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PROBABILISTIC INEQUALITIES FROM EXTREMAL
GRAPH RESULTS (A SURVEY)

G. 0. H. KATONA

Mathematical Institute of the Hungarian Academy of Sciences,
H-1053 Budapest, Hungary

The aim of the paper is to survey the probabilistic inequalities proved by the method
based on extremal combinatorial theorems.

1. Introduction

To illustrate the main idea of the field surveyed in the present paper, let us
sketch the proof of the following theorem:

Theorem 1. [S] If & and n are independent identically distributed random variables
taking values from a Hilbert-space X, then

P([[¢+n][2x)=4P(||¢]| = x)?
where || || is the norm of X.

Proof.

1. We start with stating the following special case of the Turdn theorem [17]:
If a simple graph with n vertices contains no empty triangle (=for any 3 differ-

: : n—1\?
ent vertices there is at least one edge) then the graph has at least [(T) J

edges.

2. We need the following simple statement from geometry:

If a,, a;, a3 € X are of norm >x (>0) then [|a;+a,||=x holds for a pair 1<i
<j<3.

The three vectors span a 3-dimensional Eucl‘dean space. It is easy to see that
the angle between a; and a; is <120° for some 1<i<j<3. Now it is easy to-
verify in the plane determined by them that [|ai+a,||=x.
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3. The following trivial inequality will be used:
P([E+n]|=x)=P(l|[¢+n][=x, [|g]|=x, ||n]|=x). o))
“Suppose for a while that & (and #) can have only m values, with equal probabilities:

1
P(§=a,-)=—n-; (I<i<m). Let a; be ordered in the following way: || p -

Nadll 2%, ||@ass]| <, ..., ||a.|| <x. Consider the following graph G. Let ay, ..., a,
be the vertices of G. Two vertices of G are connected with an edge iff the norm of
their sum is >x. Then

P(l[¢+nil>x, [[€]|=x, [|n]i>x)
=m™? (the number of pairs a,, a, (1<i,j <n)satisfying ||ai+aj[| =x) (2)
=n"?(2(the number of edges of G)+n)

holds since ||a,+a)||=2||a;|| > 2x > x.
The graph G has no empty triangle by Section 2 of the proof. Applying the
Turdn theorem for G, we obtain a lower estimate for (2):

R )0

‘Theorem 1 is proved for this special case.

4. To prove the general case two approaches offer themselves:

a) Having an arbitrary distribution for ¢ let us approximate it with the discrete
distributions used in Section 3. This method was applied in [5] but the roughness
-of the elaboration led to unnecessary conditions for the distribution of &. Later
‘Sidorenko [16] worked out this method properly. We do not treat it here in detail.

b) The other method can be found in [6] and [7]. Suppose that the distribution
of {'is arbitrary. Let the vertex-set X of G consist of the vectors satisfying ||al| = x.
Two vertices, a and b are connected if ||a+b||>x. G is, in general, an infinite
graph and it contains no empty triangle. The right-hand side of (1) is the measure,
in a certain sense, of the set of edges of G. Namely, take the direct product of X
with itself. Any edge (a,5) means two elements in the direct product X?2: the
pairs (a, b) and (b, a). The set of edges is consequently a symmetric set in X2,
The measure P on X determines a product measure on X2 The right-hand side
of (1) is the measure of the above symmetric set according to this product measure.
We have to give a good lower estimate of the measure of this set by terms of
P(||¢||>x) (the measure of X) under the condition that G contains no empty
triangle.
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If X has finitely many, n elements, let the measure of each element be equal to 1.
Then the Turdn theorem says that the measure of the edge-set (=2 (the number
of unoriented edges)+#) is <4n?, that is, the half of the measure of X2. We may
expect the same statement for the general case. We will call the generalization of a
discrete combinatorial statement for the product measures its “continuous ver-
sion.” Later we will precisely show that there is a transition (under very general
condition) for continuous versions. Accepting the veracity of this statement, Theo-
rem 1 follows easily by (1). [0

Extremal theorem Extremal theorem
in Combinatorics in Geomeiry
Continuous
version
Probabilistic
inequality
Fic. 1.

The above sketch of the proof can be illustrated with the diagram in Fig. 1.
The aim of the present paper is to survey the results proved by this method.

2. Continuous versions of extremal theorems
in combinatorics

The next lemma shows the connection between the continuous and finite
graphs. Before stating it, let us give some definitions. Let M =(X,0,u) be a
measure space, where o is a g-algebra on X and g is a finite measure defined on o.
M? is the product of M with itself, that is, M?=(X 2, 01, 42), Where g, is induced
by the products of the members of ¢ and g, is the product measure. If Ec X?
is measurable, that is, E € o, then G=(X, E) is called a (directed) graph. Let ¥
be a subset of X, then Gy denotes the graph induced by Yin G, that is, Gy=(Y, Ey)
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where

Ey={(a,b):a,beY, (a, b)eE}.

M or p is atomless if for any A€o, u(4)>0 thereis a Bc 4, Be o satisfying
O<u(B)<pu(d).

Lemma 1. Let G=(X, E) be a graph on the atomless measure space M=(X, o, p).
Suppose that

|Ey|>c|Y|®
holds for any Y satisfying |Y|>no. Then

1a(E)=cp(X)?.

Proof. Introduce the notation M"=(X", g,, u,) generalizing the case n=2. On the
other hand, define

. — 1 lf (ya' yb)EE,
H@as b; 914 - y")_{O otherwise,

(1<a,b<n, integers; (y,,...,y,)eX").

This function is obviously measurable since E is measurable, Take the integral
x_[l(a. by, ..o, ya)dp,
=125y, ) dpy

= [ ldp=py(E)u(X)"? 3)

Ex Xn—
when a#b. If a=b we use
XLI(“’ ;Y15 s Ya) iy
=x[1(1, 13 y1s.ees ya)dp,

=u({y: (v, e EPuX)~*. 4
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Summing up (3) and (4) for all pairs 1<a, b<n, we obtain

I( Z I(alb;ylﬁ""yn))dﬂn

X" 1<a,bsn
=n(n—=1D)p(E)u(X)" 2+ np({y: (v, y)e EP u(X)"1. (%)

Observe that 3 I(a, b; y, ..., y,) is nothing else but |Egy, ...ym» that is,
1<a,bsn

the number of edges of the subgraph induced by {yl, ...,y,,} if y4, ..., y, are all
distinct. This latter condition holds with the exception of a set of measure 0.
This is heuristically obvious and can be rigorously proved (see e.g. [7]). Using the
assumption |Ey,, . |>cn?, (n>ny),

cnz,u(X)"S _I.( Z I(a) b;yla ...,y,.))d,u,, (6)

X" 1<a,b<n

(5) and (6) imply

e T pa(B) 1 u(ly: (v, y)€E})

nou(X)* n 1(X)

If n— oo this leads to u,(E)>cu(X)?. 0O

Let & be an arbitrary class of graphs G=(X, E) determined on the measure space
M=(X, 0, ). % is called hereditary if Ge & implies Gy € 4 for any measurable
Yc X. Then

S W= il s

can be considered as the continuous analogue of the “minimum number” of
edges in ¢. Analogously, let us define

|E

H(n,§)=min;2, @)

where the minimum runs over all members of ¢ having exactly n vertices. It is
proved in [7] that (7) has a limit if #— 0. The inequality

H(M,%)>limH(n,¥%)
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is an easy consequence of Lemma 1 if M is atomless. However, this inequality
holds for measures with atoms supposing that ¢ has certain properties.

Let G=({x, xy, ...}, E) be a graph, and define G =({x', x", x,, ...}, E¥), where
E”* consists of the pairs obtained by substituting x either by x* or x”’ in any way
in any pair which is in E. In other words, we form two copies of x in all edges of G.
9 is called doublable iff G € 4 implies G* € % for any vertex x of G.

Theorem 2. [7] Suppose that 4 is a hereditary class of graphs on the measure
space M,

H(M,¥%)=limH (n, %) (8)
if M is atomless or % is doublable.

For our applications we need this direction of the inequality. One may guess,
however, that equality holds in (8) under some reasonable conditions. Indeed,
if ¢ is doublable then (8) holds with equality (see [7]).

However, there is another class of s, for which the equality in (8) is proved.
@ is called strongly hereditary if (') % is hereditary, (i) adding a new edge to a
member of ¥, the new graph is also in %, (iii) adding a new vertex to a member of
@ (until a certain fixed cardinality) with all the possible edges containing x, the
new graph is also in 4. It is proved in [11] that to any strongly hereditary class %
there is another class %, of graphs that a graph H has all its induced subgraphs
from % iff the complement H contains no subgraph from %,. %, is called in the
literature the class of forbidden graphs. The equality in (8) for strongly hereditary
graphs is an easy consequence of a theorem of Brown, Erdés and Simonovits
[3]. (The conditions of this theorem and of Theorem 2 are stated incorrectly in
1)

The above results are formulated for directed graphs but, in fact, we need them
for undirected graphs. The connection is obvious: each edge (a, b) (a#b) of an
undirected graph is replaced by two oppositely directed edges (a, b), (b, a). Let us
remark that Bollobds [2] independently proved (8) with equality for strongly
hereditary classes of undirected graphs on an atomless measure space. His proof
is easier for this special case.

Let us see how we can obtain the “continuous version™ of the Turdn theorem
by Theorem 2. Let 4 be the class of all graphs G=(X, E) such that () (a, b)e Eiff
(b,a)e E, (ii) (a,a)€ E for all ae X, (iii) if a, b, ¢ are d.flerent vertices (eX)
then at least one of (a, b), (b, ¢), (c, a) is in E. By the usual Turdn theorem, the

n—1)>
graph G=\X, E), |X|=n, Ge ¥ must contain at least [(‘4)—] pairs of edges
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(a, b), (b, a) (a#b). Hence, by property (ii), the number of edges is

— 2
|E|22[(n 41) _l+n>%nz.

This implies lim H(n, %) >4 and (8) implies H(M, ¥)=4.
The proof of Theorem 1 can be completed if this inequality is used for measure
space induced by the set {||¢||>x} in the probability measure P, and for the set

E={(, n): ||&+n]|=x}

P(||£+n]|>x)> 1

P([Ell=0*" 2

is a consequence of H(M, 49)=1.

Let us remark that [7] states the results on the ‘“continuous versions” for
g-graphs, however the equality in (8) is known for strongly hereditary graphs only
when g=2. [7] also contains some results for the case when M has atoms and ¥
is not doublable. Finally, [8] gives the “continuous versions” of a completely
different class of combinatorial extremal problems: a transformation T of g-graphs
to h-graphs is given; the number of vertices and g-edges is fixed, the number of
edges of the transformed graph has to be minimized.

3. Two random variables

One can see with an easy construction that Theorem 1 is sharp in the following
sense. For any p (0<p<1) and any x>0 there is a distribution of £ (and #) in a
more than two-dimensional space such that P(||¢ +7||>x)=4p? and p= P(||¢|| = x).
In other words, P(||£+7||>x) has no better lower estimate in terms of P(||¢||=x)
(If the dimension is at least 2. In one-dimension there is a better estimate.) The
next theorem investigates the same problem if P(||¢||>ex) is used in place of

P(||2]]=)-

Theorem 3. ([16] and [9] independently) Let X be an infinite-dimensional Hilbert-
space, & and n be X-valued independent, identically distributed random variables,
then the best possible functions f in the inequality P(||&+n||=x)=f(P(||¢||=cx))
are the following ones:

- if p=1,
—3 g
/() {2p—%p2 otherwise, e Fxvegoo
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— 3 if p=%,
f(p)_{ZP(l"P) otherwise, when 3<c<3

f(p)={—%+2p—p2 if p>1,

J5
; when ¥ <c<
P’ otherwise, 2 RER]

S@=1p,  when 1<c<V}

_ 1, \/k—-l \/k—z
f(p)—mp , when Z(T_"Z—)S.C< E(T_H—:i) (4<k< o)

f(p)=0, when 0<c<——

1
V2

Each row of the theorem can be proved following the proof of Theorem 1,
that is, the scheme given in Fig. 1. We show a new phenomenon of the proof in

the case \/5/2<c<3/2.

We start with a very brief sketch of the proof. Fix the real number x>0 and
put X,={a:aeX, ”a”<‘é—5 x}, X,=X—X,. The graph G=(X, E) is defined
by E={(a,d): |la+b||>x}. The following simple geometric statement is truc.
If ay, a,, a3 are vectors in a Hilbert-space and l|a,]| ;”g§, ||a2]| 2‘—/25 then
there is a pair i3/ satisfying ”a,+aj” 2 1. Hence the graph G has no empty triangle
with at least two vertices in X,. If G is finite and | X |=n,, |X>|=n, then according
to Lemma 2 of [6] the number of edges is at least

m [”Z%WJJF(L@:—Z nl)/zj) +(r(nz—2nl)/21)

n;
2

the statement for ;sc<%.

if n,>n, and ( ) otherwise. The “continuous version” of this lemma proves

The first novelty here is that we cannot disregard the small (| ]|<Yf25 x)
vectors, like in the case of Theorem 1. This causes the trouble with two classes,
$0 new types of extremal graph results are needed. Finally, we need a generalization
of Theorem 2 for two (or more) classes. This generalization is straightforward
and can be found in [7] (Theorem 3).

The proof of this row and any other row is valid for any (lower-dimensional)
Hilbert-space. But the estimates are not the best, in general. The constructions
do not work.
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In the d-dimensional space the necessary geometric problems are unsolved
(even for d=3). Namely, the quantities

8(2, k, X)= infmax {||a;+aj||},

1<i<jsk

where the infimum is taken over all vectors aj, ..., a € X satisfying ||a,||>1
(1<i<k), are unknown in general. Thus the “sharp” estimates analogous to
Theorem 3 for d-dimension involve the constants & (2, k, X). Sidorenko [16]
stated Theorem 3 in such a generalized form. He has sharp estimates for any
linear normed space X, supposing that J(2,k, X) are known. However, the
method can be extended for additive groups X having an invariant metric (see
Theorem 5 of [6]).

There is another generalization of Theorem 1 in [16]. The best lower estimates
of

P(||a&+bn||=x)

in terms of P(||¢||> cx) are determined, where a and b are fixed reals, & and 7 are
independent, identically distributed real random variables. Another theorem
(Theorem 22 of [16]) deals with the case X'=/,.

We think that our method is helpful in a more general context. Let f; and f,
be a one-variable and a two-variable function, respectively. A lower estimate is
needed for P(f3(&, n)=x) in terms P(f,(&)=cx). Examples are f,(&)=|¢|, f2=¢n,
or f;(&) is the vector of the coordinates of &.

4. More random variables

Probabilists claim that the real task of probability theory is to say something
about a large set of random variables. Thus, they would need a generalization of
Theorem 3 for ||&,+¢&;+...+¢)| rather than for ||&,+&,||- Let us try the case
1=3.

If we copy the proof of Theorem 1, the geometry works: ||a,||>1, ||a.||>1,
|las]|=1, ||as||=1 implies that there are 3 distinct ones of them so that ||a,+a,
+a,||>1. However, there is a little trouble with the combinatorics. We need the
minimum number Tgn, 4, 3) of 3-element subset of an n-element set under the
condition that any 4-element subset contains one of them. It is conjectured that

4
T(n,4, 3)1( ; )—'3 . The proof of this conjecture would imply

P(| 1+§z+€3]|2x)>§P(II§1II>x)3 )
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for any 3 independent, identically distributed random variables in a Hilbert-space
(see [12]). The first problem is that even the order of magnitude of this estimate
is not correct. It is proved in [10] that

P(|[¢+82+E&5|[2x) = 3P7(|E, || 2 x) (1= P (||| = %)) (10)

holds if P(||¢,||>x)<}. (10) is much stronger for small values of P(||¢.]|= %)
than (9). However, the constant 1 is not the best possible.

The reason why the situation here is different from the case /=2 is that the
small vectors also play role. This problem is circumvented if we consider P(Hé1

+fz+és”: ”fl“, ”fz”, ”f;”}x) Indeed,
PG+ &+&l. €] 2], &) 202 2P| x)° (11)

is proved for the independent, identically distributed two-dimensional random
variables. In fact (11) is proved in [10] only for one-dimensional variables and
with 0.44444. Since then Bereznai and Varecza [1] proved that (37) of [10] tends
to g and Ha Le Anh [4] proved Lemmas 2.2 and 2.4 for two-dimensions. Ha Le
Anh also gave counterexamples for those lemmas if the dimension is higher.
So the method of [10] does not work for higher dimensions. However, we still
conjecture

P(ll¢,+&2+¢,

| 11¢:

| 5

&l lesll >0 P (e |2 0° (12)

for any Hilbert-space.

Sidorenko [16, 15] found similar results for the case when the lower estimate
uses P(||¢,]| >cx).

Finally, let us mention another result of Sidorenko [16]. He gives lower esti-
mates of

P(  max sx“éh oty || 2%)

lsf|<,.‘<i'

and

P(  min ’”5,,+...+<§,q“>x)

1sip<..<igs

in terms of P(||&,||>x), where g also runs in the min and max.
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5. Open problems

Although the papers in this field contain many open questions (actually, they
contain more open questions than results) we would like to emphasize some of
them.

1. Do we always have equality in (8)? It is known that if % is doublable and if
g=2, % is strongly hereditary and M is atomless. So, it is unknown for some
cases, even if g=2, and very little is known for g > 2.

2. It is easy to see that if |Ey|>c|Y|? is replaced by |Ey|<c|Y|* in Lemma 1
then u,(E)<cu(X)* can be concluded. Suppose now |Ey|<c|Y| (or c|Y]* (0<a
<2)), only. We conjecture that (under some measurability condition) the Hausdorff
dimension of E is at most 1 (&) and its I-dimensional (x-dimensional) outer
Hausdorff-measure is at most #.

(A square is a set ScX? of form S=A x B, where A, Be ¢ and u(A4)=u(B).
#(A)=p(B) is the size p(S) of S. If Ec X2 then A(E, «, p) is defined by

A‘(Ev o, p)=lnf z p(si)av
i=1

where Ec (] S; and p(S)<p. A(E,«, p) is a non-decreasing function of p,
i=1

therefore the limit

A(E,a)=1lim A(E, a, p)

p—0

exists. This is called the a-dimensional outer Hausdorff-measure of E. It is easy
to see that there is an &, such that A(E, «)=co if a<a, and AME, 0)=0 if a>ay.
This aq is the Hausdor ff-dimension of E.)

3. Our estimates determine the “best” function f of the distribution function of
[|£]] at a given place (cx). Another problem is to find the best operator f, where
P(||¢]|=x) is considered to be a function of x.

A modest result in this direction can be found in [6]:

(p1+p2)*)2  if P1<PD3,
P(|E+n||=x)= .
¢+l {21111)2 if p;2p,,

where p,=P(1/y2<|[¢]| <(1+/3)/2) and p,=P(||¢||=(1+/3)/2).
4. Determine the values 8(/, k, X)=inf max {llai, + ... +a||}, where
1siy<..<ij<k

the infimum is taken over all vectors ay, ..., g, e X satisfying ||a,||>1 (1<i<k).
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A survey of some results can be found in [16, 15] and for the 3-dimensional X
in [6].
5. Prove (12).

A final remark. Most of the work in this field is done by S‘dorenko and by the
author. I know the results of the latter one better so this survey is based on them.
Consequently, the interested reader should carefully study the quoted and forth-
coming papers of Sidorenko.
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