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ABSTRACT

In this paper a survey of results concerning convex
hulls of hypergraph classes is given. Some applications are
discussed and some open problems are pointed out.

1. INTRODUCTION, SPERNER-HYPERGRAPHS

Let X be a finite set of n elements and let ZX be

its power set. We call the pair (X,H) hypergraph where H CZ2X'
The elements of X and H are called vertices and edges, resp.
(X,H) is k-uniform (or briefly untform) if all of its edges

are of size k. If no edge of (X,H) contains another one we

say that (X,H) is a Sperner-hypergraph. It is easy to see

that any uniform hynergraph is a Sperner-hypergranh.

Sperner theorem [16]. A Sperner-hypergraph on n ver-

tices has maximally

(1) o
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The complete L%J -uniform hypergraph shows that there
is a Sperner-hypergraph with this many edges. The non-trivial
part of the above theorem is that the number of edges is at
most (1). For a short proof see [13].

In order to study the possible sizes of the edges a
Sperner-hypergraph let us introduce the concept of the profile

of a hypergraph:
p(H) = (pO:PI:---,Pn)

where Py is the number of edges of (X,H) of size i

(0 ¢ i < n). Therefore the profile of a hypergraph is a point
of the (n+l)-dimensional Euclidean space Rn+1. Let o de-
note the set of profiles of all Sperner-hypergraphs. A good
approximation of o is its convex hull. The convez hull a

of a set o C Rn+1 is

2 2
a = {iglcihi : Ay € o, cizo (l<ic<e), i£ gy - 1} i

that is, the set of all convex linear combinations of the

elements of a. A € a is an extreme point of a iff A is not
a convex linear combination of elements of o different from
A. It is easy to see that 1) if o« has finitely many extreme
points then any element A of o can be expressed as a con-
vex linear combination of the extreme points of a; 2) a and
a have the same extreme points; 3) the extreme points of a

uniquely determine a.
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After these preliminaries we can formulate our first

(rather trivial)

Theorem 1. [5]. The extreme points of o (=set of

profiles of Sperner-hypergraphs) are

Z = (0,...,0)

and

v, = (o,...,o,(’i‘),o,...,O) (0 < 1i<n).
o i n

Proof. 2 1is the profile of the hypergraph without any
edge while Vi is the profile of the complete i -uniform

hypergraph. These are Sperner-hypergraphs, so 2,V, € o (0<i<n).

i
Let us show that they are extreme points of o¢. Suppose that

L
(2) v, = § ciA,

2
where cy > 0, 2 €0 1 <3<, J ¢, = 1. The components

2y 3

of Aj are non-negative, therefore z;;ir k-th(k # i) compo-
nent must be 0 by (2). Their i-th components are s(?), so
their i-th components must be equal to (2), again by (2).
Hence Vi = Aj (1 < i<n), that is, Vi is an extreme point.
It can be shown in the same way that 2 1is also extreme point.

We will see that any element A € ¢ is a convex linear
combination of 2z and Vi (0 < i < n). This obviously implies
that these are all the extreme points of o. Indeed, let

A = (po,...,pn) € o. We have to find coefficients c,

CoresesCp 2 0 satisfying
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n
(3) c+ ] e, =1

and

This latter equation is equivalent to

Py =c;(P) (0 <icn .

That is, ¢ are unambiguously determined. We can find a ¢ >0

i
satisfying (3) iff

lf.

c=

1=0 1
n P

(4) 7 i <1,
i=0 (D

However, (4) is well known and called thg LYM inequality after
Lubell [13], Yamamoto [17] and Meshalkin [14]. The proof is
complete.

The convex hull of o is bordered by the trivial

hyperplanes

pi > 0 (0 < i n)

IA

and by the hyperplane determined by (4). Therefore Theorem (1)
is only a reformulation of the LYM inequality. However this is

not so for other classes of hYperqraphs. In general, more non-tri-
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vial inequalities are needed. In the next section we will list

classes of hypergraphs whose extreme points are determined.

2. CONVEX HULLS OF SOME CLASSES OF HYPERGRAPHS

(X,H) 1is a k-Sperner-hypergraph if it contains no

k+l1 different edges Hl""'Hk+1 € H satisfying

HC...C Hk+1 .

A hypergraph is 1-Sperner iff it is a Sperner-hypergraph. The

set of profiles of the k-Sperner-hypergraphs will be denoted

by O+
Theorem 2 [6]. The extreme pointe of o, are the vec-

tors whose i-th component is either zero or (2) but the number

of their non-zero components is at most k.

Using this theorem, it is easy to determine the maximum
number of edges of a k-Sperner-hypergraph (X,H). The number
n
of edges of (X,H) is nothing else but the sum )) p; of the

i=0
profile p(H) = (po,...,pn). It is easy to see that

n

max y Py
(X,H) e Oy i=0

can be attained only for extreme points of O e Hence the

maximum number of edges in a k-Sperner-hypergraph is the aum

n+k-1
——
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of the k largest binomial coeffiecients. This is a well known
theorem of Erdds [3].

We say that (X,H) is anintersecting hypergraph if
any two edges have non-empty intersection. The set of profiles

of intersecting hypergraphs is denoted by 1.

Theorem 3 [6]. The extreme points of 1 are the

following ones:

n-1 n-1 n-1 n n
(5) (Oreeer G ) o O vee s QT ) o (g ) reeen (D)) (12k<n/2),

0 k k+1 n-k n-k+1

n-1 n n
(6) (0""'(n/2-1)'(n/2+1)""'(n))
0 n/2 n/2+1 n

A [ A a5

n
n+1l
2
and the vector obtained by replacing 1) any but the k-th com-

ponents of (5) by zero and 2) any components of (6) or (7)

by zero.

It is easy to construct hypergraphs with these profi-
les: take all the edges of size i with k < i < n-k contai-
ning a fixed vertex x and all the possible edges of size
> n-k. The rest of the proof is more complicated.

One can deduce from this theorem the maximum number of
edges of an intersecting hypergraph: 2n-1. However, even this

deduction is longer than the original proof in [4]. A more

interesting consequence of Theorem 3 is the Erdds-Ko-Rado
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theorem [4]: The maximum number of edges of an intersecting

k-untform hypergraph is (;:i) tf k < n/2. Indeed, the i-th

component (k < n/2) of any extreme point of 1 is 5(2:1).
For a short direct proof of this theorem see [10].
The (up to now) deepest result of this theory is
Theorem 4 [5]. The extreme points of o ()1 are
z , Vj (n/2 <j < n)
=1
Wy =00 e U300 s il 3 m.1 6wl
0 A n
-1 -1
Wiy = (0,...,(2_1),...,(“j Yosws 01 (X 5 A o nfB, dFlss)
0 i 3 n

The main part of the statement of this theorem is that
the extreme points can have at most two non-zero components.

The Erdds-Ko-Rado theorem can be easily deduced, again.
Indeed, the k-th component of any extreme point is s(gzi) if
k < n/2.

Let us consider the problem, what is the maximum number
of edges of an intersecting Sperner hypergraph. It is suffici-
ent to maximize the sum of the components of the extreme points
in Theorem 4. Fxamine first the extreme points Wij'

j > n-i+l > n/2 follows from the conditioﬁs 1 <1i<n/2,
i+j > n. Therefore

n-1

n-1} n-1
+
I+ n—-i+1

i-1 j

n-1 o =1 n-1 n { B
) = (Go))+C L by ) th5 5 o
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gives an upper estimate for the sum of the components in Wij'

The only non-zero components of W, and Vj are (?:i) £

2:; and (?) < [nzl] » resp. Consequently, the complete
2]

[n+1] . s

= -uniform hypergraph has the maximum number of edges among

all intersecting Spermer-hypergraphs. This is a special case of
a theorem of Milner [15].

It is worth-while to determine the nontrivial hyper-
planes bordering the convex hull of o [)1. The following class
.of inequalities contains the inequalities corresponding to

these hyperplanes:

Py P,
(8) =¥ ge) o ¥ R
lgién/Z n=i+1 (?_i) n/25§sn-1 ] (njl)

for any (po,...,pn) € o1 and for any sequence y[n/2j+lz"'2
3yn30 satisfying

(9) yjsl—% (n/2 < j < n).

It is interesting to mention that some authors tried to
find inequalities well characterizing the elements of ¢ ).
Bollobas [1] proved

] =t
n-1
l<icn/2 (3 )

which can be obtained from (8) by substituting Y[n/2}+1

il A 0, while the inequality
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p P
- g S { <1
l<i<n/2 (ifl) n/2<jsn (?)

of Greene, Katona and Kleitman [8] follows from (8) by choosing
yj = 1-%> (n/2<j<n) . Now it is clear that these inequalities
were too weak to characterize the elements of o)1, alone.
Many of them are needed.

Let us investigate a problem of somewhat different
character. Suppose that the hypergraphs (X, Hl)....,(x,Ht)
satisfy the following condition:

GHCH, G#H, GeH,
(10)

implies

Gq H

HeH, 1#]3

That is, two different hypergraphs cannot contain different
edges, one containing the other one. (But Hi N Hj is not
necessarily empty.) The profile of the sequence of the hyper-
graphs (X;Hl),...,(x,Ht) is

t
P(H reeeH, ) = z P(H Y =
1 B T ake U4

Let o(t) denote the set of the profiles of hypergraphs satis-
fying (10).

Theorem 5 [6]. The extreme points of o(t) are

zZ, tVi

if t > n+l. Otherwise there are some additional extreme points
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with at least t+1 non-zero components Py = (?).

A theorem of Daykin, Frankl, Greene and Hilton [2]

easily follows:

5 n
max ) [Hi| = max |t o 2 s
=1
(Rt B s wn W) 5 21
satisfy (10)
3. APPLICATIONS
n
Let ¢y (0<i<n) be reals and suppose that Z cyPy

i=0

has to be maximized for a certain class of hypergraphs. Let a
be the set of profiles of these hypergraphs. If the extreme

points of a are determined, our situation is very easy. We
n
have to maximize ) c;P; only for these extreme points.
i=0
In the previous section we applied this idea only for

the cases when (i) B =By Wiy, . o ™ 1 and (ii) c; = 1,

cj =0 (j # i). However, more complicated functions can be

arised. For instance, one could ask for the maximum of the sums

of the sizes of the edges in a hypergraph. That is, Ty ™ i

(0<ic<n) . [11} solves this problem for Sperner-hypergraphs:

n
{11) max 1£0 ip; =
(po....,pn) € o | J

This is an easy consequence of Theorem 1 (that is, of the LYM

inequality). Indeed, the extreme point Vi gives (?)i. It is
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easy to verify that max (?)i is equal to the right hand
i

side of (11).

Another application can be found in [5] where

n
(12) T (n- i)t Py
i=0
is to be maximized for intersecting Sperner-hypergraphs. We
have to use Theorem 4. (12) gives more for wij than for wi,

therefore we have to check only Vj (n/2<j<n) and wij

(1<i<n/2,i+j>n) from the extreme point. If Vj = (po,.-.,pn)

then we have trivial inequality for (12)
(=115 < (-1) 141,

On the other hand, if wij = (po,...,pn) then the following

sequence of inequalities gives the same estimate:

("'i’!(;:i)+(“'j)!(§) = %%5%%% 5 (n—l)i(n--) .

3 <

r
= (n=1)! if 1 =1
= (n-1) 1+1 if i =2
< (n-1)! + (n=1) ! (i-1)
- - . o j - o - - -
=L in=1+1)1 ‘ < (nzl)' + (nzl)' if 3<ic<n/2

(n < 4 should be checked
separately).

P

Summarizing, (n-1)!+1 is the maximum of (12) . The hypergraph

(X,H), where
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H= {{x,v}: v € X-x} U {X-x} (x € X fixed) ,

gives the equality.

L. OPEN PROBLEMS

1. Any problem of the extremal hypergraphs (see e.g.
[12]) can be extended in the present way. However, some of
these extended questions are blocked by longstanding open prob-

lems. See e.g. the following condition for (X,H)

(13) H ,H, € H implies B:8 N Hy| 2 k .

2

Let us denote by (k) the set of profiles of the hypergraphs
satisfying (13). The extreme points of 1(1) = 1 are determi-
ned in Theorem 3. However knowing the extreme points of 1 (k)

would imply the determination of max p for (po,...,pn) e 1(x),

n-k
L=k

(k > 15) (see [4], [7]). A nice open problem of this kind from

too. This is known to be ( ) only for n > (2+1) (k+1)

[4]: Is it true that the optimal construction of the above

problem for k = 2, n =4m 2 = 2m is the hypergraph (X,H) with

H = (A: lAﬂxl| > m}

where
X, Cx, ;x1| = 2m ?
On the other hand, one extreme point of 1 (k) maximi-
n
zing ] p; is known [17].
i=0
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2. We determined the extreme points for several cases,
However it is non-trivial to make a detailed description of
these convex hulls. Determine €.g. the graph of the edges (1-di-

mensional faces) of the convex hulls.

REFERENCES
[1] 8. Bollob&s, Sperner systems consisting of pairs of com-
plementary subsets, J. Combinatorial Th., A 15 (1973),
363-366.

[2] . DB Dapkiin, P. Frankl, €. Grésne and A.J.W. Hilton,
A generalization of Sperner ‘s theorem, J. Australian
Math.Soe., 31 (1981), 481-485.

[3] P. Erdés, Oon a lemma of Littlewood and Offord, Bull.
Amer.Math.Soc., 51 (1945), 898-902.

[h} P. Erd8s, Chao Ko and R. Rado, Intersection theorems for
systems of finite sets, Quart.J.Math. Oxford, (2) 12
(1961), 313-318.

[5] Péter L. Erdds, P. Frankl and G.0.H. Katona, Extremal
hypergraph problems and convexr hulls, I, Combinatorica
3 (1983), (to appear).

[6] Péter L. Erdss, P. Frank] and G.0.H. Katona, Extremal
hypergraph problems and convezx hulls II, European J. of
Combinatorics (submitted).

[7] P. Frankl, The Erdés-Ko-Rado theorem is true for n=ckt,
Coll.Math.Soe.d. Bolyai 18, Combinatoriecs, Keszathely
(Hungary) 1976, Bolyai Soe. Budapest, Nort Holland,
1978, pp. 365-375.

[8] . Greene, G.0.H. Katona and D.J. Kleitman, Extensions
of the Erdés-Ko-Rado theorem, SIAM 55 (1976), 1-8,

[9] G.o0.H, Katona, Intersection theorems for systems of finite
Sets, Acta Math.Acad.Sei.kungar., 15 (1964), 329-337,

[10] ©6.0.H. Katona, 4 simple proof of the Erdds-Ko-Rado Theorem,
J. Combinatorial Th., B 13 (1972), 183-184.



190

G.0.H. Katona

[11]

[12]

[13]
[14]

G.0.H. Katona, Two applications of Sperner type theorems
(for search theory and truth functions), Period.Math.
Hungar., 7 (1973), 19-26.

G.0.H. Katona, Extremal problems for hypergraphs, in
Combinatorics ed. M. Hall Jr,and J.H. van Lint, D. Reidel
Publ.Co. Dordrecht-Holland/Boston-USA, 1975, pp. 215-244.

D. Lubell, A short proof of Sperner’s lemma, J. Combina-
torial Th. 1 (1966), 299.

L.D. Meshalkin, A generalization of Sperner’s theorem
on the number of subsets of a finite set, Teor. Verojat-
nost. 1 Primen., 8 (1963), 219-220 (in Russian).

E.C. Milner, A combinatorial theorem on systems of sets,
J. London Math.Soe., 43 (1968), 204-206.

E. Sperner, Ein Satz iiber Untermenge einer endlichen
Menge, Math.Z., 27 (1928), 544-548,

K. Yamomoto, Logarithmic order of free distributive
lattices, J. Math.Soe. Japan 6 (1954), 347-357.



