EXTREME MORE-PART SPERNER FAMILIES

G.O.H. Katona Budapest, VR Ungarn

Abstract. Let $X_1 \vee \ldots \vee X_M$ be a partition of X. The (i_1,\ldots,i_M) th entry of the M-dimensional profile-matrix $P(\mathcal{F})$ of the family $\mathcal{F}\subseteq 2^X$ is the number of members containing exactly i_j elements from X_j . An M-part Sperner family contains no two members $P_1 \subset P_2$ being equal in exactly M-1 parts X_j . Consider the profile-matrices of all possible M-Sperner families. The paper determines the extreme ones of these profile-matrices and gives a survey of analogous statements and consequences.

<u>Zusammenfassumg.</u> Sei $X_1 \cup \ldots \cup X_M$ eine Partition von X. Das (i_1,\ldots,i_M) -te Element der M-dimensionalen Profilmatrix $P(\mathcal{F})$ der Familie $\mathcal{F}\subseteq 2^X$ ist die Anzahl der Mitglieder, die genau i_j Elemente aus X_j enthalten. Eine M-part-Spernerfamilie enthält keine zwei Mitglieder $F_1\subset P_2$, die auf genau M-1 Teilen X_j gleich sind. Wir betrachten die Profilmatrizen aller möglichen M-part-Spernerfamilien. Diese Arbeit bestimmt die extremen dieser Profilmatrizen und gibt einen Überblick über analoge Resultate und Folgerungen.

1. Introduction

Let X be a finite set of n elements and F_1, \ldots, F_m be distinct subsets of X such that $F_1 \not\subset F_j$ (1 \dagger J). The classical theorem of Sperner [16] states that

$$\mathbf{n} \leq \binom{n}{2} \qquad (1)$$

Kleitman [14] and the author [12] independently discovered that considering any partition $X_1 \cup X_2 = X$ the weaker condition

is sufficient to have (1). As it is shown in [12], this is not true for 3 parts.

In general, the family $\mathcal{F}^{\leq 2^X}$ is called an M-part Sperner family with respect to the partition $X = X_1 V \dots V X_M$ iff

$$F_1, F_2 \in \mathcal{F}, F_1 \subset F_2, F_2 - F_1 \subseteq X_1$$
 for some $i(1 \le i \le M)$ (2) $imply F_1 = F_2$

Griggs [8] and Sali [15] found upper estimates for the size of an M-part Sperner family \mathcal{F} and recently Griggs, Odlyzko, Shaerer [11] and Füredi [7] proved asymptotically good ones. [4] gives the exact maximum of $|\mathcal{F}|$ for the case M = 3, $|X_3| = 1$.

On the other hand, [13] and [10] give more complicated additional conditions which, completing (2), ensure the validity of (1).

After this brief history of the M-part Sperner families let us introduce another branch of the Sperner theory. If $\mathbf{f} \subseteq 2^{\mathbb{N}}$ is a family then let \mathbf{p}_1 ($0 \le i \le n$) denote the number of ielement members of \mathbf{f} . Take the vectors $(\mathbf{p}_0, \mathbf{p}_1, \dots, \mathbf{p}_n) \notin \mathbb{R}^{n+1}$ for all Sperner (= 1-Sperner) families. It is proved in [1] the extreme points of the convex hull of this set in \mathbb{R}^{n+1} are $(0, \dots, 0)$ and $(0, \dots, 0, \binom{n}{1}, 0, \dots, 0)$ ($0 \le i \le n$). In [1], [2] and [6] the analogous extreme points are determined for some other classes of families.

For the combination of the above two branches of the theory we have to define the <u>profile-matrix</u> $P(\mathcal{F})$ of the family \mathcal{F} given on $X = X_1 \vee \ldots \vee X_M (X_1 \cap X_j = 0, i \neq j; |X_i| = n_i)$. It is an M-dimensional matrix with the entries

$$P_{i_1,i_2,...,i_M}(\mathcal{F}) = |\{F: F\in\mathcal{F}, |F\cap X_j| = i_j (1 \le j \le M)\}|.$$

P(F) can be considered as a point of $R^{(n_1+1)}...(n_M+1)$. Let S^M denote the class of all M-part Sperner families (with respect to $X_1 \cup ... \cup X_M$). In general, if A_X is a class of some families F of subsets of X ($A \subseteq 2^X$) then $\mu(A)$ denotes the set of points in $R^{(n_1+1)}...(n_M+1)$ corresponding to all profile-matrices P(F) ($F \in A$). $\langle \mu(A) \rangle$ is its convex hull and E(A) denotes the set of extreme points of $\langle \mu(A) \rangle$.

The aim of the present talk is to survey the results of [3], [4] and [5] on this subject.

2. The extreme profile-matrices of the class of M-part Spermer families

A set $I \subseteq \{0, \dots, n_1\}X \dots X\{0, \dots, n_M\}$ is called a <u>partial transversal</u> if $(i_1, \dots, i_j, \dots, i_M) \in I$, $(i_1, \dots, i_j, \dots, i_M) \in I$ imply $i_j = i_j$, that is, if I contains no two elements in the same "row". On the other hand, I is called an <u>antichain</u> if (i_1, \dots, i_M) , $(j_1, \dots, j_M) \in I$ and $i_1 \subseteq j_1, \dots, i_M \subseteq j_M$ imply $i_1 = j_1, \dots, i_M = j_M$. The M-dimensional matrix A(I) is defined by the entries $\binom{n_1}{i_1} \dots \binom{n_M}{i_M} \text{ if } (i_1, \dots, i_M) \in I$

 $\mathbf{a}_{\mathbf{i}_{1},...,\mathbf{i}_{\underline{\mathbf{M}}}}(\mathbf{I}) = \begin{cases} \binom{n_{1}}{\mathbf{i}_{1}}...\binom{n_{\underline{\mathbf{M}}}}{\mathbf{i}_{\underline{\mathbf{M}}}} & \text{if } (\mathbf{i}_{1},...,\mathbf{i}_{\underline{\mathbf{M}}}) \in \mathbf{I} \\ 0 & \text{otherwise} \end{cases}$

After these definitions we are able to present our main theorems.

Theorem 1 [3]. §(SM) consists of the matrices A(I) where I is a partial transversal.

Theorem 2 [3]. &(S) consists of the matrices A(I) where I is an antichain.

3. Consequences

The most important question here is to determine max | 3 | over the M-part Sperner families. As

$$|\mathcal{F}| = \sum_{i_1=0}^{n_1} \cdots \sum_{i_M=0}^{n_M} p_{i_1,\dots,i_M}$$
 is a

linear function of the entries of $P(\mathcal{F})$, $|\mathcal{F}|$ attains its maximum at one of the extreme points of $\langle \mathcal{M}(S^k) \rangle$. Thus Theorem 1 implies the next

Theorem 3 [11]. There is an $\mathcal{F} \in S^M$ such that $|\mathcal{F}| = \max \{|\mathcal{F}'|: \mathcal{F} \in S^M \}$ and $\mathcal{F} \in \mathcal{F}$ implies that all sets $G \subseteq X$ satisfying $|\mathcal{F} \cap X_j| = |G \cap X_j|$ for all j (1 $\leq j \leq M$) belong to \mathcal{F} .

At the first glance it might seem that this solves the problem of finding max | F|. However, this is not true because it is hard to compare the sum of entries of the possible A(I)'s. The asymptotic results [11] and [7] are based on different

methods. But the case M = 2 is easy enough. Then a simple transformation shows that A(I) is maximum if the large $\binom{n_1}{1}$ are paired with large $\binom{n_2}{12}$ and the small ones with each other: $\sum_{i} \binom{n_1}{1} \binom{n_2}{2} + \binom{n_2}{2} - i \binom{n_1 + n_2}{2} \binom{n_1 + n_2}{2} \binom{n}{2}.$

This is an old result ([14],[12]). However, all 2-part Sperner families maximizing $|\mathcal{F}|$ were determined only recently in [5]. To obtain them it is necessary to determine first all the extreme points (given in Theorem 1, M = 2) maximizing the sum of the entries. The profile-matrices of all other optimal \mathcal{F} can be convex linear combinations of the above extreme points. It is shown that the latter ones do not exist.

Although Theorem 3 does not help to determine max $|\mathcal{F}|$ in general, it leads to an exact solution in the very special case M = 3, $|X_3| = 1$ [4].

Let us show now an application of Theorem 2. Let $X_1 \cup X_2$ be a partition of X and suppose that \mathcal{F} is a Sperner family and its members meet X_1 in at least 1 elements. Griggs [9] proved the inequality

$$\sum_{\mathbf{F} \in \mathcal{F}} \frac{1}{\binom{n-1}{|\mathbf{F}|-1}} \frac{\binom{|\mathbf{F} \wedge \mathbf{X}_1|}{1}}{\binom{|\mathbf{X}_1|}{1}} \leq 1 \tag{3}$$

for such families \mathcal{F} . The left hand side is, in fact a linear combination of the quantities p_{ij} $(1 \le i \le n_1, 0 \le j \le n_2)$. Therefore it is enough to prove (3) for the extreme points of Theorem 2 (M = 2):

$$\sum_{(i,j)\notin I} \binom{n}{i} \binom{n}{j} \frac{1}{\binom{n-1}{i+j-1}} \frac{\binom{i}{1}}{\binom{n}{1}} \leq_1$$

for any antichain $I \subset \{1, \ldots, n_1\} \times \{0, \ldots, n_2\}$. Observe that this inequality involves no families. It speaks about binomial coefficients and antichains, only. It equivalent and more pleasent form is

$$\sum_{\substack{(i,j)\in I'\\ (i+j)}} \frac{\binom{m_1}{i}\binom{m_2}{m_2}}{\binom{m_1+m_2}{i+j}} \le 1$$

(I' is an antichain in $\{0,\ldots,m_1\}$ x $\{0,\ldots,m_2\}$ $m_1=n_1-1$, $m_2=n_2$). Its prove can be found in [3].

As a final remark, let us observe that Theorems 1 and 2 can be formulated in the following way. The extreme points of a class of families satisfying a certain condition in $X_1 \cup \dots \cup X_M$ are the matrices A(I) where I satisfies "the same" condition in $\{0,\dots,n_1\}X\dots X\{0,\dots,n_M\}$. This law is valid in a more general context (see $\{3\}$).

References

- [1] Erdös, P.L., Frankl, P. and Katona, G.O.H.: Intersecting Sperner families and their convex hulls, Combinatorica 4 (1984) 21-34.
- [2] Erdös, P.L., Frankl, P. and Katona, G.O.H.: Extremal hypergraph problems and convex hulls (to appear in Combinatorica).
- [3] Erdös, P.L. and Katona, G.O.H.: Convex hulls of more-part Sperner families (submitted to Graphs and Combinatorics).
- [4] Erdös, P.L. and Katona, G.O.H.: An exact 3-part Sperner theorem (submitted to Studia Sci. Math. Hungar.).
- [5] Erdös, P.L. and Katona, G.O.H.: The extremal 2-part Sperner families (in preparation).
- [6] Frankl, P. and Katona G.O.H.: Polytopes determined by hypergraph classes (to appear in European J. of Combinatorics).
- [7] Füredi, Z.: A Ramsey-Sperner theorem, (to appear in Graphs and Combinatorics 1 (1985)).
- [8] Griggs, J.R.: The Littlewood-Offord problem: tightest packing and an M-part Sperner theorem, European J. Combinatorics 1 (1980) 225-234.
- [9] Griggs, J.R.: Collection of subsets with Sperner property, Trans. Amer. Math. Soc. 269 (1982) 575-591.
- 10 Griggs, J.R. and Kleitman, D.J.: A three-part Sperner theorem, Discrete Math. 17 (1977) 281-289.
- [11] Griggs, J.R., Odlyzko, A.M. and Shearer, J.B.: K-color Sperner theorems, preprint.

- [12] Katona, G.O.H.: On a conjecture of Erdős and a stronger form of Sperner's theorem, Studia Sci. Math. Hungar. 1 (1966) 59-63.
- [13] Katona, G.O.H.: A three-part Sperner theorem, Studia Sci. Math. Hungar. 8 (1973) 379-390.
- [14] Kleitman, D.J.: On a lemma of Littlewood and Offord and the distribution of certain sums, Math. Z. 90 (1965) 251-259.
- [15] Sali, A.: Stronger form of an M-part Sperner theorem, European J. of Combinatorics 4 (1983) 179-183.
- [16] Sperner, E.: Ein Satz über Untermengen einer endlichen Menge, Math. Z. 27 (1928) 544-548.