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Let # be a family of subsets of a finite set of 1 elements. The vector (f,, ..., f,) is called the
profile of & where f; denotes the number of i-element subsets in . Take the set of profiles of all
families & satisfying F,¢F, and FyN\F,=0 for all F,, F,€%. It is proved that the extreme
points of this set in R"** have at most two non-zero components.

1. Definitions, results

1.1. Convex hull of the Sperner families. Let X be a finite set of »n elements and &
be a family of its subsets (¥ c2¥). Then %, denotes the subfamily of the k-element
subsets in F: F={A4: AcF, |A|=k}. Its size |#,| is denoted by f;. The vector
(fos f1s --+» f,) in the (n+1)-dimensional Euclidean space R"*! is called the profile
of #.

If « is a finite set in R"*2, the convex hull (a) of « is the set of all convex linear
combinations of the elements of «. We say that eca is an extreme point of « iff
e is not a convex linear combination of elements of « different from e. It is easy to
see that (&) is equal to the set of all convex linear combinations of its extreme points.
That is, the determination of the convex hull of a set is equivalent to finding its
extreme points.

F is a Sperner-family iff it contains no members 4, B with 4B (Sperner-
property). Consider the set o of all profiles of the Sperner-families. The elements of o
can be perfectly characterized by a sequence of complicated inequalities (see [2], [3]).
Sometimes it might be more useful to determine a small convex set containing o.
The best one of them is, of course, {¢). We find {¢) determining its extreme points
(the extreme points of {a) are briefly called extreme points of «):

Theorem 1. The extreme points of the set ¢ of the profiles of the Sperner-families are
€)) z=1(0,0,...,0)

By = [0,0, 0, ["_],o, ‘..,0] ©0=i=n).
ey

AMS subject classification (1980): 05 C 35; 05 C 65, 52 A 20
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Proof. We will show that this is nothing else but the well-known LYM-inequality
(81, 191, [12]):

@ P

We have to prove two statements:
(a) any element (fy, ..., f,) is a convex combination of vectors of form (1),
(b) these latter ones are extreme points.
(a) means, by definition, that (fy, ..., f) is a linear combination of z and v,
with some non-negative coefficients 1, 4y, 4,, ..., 4, satisfying

A+ FA=1.
i=0

The choice 4; :f,/(i:] (O=i=n), 1=1— é’ﬁ /[':] satisfies these conditions by (2).
i=0

Part (b) is also easy. z is an extreme point since all other elements of ¢ have non-nega-
tive coordinates with at least one positive one. Their convex combination cannot be

z. On the other hand, if & is a Sperner-family then !%Ig[';) holds with equality
only if # consists of all i-element subsets. Therefore, if u€o then its /-th coordinate is
= [’:] with equality only for v;. Hence v; is an extreme point. [

1.2. Intersecting Sperner-families. A family is an intersecting family if A, BEF
implies ANB#=P. A classical theorem concerning intersecting families is the

Erdés—Ko—Rado theorem [4]. If F is an intersecting family of k-element (k=n/2)
subsets of an n-element set then

max |[# | = [’;:i] |

Let p denote the set of profiles of the intersecting Sperner-families. There
exist some inequalities in the literature trying to give good necessary conditions for
the elements of u. First Bollobds [1] proved

® s [_J:ﬂ %1
i

later Greene, Katona and Kleitman [5] found

@ 1gén/z[ii':il]+nm<21'§n{f] e
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for any (fo, f1» -..- /). Both inequalities are far from describing the convex hull of
. The main aim of the present papei is to determine the convex hull or in other words
the extreme points of pu.

Theorem 2. The extreme points of the set u of the profiles of intersecting Sperner
families have at most two positive coordinates, more precisely, the extreme points are

z=(0,0,...,0)
n o
v; = 10,0, ..., i , 0] (/2 <j = n),
Oy T 0}

g 25 o,o,...,[’f‘l ,...,o] (1=i=n/2),

i—1
S (RN SREVEIE
wi; = 10,0, ..., (’1‘:11 {"J’l]o] (I=i=nf2, i+j=>n).
BE it T 7 .-

There is another way to describe the convex hull {u). Namely, we could list
the hyperplanes bordering it. Some of them are trivial because they separate the posi-
tive orthant from the other ones, only. The next theorem presents a set of inequali-
ties. The inequalities representing the non-trivial bordering hyperplanes are among
them. Sometimes they are more applicable than the form given in Theorem 2. Any-
way, we will deduce Theorem 2 from this theorem:

Theorem 3.
Ji iy Jprioes
5 11—y, _ii1) ——< —d =1
( ) léignl‘.’.( Yn l+l)(n_1]+n[2<j2§n~1y‘l [n__ ]
i—1 J

for any (fo, fis .- [)ER and for any sequence ¥ nz +1ZY 2 i+2=... =Y, =0
satisfying

©) yp= _f—r (n/2 < j = n).
Observe that (5) gives (3) and (4) in the cases ¥ u2 s1=...=y,=0 and y;=

=1—j/n (n/2<j=n), resp.

1.3. Weighted extremal hypergraphs. The classical theorem of Sperner [11] states
n] members. The
n/2 ;
analogous question for intersecting Sperner-families was solved by Milner [10].

that a Sperner-family on »n elements cannot have more than [

Ln/2’1l +1 ] Let c(7) (0=/=n) be a given real function. We may

need to maximize 2 ¢(i)|%], rather than |#|=
i=0

1

Their maximal size is (

|#], for a certain class of

L=

i
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families #. The solution of this question for Sperner-families was a folklore but it
was formulated in [6]. We deduce it here from Theorem 1. (Earlier it was deduced

from the equivalent (2).) Indeed, we have to maximize > ¢(7)f; for the elements of
i=0
o. The maximum is attained for at least one extreme point, hence

max > c(i) fi = max {0, max c(i)[’:]}.
i=0 L i
Analogously, Theorem 2 implies the next statement:

Theorem 4. Given a real function c(i) (0=i=n) max Jc(i)|F) Jor intersecting
Sperner-families F is attained for a family containing members of at most two dif-
ferent sizes, more precisely, for families with profiles listed in Theorem 2.

1.4. An application of Theorem 2 for extremal problems for directed hypergraphs.
Let X be a finite set of » eclements. A directed hypergraph on X is a set of different
sequences (x,, ..., ) (5,€X, x;>x; if 1=i, j=k, i¥j) where k can vary from 0
(empty sequence) to n. The sequences are the edges of the directed hypergraph. The
first possible extremal problem is the following: what is the maximum number of
edges in a directed hypergraph if it does not contain two different edges (x,, ..., Xp)
and (yy, ..., y;) such that (xy, ..., x;) is a subsequence of (3, ..., y;) (that is, xX;i=y;
I=j<...<jy=0]). We call these hypergraphs directed Sperner-hypergraphs.

Theorem 5. The maximum number of edges of a directed Sperner-hypergraph on n
elements is n!.

Proof. If x,, ..., x, is any permutation of the elements of X then a directed Sperner-
hypergraph contains at most one edge from the sequence (x,), (x;, xy), ..., (x;, Npitd.
...s X,). Hence it cannot contain more than n! edges. All the edges with n or n—1
elements, resp. give equality in the theorem. One can easily see that these construc-
tions are the only ones. J

If D is a sequence of different elements then s(D) denotes the set of its elements.
We may call s(D) the undirected version of D. The next theorem answers a problem
similar to that of Theorem 3.

Theorem 6. The maximum number of the edges of a directed Sperner-hypergraph #
satisfying the additional property

D, Ee#: s(D)US(E) = X
is(n—1)141.

Proof. Fix an element x€X. The hypergraph consisting of (x) and of all the se-
quences of length n—2 made from X —x satisfies the conditions of the theorem and
has (n—1)(n—2)!+1 members. We have to prove that || cannot be more.

Let .# denote the family of the maximal undirected versions of #, that is,
M={A: (A=5(D), DEA)\BE: (E€H, s(E)DA, s(E)#A)}. In the next row
we use Theorem 5:

M || =

A
1

1= 2 |{D:De#,s(D)c A} = 3 |4
Ae A

Ac Al

<
Dex
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J# is obviously a Sperner-family and A4, BE# imply AUB=X. Let .#~ denote
the family of the complements of the members of .#. Then

®) SlAt= 3 @—1B)! = 3 -kl
Ac M B¢ .#— k=0

Here .#~ is an intersecting Sperner-family. We may apply Theorem 4 with c¢(i)
=(n—i)!. If we show that

® S m—k)f = (n—1!+1

k=0
for any extreme point listed in Theorem 2 then (7), (8) and (9) prove the theorem. It is
sufficient to prove (9) for v; (n/2<j=n) and wy; 1=i=n/2, i+j=n). If (fo, .... f»)
=v; then we need the trivial inequality (n—j)! [j.]é(n—l)!—{-l. If (fo, -0 SR)=Wi;

then the left hand side of (9) is (n—i)!(n._i ]+(n—j)![n— 1 =(n~l)!+(n—1)!(n—j)

i— j i—1 J!
m-1D! (m—=D!GE-1) 5 p T = g
= =i If /=1, 2, then this quantity is =(n—1)!41. If 3=/=n/2

then 1/(—1)!=1/2 and (i—1)/(n—i+1)!=1/2 (the case n=4 should be checked
separately) are trivial and imply (9). §

2. Proofs

2.1. Theorem 3 for cyclic permutations. We first prove Theorem 3. The method of
cyclic permutations will be used. Let us fix a cyclic permutation of the elements of X
and consider only those sets having consecutive elements in this cyclic permutation.
These are called consecutive sets. The idea of the method is to prove the statement for
a given cyclic permutation with the consecutive sets and then we prove the original
statement by some counting argument listing all cyclic permutations [7]. So let us
prove now the analogue of Theorem 3:

Lemma. Let % be an intersecting Sperner-family of consecutive setsin a cyclic permu-
tation of an n-element set and denote by g; the number of i-element members of 4.
The inequality

(10) & (l_yn—i+1)'gTi+ ¥ Py 8 < |

1=i=n/2 nf2<j=n-—1 n—j

holds for any sequence y n2 :1=...=y,=0 satisfying

= pEl-L wpi<j=n.

Proof. Define r-—-;nig |4| and §=n—max |A]. First we prove the lemma for
€

r—s=1 (Part 1) then we prove it by induction on r—s=1 (Part 2).
We will suppose in the future that

(12) r = n/2.
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The opposite case r=n/2 is easy. Indeed, the Sperner-property implies that at most

one member of ¥ can start from one point of X. Therefore |¥|= > gi=n
Lnf2 j<j=n-1
holds and hence (10) follows:
Ln2 <j=n—1 K i A Ln/zJ%t-‘én—l n) n—j n Lnlngjgnd 8T

Part 1. r—s=1. Let A4, realize the size r, that is, 4,€%, |A;|=r. Denote the elements
of A, by ay, &, ..., «, in the order of the fixed cyclic permutation. Since ¢ is a Sper-
ner-family it can contain at most two sets with o; as an endpoint or starting point
(along the permutation) (Fig. 1). Let us denote them by E; and S;, resp. ¥ is inter-
secting therefore if both E; and S;,, are defined then they must intersect “‘at their
other end” (Fig. 2).

Fig. ] Fig. 2

This implies
(13) |Ei| 4+ 1Si41] > n.
Introduce the notation

1 _yn-ji_

; if 1=j=n/2

w(j) = 3
ke if 2<j=n—1.
e if nf2<j=n
We shall prove the inequality

(14) WUED+w(Si0a]) = —

in several cases where w(|E;|) and w(]S;,,]) are considered to be 0 if E; and S,
are not defined, resp.:

a) (14) is trivial if none of E; and S, , is defined.
b) If one of them is defined, only (say E;), and it has a size =n/2 then

1= YuoiE i
w(ED = Ll <

follows from |Ej|=r and y,_ g +1=0.
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¢) If one of them (say E;) is defined, only, and it has a size >n/2 then

' YIE 1 1
wOBD = ST =5 =5

2 “HIE"& (see (11)).

d) If both of them are defined and their sizes are =n/2 then w(|E}]),
w(|S;+1])=1/n follow like before. Hence (14) is an easy consequence of (12).

e) Suppose now that both E; and S;,, are defined and one of them (say E;)
has a size =n/2. It follows by (13) that |S;,,|>#n/2. Then we can prove the weaker
inequality

follows by y g, =

1 n—r
(15) WUED+w(Siaa) = 4225
instead of (14). '
_ I—yn—|Eil+1 B l—yn~|E|[+1
(16) W(lEiD i ]E;I e r

is a consequence of the definition of r. (13) and the monotonity of y’s imply
(17) ViSisa] = Vu— B +1-

By the definition of s we have n—|S;,;|=s=r—1. Hence and from (17) we obtain

yn—lE;l+1 if

p n—|Si| =r

’ 3 I s _'VLS.-ﬂ'.li_ =
\1(|S:+1|) n—’SHlT B [ if

— n—|S;44] = r—1.

The sum of (16) and this inequality gives (14) in the first case while in the se-
cond case we use y, (g, +1=V,—r41 before the summation:

: 1— n—r n—r 1 ‘n=r
WED+W(|Spa]) = ——2amrtl p Jaet o —y Jaoe)

r r—1 r(r—1)°
(15) is proved.
As any member of ¥ meets 4; and no other member can contain it, the pos-
sible members of % are A,, E;. S,, Es, Sy, ..., E,_,, S, (some of them might be
undefined). Hence, applying (15) we obtain the inequality

2 W(IAD = W(lAli)+(r—1)%'+y"_r+l e l"yn—r+1+r——1 +y,,-r+1 ws ]

AcY r r r I
what is nothing else but the desired (10). We have proved the lemma for r—s=1.

Part 2. Suppose now that t=r—s=>1 and that the lemma is proved for smaller
values of r—s. A subfamily A4y, ..., 4, of ¥ is called a block if |4,|=...=|d,|=n—s
and there are consecutive elements o, &, ..., &4, (in this order along the given
cyclic permutation) such that

A" — {O!i, ey ai+”_s_1}€g (1 = i = b)
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but
{003 %y cves I, R - . Upsn-s}§ 9.
We have to distinguish two cases:

2a. b=s for any block in %.

Define the family %*={B: (|B|=n—s—1)A(B consecutive)\(34: Ac%,
|A|=n—s, ADB)}. As % is a Sperner-family %N%*=0 follows. Let %’
=(9-9,-,)U%". It is easy to see that ¥ is a Sperner-family. On the other hand it
is intersecting: ANB#0 (A, BE¥’) is non-trivial only when one of them (say A)
is an element of 4*. Then |A|=n—s—1, |B|=r and r—s=1 imply |A|+|B|=>n,
that is, ANB#0.

We will need the inequality

(18) |G- sl (s+1) = [¢7]s.
Let 4,_; be divided into blocks of lengths b,, ..., b, where

(19) b= |%,_,| = us
b=}

by the suppositions of this case. The block of length b; induces b;+ 1 members into
"

%*. No element of 4* comes from two different blocks. Thus |%*|= 3 (b;+1).
i=1

(19) implies (s+1) Zu'bj)észu’(bj-l-l) what is nothing else but (18).
J=1 i=1
The inequality

. B 97|
(2'0) )u—s s = Vp-s-1 S+1
follows by (18) and y,_,=y,_,.;. (Observe that r—s>1 implies n—s—1=n/2
unless r=(n/2)+1 which is excluded by (12).) We needed (20) for proving that the
left hand side of (10) is not less for 4’ than for :

(21) 2 (l_yn—i+l)%+ 2 Y 2

r=i=n/2 nj2<j=n-—s n __}

= 8i g ||
- 1 —Yu-i ry ; - e :
TR e R e

The largest sets in 4" have sizes n—s—1, thus s'=s+1, t'=r—(s+1)<t. We may
apply the induction hypothesis: (10) holds for %’. Consequently, it also holds for ¢
by (21). Case 2a is settled.

2b. % contains a block with b=>s.

Choose an A4,€% with |4,|=r. Let the elements of X be «,, a,, ..., ,
following the cyclic permutation and suppose that A,= {o;, ..., ). We can list al
(n—s)-element consecutive sets meeting but not containing A, :

{“m eisceiy an—s-fl}a {aas seey an—s+2}’ L {as 3 Ty cxn—l},
fotcry sov O E06ms comon Os 00 Yoo i pops woos by ol i)y

forn s v s Wis 5550t} 50 Yy ans gy By s illyaiife
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In each of the first and third rows there are s —1 sets. On the other hand, the union of
4, and any set in the middle row is X. It follows from the supposition of this case
that some s+ 1 consecutive sets of the above sequence belong to ¢4. One of them be-

longs to the middle row. Call this set A,={x,, ..., %, %, ..., %,_,_;}. Summarizing:

(22) |4yl =r, |do]=n—s

(24) any point of X — A, is either a starting point or an endpoint of a set Ac%,
|A|=n—s.

It is easy to check that we can have one more assumption:

(25) A4y is a union of two non-empty intervals I={ay, ...,a,_,_,} and
J={o,, ..., o}

We shall prove the following statement:
(26) there are at most r—s+1 members of 4 containing X —A,.

Let A=A, be a member of ¥ satisfying 45X —A4,. One of the endpoints of 4
must be in JUJU{a,_, o, otherwise one of the conditions ADX—A4,,
Ad A4y, AD A, would be violated. Moreover, if both endpoints of A4 are in JUJ
U{ety—1, %,—,} then they are both either in /U {w,_,} or in JU{x,_,}. Let e(A)
denote the endpoint of A4 being in JUJU {«,_,, «,_} if there is only one. If there
are two such endpoints let e(A4) denote the one being “‘closer” to X — A4,, that is, the
endpoint with larger index in /U {«,_;} and with smaller index in JU{a,_,}. It
is easy to check that e(A) is an injection and that e(A) cannot be a; or «,. Therefore
e(A) can have at most |[[UJ|=|4,MNA,|=r—s different values. Consequently, the
number of sets 4#A;, ADX—A,, A% is at most r—s. Including A we obtain
the bound (26).
Let us show now that

27 A€ implies w(|A]) = (1 —y,_,+)/r
If |4|=n/2 then it is sufficient to substitute |4|=r and Yn-|A|+1=Vn—r+1 into the
definition of w(|A|). If |4|>n/2 then yl,,l:-il—l;[—],rén/Z andy,_,.,=1 _n—:+_1
lead to

wid) = 2 = L s S 2T < Ly )

(27) is proved.

If 4¢% but AUA,=X, A= A, then one of the endpoints of 4 must be in
X — A, (otherwise either 4UA4,=X or Ac A, would follow). Since no member of ¥
contains another one, any point of X — 4, is an endpoint (starting point) of at most
one member of . Altogether there are 2(s—1) such sets A€%, AUA, =X, A#A,.
s—1 of them are of size n—s by (24). For the rest we can use (27):

28) 2 w(d)= (s—1)1_¢+.1 =1 La=s.,
Acy ’ s

AUA,=X
A=A,
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Hence we obtain the next upper bound for the left hand side of (10):
2Zwldd= 3 w(dD+w(4D+ 2 w(4)
A€¥ AcY

AcY
AUA =X AU, =X
A<A,

lIA

L —sr 'n—s 1— n—r 'n—s
(r—s+1) —2 +‘+}g +(S—1)—-J)T-i—1—+(s—l)-——-—)s

=1 _yn—r+1+yn’s

where (26), (27) and (28) are used. r—s=>1 implies n—r+1<n—s and therefore
Yp—rs1>Va—s- Indeed, we obtained

Z WUAI) =1=y i1t Va5 = 1. l

AcY

2.2. Proof of Theorem 3 using the cyclic permutations. Let & be a family with profile
(0, fis fas --+s fy—1» 0). The following function will be defined for any cyclic permu-
tation ¥ of X and for any AcCJX:

n {w(iAi) if A€# and A is consecutive in €,
e | otherwise.

We will evaluate the sum 3 w(%, A) in two different ways: first fixing 4, running
€, A
% and then in the opposite order.
(29) 2 W(€, A)= AZ; w(l4D|A]! (n—|4])!
€

€, A

follows from the fact that there are |4|!(n—|A|)! cyclic permutations in which A4 is
consecutive. On the other hand

Sw@E D=2 > wid)
€, A € A:AcF

A cons. in €
can be written. Here the last sum is =1 by the Lemma. Consequently
(30) Dw(¥, A) = (mn—1).

€A
Comparing the right hand sides of (29) and (30)
w(l4])

aF _ (-1
4]t (n—|4])!

=1

can be obtained. Substituting the definition of w(|A4|) this inequality gives an equi-
valent form of (5). R

2.3. Proof of Theorem 2 using the duality theorem of linear programming. 1. First we
prove that if (fy, fi» ---sJu)EW then there is a convex combination (gq, &1, .., &) Of
z,v; (n2<=j=n) and w; (1=i=nf2, i+j>n) satisfying g,=f; (0=j=n).
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Let #| w2 415 --es Un—1, U, D€ a sequence of non-negative reals such that

(31) u; = l—% (n/2 <j = n).

Then the sequence
yi=maxu, (n2<j=n)

will be monotonic and preserves property (31) (e.g. (6)). On the other hand u;=y;
(n/2=j=n) holds, consequently (5) is true for these y and it implies

fi Ji
(32) 1§é:.;2(1 ,_max uj;) [n—l) +n/2<jZ§n—1 u; [n—l] = 1.
& | j
Suppose that uiél—”__rllla}js u; (1=i=n/2) or equivalently
(33) u+u;=1 (for all 1 =i=nf2, n—i+1=j=n).

Then we can substitute #; in the place of 1 —max u; in (32). We conclude that

> Ji Ji

i + u
15%»:/2” [n—l] n12<‘j2§n-1 y {n—l]
i1 i

holds under conditions (31) and (33). The above statement can be formulated in
terms of linear programming:

IIA

max u
15%../2 . ["—1] n[a-:én_] 4 [n—l]
i—1 Jj

under constraints (33) and

n

(34) Uy — jél m2<j=n-1) u,=0, u; =0 (n/2=j=n).

Consider the dual problem. We associate the variables p; with constraints (34) and
v;; with (33):

(35) min( 3 i+ 3 > w)=1

n2<j=n—1 1=i=n/2 n—it+l=j=n
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under the constraints

_ e
. A )
—1
n fl o
e PEm Sif RN L S5 . _—1
e 1§é‘uizvi"+“’ n—j — [n_IJ (n/2<j=n-1),
J
P S Vutu, =0 and
1=i=n2

vi;i =0, p; =0 (1=i=n/2, n2<j=n).

(38) is superfluous, (36) and (37) can be rewritten in the forms

—1
(39) il .-,-[?_l]zﬁ (l=i=n/2, n—i+l=j=n)
n—i+1=j=n—
and
-1 )
(40) v.-,-(" . ]+u,-[".] =f (2<j=n—1).
1=i=n/2 J J

Let us concise (39) and (40) into a vectorial form:

(41) 2 vywyt 2 oy = S e fu-D

1=i=n/2 ni2<j=n—1

(where w;; and v; are truncated; their first and last coordinates are omitted). We ob-
tained that under constraint (41) (35) has a solution =1. In other words, there are
non-negative v’s and p’s satisfying (41) with a sum =1. (41) can be easily completed
with the Oth and nth coordinates: 1) f,=0 since # cannot be a member of an inter-
secting family (0N0=0); 2) if f,=0 then the situation is the same; if f,=1 then
So=...=f,—-1=0 by the Sperner-property and hence pu,=1 is suitable.

Multiplying all v;; and u; with the appropriate constant (=1) their sum will
be equal to 1 as desired.

2. In the first part of the proof we proved that there is a convex combination
(&0, ...+ &) of the vectors v; and w;; for any given (£, ..., f,) such that

(42) g =/ 0=ix=n).

Choose (g, ..., &) maximizing the number of coordinates with equality in
(42). Suppose that this number is <n+1 and g,>f,. The vector (g, ..., €—1»
0,841, ---» &) 15 also a convex combination of the vectors z, v;,w;, w;;: we have to
change the rth coordinate of each vector for 0; the set z, v;, w;, w; j is closed under
this operation. (This is the first place where the vectors z and w, are used.) (g, ...
v-s &=15 Jts 8415 -+ &) 1S @ convex combination of (g, ..., -1, 0, Lri1, --os &n)
and (g, ..., &,) (since 0=f;=g,), therefore it is a convex combination of z, v;, w;
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and w;;. This new vector (go, ..., &-1» fi> & +15 ---» &) has more common coordina-
tes with (£, ..., f,) than (g, ..., g,) does. This contradiction leads to the statement
that (£, ..., f,) itself is a convex combination of the vectors z, v;, w; and w;;.

3. In the second part of the proof we proved that only the vectors listed in
Theorem 2 can be extreme points of u. Now we have to verify that they are really
extreme points. This is trivial for z.

It is easy to construct an intersecting Sperner-family with profile w; (1=i=
=n/2): take all the /-element subsets containing a fixed element of the ground set.
On the other hand, the Erdds—Ko—Rado theorem implies that if (f;, ..., f)€u

n—1 . . o
then fi= [i 1]. Hence if w; is a convex combination of some vectors from p then

:_1 }] Similarly, their other coordinates are necessarily 0.
The only such vector is w;. One can see in the same way that v; (n/2<j=n) is in
u and it is an extreme point of p.

The construction of an intersecting Sperner-family with profile w;;: take all
i-element subsets containing a fixed element x and all j-element subsets not contain-
ing x. Suppose that w;; is a convex combination of some elements of u. As above,

they all must have f,:(

all of them must have [n—;] in the ith coordinate. The only intersecting Sperner-

1) i-element sets is the above construction of all /i-element subsets

family with [’: =

containing x. No j-element set can contain x. It would then contain an /-element set
—1). -1
as a subset. Hence (fo, ..., f,)€u and fiz[’;_ l] imply fjé(n i ) Therefore all

: e n—1 : ; ;
the vectors in the convex combination must have ( i ] as jth coordinate. Like

above, the other coordinates are 0. w;; is the only such vector, therefore it is really
an extreme point of p.
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