It is rather natural to describe this system by a matrix
whose rows and columns correspond to the records and attributes,

" respectively.

It is clear, that the actual entries of the matrix are usually
unimportant. We have to consider, whether they are equal or un-
equal, only. By further relaxations we will use other less fine
models (mostly known from the literature). These models suggest
several combinatorial problems of extremal nature. Namely, given
some parameter({s) of the database determine the maximum or minimum
of another parameter. The aim of the recent paper is to survey
these extremal combinatorial results found by the authors and
their coauthors.

In Section 2 we study the models and their relationships.

The models are of combinatorial nature. Concepts like closures
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are borrowed from the combinatorial literature.

In Section 3 we survey the extremal combinatorial results
concerning one database.

On the other hand, Section 4 considers a partial ordered set
in which the databases are ordered in a very natural way. Some

extremal problems concerning this partial ordered set are solved.

2. DATABASE MODELS

The concepts and results of this section are either published
by other authors (see e.g. [11,C4]) or belong to the folklore. We
do not regard them as our original work. However, we did not find
the structure in the form presented here. Our approach expresses
our personal taste as well as it corresponds to what is needed in
our subsequent investigations.

The basic model of a database is a matrix M with m rows
and »n colums. The set of columns is denoted by &. Let A4,B < .
We say that B depends on A if M has no two rows equal in A but
different in B.

The notation 4 - B is used for this case. In other words
A+ B means that the data in the colums belonging to A uniquely
determine the data in B, that is, knowing 4, B does not give any
new information. If B is a one-element set, B = {b}, we write
simply A -+ b.

It is clear that different matrices can give the same system
of dependencies, therefore this model is less fine than the matrix-
-model. However, in many cases it contains sufficient amount of in-
formation.

9]

Define the function L on 2" by

LEA) = ibs & + B).

This function possesses some simple properties:
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Lemma 2.1. Let A,B< Q. Then

(2.1) A < Lca),

(2.2) AS B implies L(A) S L(B;
(2. -3) LcLca)) = LcA).

Proof. (2.1) is obvious. It means that 4 - » holds for all
b € A. Indeed, if two rows are equal in A, they must be equal
in b, as well.

To prove (2.2) suppose that a € L(4), that is, 4 =+ a.

In other words, any two rows which are equal in 4, coincide also
in a. A < B implies that 4 can be replaced by B in the latter
statement, so B - a, that is, a € L(B) as we wanted to show.

The part L(L(A)) =2 L(A) 1is a consequence of (2. 7). We have
to prove L(L(4)) < L(A), only. Let a € L(L(4)), Then any two
rows equal in L(A) are also equal in a. Consider now two rows
known to be equal in A. By definition, these two rows must be
equal in L(4), therefore in a. a € L(A) 1is proved. The proof
is complete.

The combinatorial literature calles a function satisfying
(2.1)-(2.3) a closure. Lemma 2.1 makes us able to call L a
closure.

Now we consider another relation between the closures and the

dependencies. The next lemma can be easily proved:
Lemma 2.2. Let A,BS Q. A+ B <Iff B <L(a).

Lemmas 2.1 and 2.2 imply the following properties of the
dependencies.

Lemma 2.3, Let A,B,C < Q.

@.4) A > A;

2. 8 A+>B and B ~>C imply A > C;

(2.6) AcC, DSB and A+ B <imply C ~ D;
(2.7) A>B and C+D Imply AUC +B U D,

il



Proof. (2.4) is a consequence of Lemma 2.2 and (2.1).

By Lemma 2.2, A + B can be written in the form B < L(4).
(2.2) implies L(B) < L(L(A)) and hence we have L(B) & L(4)
because 6F (2. 3).B » ¢ -is equivalent to ¢ S L(B), therefore
¢ = L(a) follows. This yields 4 > C, again by Lemma 2.Z.

(2.5) is proved.

Prove now (2.6). A ~ B is equivalent to B & LAl s pis-8B
implies D < L(AJ. (2.2) and A€ ¢ result in Lea) e L(C), and
hence we have D < L(¢) which is equivalent to the desired C - D.

The conditions of (2.7) can be rewritten into the forms
B< L(a) and D < L(C). Hence we obtain B UDS L) - LC).

(2.2) yields L(4) = L(A U C) and L(c) € L(A U C) can be
obtained similarly. These imply B U D < L(4) U Lc)cs LA v C)
which is equivalent to 4 U C B U D. The lemma is proved.

Suppose now, in general, that a system of pairs (4,E) of sub-
sets of Q 1is given which satisfies the conditions (2.4)-(2.7).
Such a system is called a full family. Lemma 2.3 expresses the fact
that the dependencies form a full family.

In this way we associated a full family with each matrix. It is
easy to see that the same full family can be associated with sev-
eral different matrices. On the other hand, as we will see later,
there is at least one matrix to any full family.

Let T be a full family. It defines the closure L(4) =
= {pb: (A,b) € T}. This definition is a generalization of the
earlier definition, where we have done it only for the full family
of dependencies. Lemma 2.1 can be proved, of course, in full
generality. The proof is the same, we have to use properties (2.4)-
-(2.7) in place of the properties of the matrices. As an example
let us see the proof of (2.3). L(L(A)) 2 L(4A) 1is a consequence of
(2.1). It remains to prove L(L(A))<= L(4), only. Let
@ € L(L(4)). By definition, this is equivalent to (L(A),a) € T.
Consider all the pairs (4,b) €T (4 is fixed). Apply (2.7) to
them. We obtain (4, {b: (4,b) € T} = (4, L(A)). The application of
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(2.5) to (A,L(4)) and (L(A),a) leads to (A,a) € T which is
equivalent to the desired a € L(4).

Conversely, we can associate a full family with each closure L.
Let (A,B) € T iff B< L(4). Lemma 2.3 proves, in fact, that T
will be really a full family. Observe, that in this way we found
a one-to-one correspondence between the closures and the full
families:

Theorem 2.4.
(2. 8) T~ L(a) = {b: (A,B) € T}

18 a one-to-one correspondence between the set of full families and
the set of closures on the same ground set. The inverse of (2.8) is
determined by

(2.9) L+T={¢A,B): BE L(a)}

The structure of the full family of a given database can be
very useful in handling and compressing the database. However, this
structure, as we saw, could be uniquely characterized by the
corresponding closure. This latter one is a simpler structure. In
what follows, we will give other (even simpler) equivalent structures
The set A< Q is called closed (with respect to the closure
L) if L(A) = A The next theorem determines the family Z (=Z(L}) of
the closed sets with respect to the closure L.

Theorem 2.5. Let I be a family of different subsets of .
I is the family of closed sets with respect to some closure L ff

2. 10) Qe

£

(2. 11) A,B€ Il implies ANBEL

(2.11) can be formulated as "Z <s closed under intersection.

Proof. Prove first that (2.10) and (2.11) hold for the closed
sets of an L,
(2.1) implies Q = L(Q), but L(Q)< Q@ is obvious. Hence
L(©2) = @ follows. On the other hand, suppose 4,B € Z. They yield
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L(A) =4, L(B) =B. ANBSA and (2.2) imply

L(ANB)S L(4) =A L(AnB)S B can be deduced similarly. The
two inclusions result in L(4 n B) < 4 n B. The converse inclusion
is a consequence of (2.1). A n B is really closed and is in Z.

On the other hand, suppose that the family Z satisfies
{2.10) and (2.11). We have to construct a closure L in which the
closed sets are exactly the members of Z.

Let
L) = n 2.
AczZEeL
It is easy to see that this is a closure.
This intersection is non-void by (2.10). On the other hand, (2.11)
implies L(4) € Z. That is, the sets closed with respect to Lall
belong to Z. We have to prove that any B € Z is closed with
respect to L. Indeed, B occurs in the right hand side of
L(B) = nZ and all other terms Z contain B. Hence L(B) = B.
The proof is complete.
The families Z satisfying (2.10) and (2.11) are called

intersection semi-lattices.
Theorem 2.6.
(2.12) b Y= {82 LG = 2}

is a one-to-one correspondence between the set of closures and the
set of intersection semi-lattices on the same ground set. The in-

verse of (2. 12) is determined by

(2.13) Z->L04) = n Z,
Aczel
Proof. We have proved in Theorem 2.5 that (2.12) leads to all
intersection semi-lattices. Let us verify that two different
closures give different intersection semi-lattices. Take two
different closures L, and L,. For some 4 c 9, we have
LJ(A) £ LB(A)‘ There is an element a which is in exactly one of them,

say a € Ly(A), a £ L (A). Consider L, (L,(4)). Apply (2.2)
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to 4¢S LI(A): Ly(a) = Lg(LI(A))- Hence a € LZ(LJ(A)),
However a ¢ L;(4) = L;(L;(4)). The closures of L;04) with
respect to LJ and L,, resp., are different, that is (2.12)
determines two different intersection semi-lattices.

The proof that (2.13) is the inverse of (2.12)1is left to the
reader. The proof is finished.

Due to property (2.11) an intersection semi-lattice Z can
be determined by much less of its members. Let extr(Z) denote
the family of those members ¢ € Z which are not intersections
of two other members of Z, that is, 4 #C #B, A,B € I imply
ANB-ELC.

Lemma 2.7. Any member A € 1 is an intersection of some
(>0) members of extr(1)-{Q}, but no proper subfamily of
extr(2)-{Q} has this property.

Proof. Let us prove that 4 € Z 1is an intersection of some
members of extr(Z)-Q 1in an indirect way. If there is an 4 € Z
which is not such an intersection, take a maximal one. Q 1is the
empty intersection, hence 4 # Q. 4 € extr(Z)-Q 1is obvious.
Therefore 4 =B NC where B#A4 #C and B,C € Z hold. These
sets are larger than 4, so, by the maximality of A4, they are
intersections of some members of extr(Z)-Q. Substituting these
intersections into B N ¢ we obtain a contradictory intersection
form for A. The first statement is proved.

Let now 4 € extr(Z)-{Q}. We will prove that ewtr(Z)-{Q,A}
is not sufficient to generate all members of Z. Namely, A4 makes
the difficulties. If, on the contrary 4 is an intersection of
members of extr(Z)-{Q,4}, take the one containing the minimum
number of terms. This number cannot be O or 1. Therefore we can
write 4 = BN (nC) where B and all C € extr(Z)-{Q,AL
By the minimality, we have 4 # NC # Q. nC € Z 1is obvious. There-
fore A4 1is an intersection of two members of Z, different from
A. This contradiction proves the lemma.

The next theorem characterizes the families extr(Z).
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Theorem 2.8. 4 family E <s equal to extr(l) for some inter-

section semi-lattice I <Iff

(2. 14) QeEt
and

(2.18) A =

=

Ay (0> 1), A Ap.oisA, EE

i=1

imply A = A, for some il 4 %% Pl

Proof. Let Z be an intersection semi-lattice. Then
Q € extr(l) 1is a consequence of (2.10). To prove (2.15) for
r
extr(Z) suppose that 4 = N Ai e 1)y A,Al,...,ArEemtr(Z).

i=1
s
Let s be the smallest integer satisfying 4 = 0 A.. Then
i=1
A= (Aln...nAs_z) nAg, where Al""’As—l-‘ As’ Alﬂ...ﬂAs_I €,

Alﬂ...mls_1 Z A. Here A € extr(l) implies A, = A. (2.15) is

proved.

Suppose now that E satisfies (2.14) and (2.15) and construct
a 7 such that extr(Z) = E. Let I consist of all possible
intersections formed from E. We have to show that the members A4
of E are not intersections of two members of Z different from
4, but this can be done with the members of Z -~k

let A€E, A=Bn¢C, B,CEl.As B and ¢ are intersec-
tions of members of E we obtain such an intersection form for A.
(2.15) implies that one of the terms is A. Consequently either
B or C is also equal to A.

On the other hand, if 4 € Z-E then we can write
A=AN A, r2> 2 Al""’Ar €EE, Ape.nA, # A. Suppose that
r is chosen minimally. Then A,N...N4 ., # 4, therefore
A= (AN...04, ) NA is an intersection of two members of Z,
different from A. The proof is complete.

The families satisfying (2.14) and (2.15) are called Zntersec-

tion-free families.
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Theorem 2.9.

(2. 16) I+ extr(l)

18 a one-to-one correspondence between the set of intersection
semi-lattices and the set of intersection-free families. The

inverse of (2. 16) is determined by
(2.17) E -~ {Azn...mr, r>1, Aj...,A, €EL

Proof. Let ZJ and 22 be two different intersection semi-
-lattices and suppose that 4 € Z,, AZ Zl' By Lemma 2.7, A4 is
an intersection of members of extr( 22). On the other hand,

eactr(Zl) S Z, cannot contain 4. This proves that

emtr(Zz) Z extr(l,), that is, (2.16) is one-to-one.

The proof of (17) is left to the reader.
We have shown several concepts equivalent to the full families

however we have not proved yet, that the full families are exactly
the dependencies.

Theorem 2.10. Let T be a full family on Q. There exists a
matrix M with Q| columms in which the set of dependencies
coineides with T.

Proof. Let L and Z be the closure and the intersection
semi-lattice associated with T. List the members of extr(l) =
= {Gz,...,Gr}. M will have r+I rows: the O-th row consists of
zeros, while the <-th (I <7 <r) rowcontains a 0 or 7 in
the colum ¢ according to ¢ € G, or c#g G

Suppose first that (4,B) € T. Then B < L(4) follows. We
have to prove that the equality of two rows in 4 implies their
equality in B. By the definition of M, two rows can be equal
only in zeros. Two cases are distinguished:

a) The O-th and 7-th (7 <7 <r) rows are equal in 4.
A< G, follows. G; is closed with respect to L, so
B SL4) < Lee,) = G;» by (2.2). Hence the Z-th row has 0 every-
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where in B. The rows are equal in B.

b) The Z-th and j-th (1 <2 <J < 1) rows are equal in A.
AS G, and 4 © Gj imply B =G, and B & Gj in the above way.
The two rows have everywhere O in B.

Suppose now that (4,B) € T, that is, B g L(4). There is a
columm » € B such that b € L(A). L(4) 1is closed (by (2.3)),
therefore it is an intersection of some Gi's. There must exist
a G; satisfying b £ G,. However G =2 L(a) 2 4 holds. The 0-th
and Z-th rows of M have zeros in A4, but they are different in
b. The proof is complete.

3. INEQUALITIES FOR THE PARAMETERS OF A DATABASE

Let us first indicate what kind of problems are discussed in
this section. A database (or matrix) has different parameters like
the number of colums (attributes), number of rows (individuals),
number of possible entries of the matrix, etc. More generally, the
total structure T of dependencies can also be considered as a
"generalized parameter'. Knowing some parameters of M we will
look for the minimum or maximum value of another parameter.

The easiest example concerns the number of minimal keys of a
database. A key 1is a set of attributes determining the values of
all other attributes. Formally, A< Q 1is a key, iff 4.~ Q,
that is, if (4,Q) is a dependency or equivalently, L(4) = Q.
Moreover, K is a minimal key iff L(x) = @, but no proper subset
of it has this property. Our first problem is to determine the
maximum number of minimal keys if the number = of attributes

is given. For this purpose we need the following theorem.

Theorem 3.1. (C51) Given a family K of subsets of Q
there is a matrix in which the family of minimal keys t8 K. zff
K satisfies

(3.1) KKy € K,K; # Ky = Ky g K,

(The families satisfying (3.1) are called Sperner families.)
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Proof. The necessity of (3.1) follows by the minimality of
the members of K.

We could deduce the sufficiency from Theorem 2.10, but the
proof is easier in this case. Introduce
K1 = (5 S(K €K s.t. KSB and B is macimal for this

property}.

et K= {G,,...,G }. The desired matrix consists of »n = |{]
colums and m+1 rows. The O-th row consists of zeros, while the
i-th (1 <7 < r) row contains a 0 or ¢ inthe colum ¢ according

to c€G. or ¢ €& G..
7 7

Let A be subset of @ not containing any member of K as
a subset. Then, by the definition of K_l, there is an ¢ such
that A4 © G, holds. Hence the 0-th and Z-th rows are equal in A.
Therefore 4 1is not a key in M.

On the other hand, if 4 2 X € K, then A_Gi Z ¢ holds for
all < (1 << <r). Therefore the ¢-th row has an < in at least
one colum belonging to A.

The family of keys in M 1is really equal to the family of
all supersets of the members of K. This means that the family of
minimal keys in M is exactly K. The proof is complete.

Our original problem is reduced to the determination of
max|K| under (3.1). This problem, however, hgs been solved many
years ago by Sperner [9]. The answer is (lgj), So, we can
formulate “

Theorem 3.2. (C51)  The maximum number of minimum keys in a

n
database (matrixz) with n attributes (columms) 7,3(1{1_-,)
2

Theorem 3.1 states that there is a matrix M, for any K, in
which the family of minimal keys is K. We did not consider the
number of rows. Now, let s(K) denote the minimum number of rows
in such a matrix M, where K is any Sperner family.

Theorem 3.3.  ([57)

n
s(K) <1+ (n.).
- 2J
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Proof. It is clear from the proof of Theorem 3.1 that the
number of rows of M is at most 1 + IK_I]. However, k1 is

- n
a Sperner-family, again. Hence |K 1[ < (la J) proves the theorem.
2

The next theorem states that there is a K for which s(K) is
close to the upper bound given in Theorem 3.3.

Theorem 3.4. ([(71) For any n, there is a Sperner family on
an n—element set such that

L ()
—- n,) < s(K.
"t Lzl

The proof is non-trivial, it can be found in [73.

We cannot construct a Sperner family which has such a large
s(K). There is, however a class of Sperner-families for which
s(K) is exactly determined. Let FZ denotes the family of all

k-element sets of an n-element set. It is obvious that FZ is a
Sperner family. Let us see first an easy lemma:

Lemma 1 3.5. ([61)

S(FZ) n
> (0 <k <n)
2 k-1

Proof. Suppose that the family of minimal keys of an m x n
matrix M is K. Let A4 be a (k-1)-element set of colums of M.
There is a pair of different rows which are equal in A4, since 4
is not a key. However, to different sets A4 the corresponding
pairs should be different. Hence we have ( f; =L kr_zl )
proving the lemma.

s(F?) > 2 follows. The next trivial construction proves the

equality:
Q..o 0

1...1
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If the family of minimal keys of an m x » matrix is Fg
then, by Lemma 3.5,

m
(3:2) n_<_(2).

Conversely, we show that (3.2) implies the existence of the m x n
matrix having Fz as colum of the set of minimal keys. Let each
M contain exactly two zeros. In different colusmns the zeros are
placed differently. The feasibility is ensured by (3.2). All other
elements of the Z-th row will be <. It is easy to check that the
family of minimal keys in this matrix is F:. Hence we obtained

2
that s(F, ) is the minimm m satisfying (3.2):

1-1+v1+§n

s

The application of Lemma 3.5 for k = n-1 gives

s(Fnil) >n. The next construction proves the equality

1 0
o 1
0

If we try to use Lemma 3.5 for k = »n we obtain only
s(F") N
> n. However, the truth is s(Fn ) =n + 1. The construc-

P
tion. 15 0 0 ... 0
T 0
0 0 ...... 1

wiile the proof of s(FZ) >n + 1 can be found in C63.
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Lemma 3.5 gives s(F’é) > n. We have to find "only" an n xn
matrix M in which Fg is the family of minimal keys. We were
able to do that if n = 12r + 1 or n = 12r + 4. The theory of
resolvable Steiner triples is used.

Theorem 3.6. [61]

a(F, )l =2, s(F)") = ‘—I_L'_J_Z_t_f?_”,—] ,
> l
s(FnZ) =, s(an) =n+1,

= # n=12r + 1
s(Fz" ) 2n, S(F.B’) = B - =i & i

Conjecture 3.7.
s(F3n) =n if n2>7.

Let us remark that s(F,%) = 4 The difficulties with k = 3
show that we may expect only asymptotic results for other k's.

Lemma 3.5 gives
k-1
2

e, n < s(Fkn)

1

where ¢, depends on k but not on n. It can be proved that this

is asymptotically sharp:
Theorem 3.8. (L61)
k-1 k-1

c n'? < g(F

where ¢, and c, do not depend on mn.

Let us consider now the analogous problem for dependencies in
place of keys. Due to the results of Section 2 we may consider the
closures. Let L be a closure on an n-element set Q. According to

Theorem 2.10 there is a matrix M in which the closure is exactly
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L. We say that M realizes L. The minimum number of rows of such
matrices M is denoted by s(L).

In fact, we know s(L) for some L. Let
Q if |A] > k&,

Lk"(A) 2
A if |A| < k.

It is easy to see that a matrix M realizes Lkn ifE the
family of minimal keys in M is exactly Fkn. Hence we have

n, _ n
S(Lk ) = S(Fk ).

In what follows we determine s(L) for some closures

constructed from Lkn. If MZ and 1‘42 are m, x n,

matrices, resp., let M, x M, denote the (my = mg)xtn g, +ny)

matrix consisting of rows whose first #, or last n, entries form an

and mg Xn2

arbitrary row of M, or M,, Tesp. Let QJ and 522 denote the set
of colums of M, and ! 5» TESp. M, and M, determine the closures
LJ and L2 on QI and 92, resp. It is easy to see that 4 »+ b

(A=Q U, beq) holds in M, x M, if and only if 4 nQ, > b
holds in M, . The same could be stated for 2 € Q,. This implies
that

La) = LJ(A n QJ) U L2(A n 92)

holds for the closure determined by M, x M,. Following this equa-

tion, we may define the direct product of closures in general:
(L, x L2)(A) =L, (Anq)u L, (4 n 92).

The next theorem determines s(L, x L,J), given s(LJ,‘ and
s(Ly).

Theorem 3.9. (6]

S“‘l x L2) = S”‘l) + s(Lz) - 1
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To prove < we have to give a (s(L1)+s(L2)—1)><(n1 +ny)
matrix realizing L, x Ly using the 8”'1) xny and
s(ly) x ngy matrices M, and M, realizing L, and Ly, rTesp. This
has much less rows than the trivial construction M, x M, The
better construction is given in the Figure. o and B denotes the
last row of M, and the first row of M,, resp. They are repeated
then many times. It is easy to see that the closure determined by
the matrix

Q 7 Q 5
B

M 7 B

a B

o

a

: Mg

a

Figure

is LJ X L2. The proof of the opposite (>) inequality can be found
in 63,

The next problem tries to determine the "most complex'' system
of dependencies in a database with = attributes. Due to the
results of Section 2 we can speak about full families instead of
dependencies. Let T be a full family. The pair (A,B)-€ T . is
called basic if

1) A#B
2) there isno A'c A, A'#A, (A',B)ET
3) there isno B'> B, B' # B, (A,B') €T.

let N() denote the maximum number of basic pairs in a full
family in an n-element set.

First we show a trivial upper estimate on N(). Introduce
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the notation A = {4: (4,B) is a basic pair in T}. Let (4,B) be
a basic pair, and suppose that 4 c ¢ < B, |c| = |4| + 1. It is
easy to see that ¢ ¢ A. Such a ¢ can be obtained from at most

n different sets A4, consequently for at least |A|/n sets ¢
holds ¢ € A. This implies |A| + i 2

Hence we have

nn) < |A] < M - ).

This estimate is considerably improved by Kostochka (C£81):

Theorem 3.10. (21 and C81).

1 1og2 Zoggn 1 Zog3/2n
) (2 +0()) <Wn) < 21 - — ——),
log, e Zog2n 150 vn

I =

It remains an open question what is the proper second term
of N(n).

4. PARTIALLY ORDERED SET OF DATABASES OF A GIVEN SET
OF ATTRIBUTES

By a database we mean here the equivalent models of Section 2,
namely, the full families, the closures, etc. The most convenient
one for our purposes is the model of closures.

We add a natural condition, namely, no attribute is known in
advance. Or by terms of matrices, the matrix has no constant

colum. It is easy to see thatthis is equivalent to the condition.

(4. 1) Lig) = 2.

A database is constantly changing during its life. It also
changes the corresponding closure. A typical change is to delete
the data of some individuals. If 4 + a 1is true then it remains
true after the change.
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This implies
(4.2) LJCA)CiLZCQ) (for all 4 < X)

if Ll and L2 denote the closures before and after the change.
We say that L, is richer than or equal to L2 (LJ 3‘L2) iff
they satisfy (4.2). It is easy to see that this property 1is
transitive, consequently the closures of a fixed n-element set X
form a partially ordered set (poset) for the ordering given in (4.2)
The aim of the present section is to study this poset P.

Now we want to reduce the problem for the families of closed

sets. The following lemma is needed:

Lemma 4.1. L(4) <s equal to the smallest closed set contain-

ing A.

We are able to introduce the equivalent poset of the intersec-
tion semi-lattices satisfying the condition # € Z which is
equivalent to (4.1). Z(L) denotes the family of closed sets in the

closure L.
Proposition 4.2. Ll < L2 iff Z”'l) = Z(L2).

Proof. Suppose that Ll f-LZ and 4 1is closed in Ll'
By definition, LJ(A) = A holds. (4.2) implies 4 = L2(A) and, by
(2.1), we obtain 4 = L2(A).
That is, 4 € 2(L,) and the first part is proved.

Conversely, suppose now Z(Ll) < Z(L,). By Lemma /1 LI(A)
and L, (A) are the smallest closed sets according to L, and L,,
containing 4, resp. . Z(Ll) = Z(L2) implies LE(A) < LI(A)
and this is the definition of Ll.i L2. The proof is complete.

We say that L2 covers L1 and write L2->L1 iff L2 > L,

and there is no L, satisfying L, > L; > L,. The function »r
associating non-negative integers with the elements of a given
poset satisfying the following two conditions is called a rank-

~function:
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(4. 3) r 1is zero for some element,

(4. 4) if L, eovers [

5 4 then r(LZ) = P(L1)+1.

Proposition 4.3. L] < L, iff ZiL,) < Z(Lg) and [Z(LZ)-—Z(LJ)IZI.

Proof. LI<-L2 implies Z(LJ) = Z(LZ) by Proposition 4.2. We
have to see only the second condition. Suppose, indirectly, that
FZ(L2)—Z(L])[ > 2. Chocse the member ¢ € Z(Ly) - Z(L;) so that ¢
is not contained in any other member of Z(Lg) - Z(LI). We prove
that Z(L,) - {¢} is closed under intersection. If
A,B € 2(L,) - {¢} and A N B is not in Z(L,) - {c} then
ANB =C by (2.11). Neither 4 nor B can be in (L) - Z(L,) by
the choice of ¢. However, if 4,B € Z(Ll) then ¢ € Z(Li) by
(2.11), again. This contradicts the choice of (.

The rest of the proof is a trivial consequence of Proposition
4.2 and Theorem 2.6. The proof is complete.

Proposition4.4. »(L) = |Z(L)|-2 <s a rank-function on P.

Proof. L(X) = X and L(g) = ¢ follow by (2.1) and (4.1),
resp. This implies [Z(L)| > 2 for any element of P. (4.3) is
fulfilled. Proposition (4.3) implies (4.4). The proof is complete.

The rank »(P) of P is the maximum value of the rank-function.
It is easy to see that it is
rp) =2" -2
where |X| = n.
For later use we need another.

Proposition 4.5. Let I be a family closed under intersection
and A € 1. 1 - {4} is closed under intersection iff A € extr(Z).

Proof.  Suppose first that 4 € extr(Z). B,C € Z-{4} implies
BNCEZ but BN C can be equal to 4 only when one of them
is equal to A. This contradiction shows that Z - {4} is closed
under intersection.

- 349 -



The other implication will be proved in an indirect way.
Suppose that A € Z-extr(Z). Then there are B and C satisfying
A=BncC, BZA#C, and B,C € 1. Hence we obtain B,C € 2-{4)
and BN C g 2-{4}. Z-{4} 1is not closed under intersection. This
contradiction completes the proof.

Let dega(f.) and degb(L) denote the number of elements of
p covering L and covered by L, respectively. We define the
following functions:

finsk) = max{deg (L) : r(L) = k}
fy (k) = minldeg (L): »(L) = K}
fg(n,k) . maac{degb(f.): r(l) = k}
Falrsk) = min{deg, (L): »(L) = k}

(1<n, 0<kzg" -2)

Theorem 4.6. (C31)
fimk) =& -k - 2

Proof. If »(L) = k, then |Z(L)| = k+2 by Proposition 4.4.
Proposition 4.3 implies that the closures L' covering L satisfy
7(L') = k+3, I(L') © Z(L). The number of possible choices of the
member 2(L') - Z(L) is at most o"-k-2. We construct now a Z(L)
allowing all these choices. Suppose that k + I = (2) + (';) # s

. +(7;) +q¢ where 0 < a < (IZJ ). Then let Z(L) consists of the
empty set, all l-element, 2-element, ..., r-element subsets, any
a pieces of the r+I-element subsets and X. It is easy to see that
this family is closed under intersection. Moreover
7(L) U {4} (A £ I(L)) also has this property. We can choose 4 in
J'-x-2 different ways and all these choices lead to closures
covering L. The proof is complete.

We are not able to determine f2 (n,k) in general, but we have

shown that it can take small values for many k's.
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Theorem 4.7. (L33}

0 iff kR=gs,

folnyk)

folnsk) =1 iff k=gt 1y
for some 0 <a <n,;
fg(n,k) =2 ZIf either

% = gt _gtmamb=1_gn-b-c-1,n-a-b-o-1_

2
for some I <ase, 0<b, atb+ec < n,
l k= 2n_2n—a’-b—1_2n—b—c—1 s
for some 1 < a,ey 0<b, a+b+e < n,
but i g Py (0 < a < n.

We know practically nothing about f3(n,k). The only almost
trivial statement is that

Fam.k) = k+2  Zff 0 < k < 2n-1.
The construction of the corresponding Z(L) consists of one-
-element sets and a chain. It is also easy to see that for
k> 2n-1 fz(n,k) < k+2, that is, there is always a member of Z(L)

which cannot be omitted to preserve the property that it is closed
under intersection.

Theorem 4.8. (C31)
flogg(k+2)1 2 k)

< [logy(k+1) -2+ (number of non-zero digits in the binary form
of (k+2)).

Falnsk) = Tlog,y (k#1)1 <f n > (k+2).

We show where the expression ongz(kﬂ)? comes from. We

have an intersection semi-lattice Z of k+2 members, containing
£. By Proposition 4.5, only the members of extr(2)-{Q} can be
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omitted if we want to obtain another intersection semilattice.

Hence we have

(4. 5) Fainsk) = min |extr(2)-{7}| - 1.
gel
|Z] = k+2

By Lemma 2.7, any member of Z is an intersection of some
members of extr(Z)-{Q}. The number of such intersections 1is

2gextr(2)l“1, Hence we have

(4.6) k+2 = |Z] < 2Iextr(2)|—1 .

Using (4.5) we obtain
Zogg(k+2) :_f4(n,k),

providing that ¢ £ extr(Z). If ¢ ¢ extr(Z) then all the inter-
sections containing ¢ are empty, therefore we have
23 = |2 lextr(2)|-2 . z

+2 = |I| < 12 in place of (4.6). This leads to
Zogg(k+1) < fg(n,k).

Added in proof. In the final version of [3] Theorem 4.7 is

considerably improved, giving an upper estimate on fé(n,k) g B

n—1
+

k>2 2.
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