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1. INTRODUCTION

Let X be a finite set with n elements. 2X denotes its power set,(i denotes the
family of its Z-element sets. The directed graph Cn = (ZX,E) is defined by
= {(A,B):A$B}. This is what we briefly call the n-cube in the title but it should
be called the directed transitive n-cube. Let Hl""’ Hk be directed graphs.
i (H],.. JH ) denotes the size of a maximally sized subset Yc2X of vertices of C
under the supp051t|on that the subgraph C (Y) induced by Y in C does not contain

any of H . Hk as a (not necessarily lnduced) subgraph.

The first example is the well-known old Sperner theorem [7]: k¥ = 1 and H] is
a directed edge. Then f (H ) is simply the size of a maximally sized family Y of

subsets ot X contalnlng no comparable pairs A<B (4,BeY). It is known from [7] that

L8 = [[ | (lz] is the. integer part of z).

A generalization of the above example is, when H] is a directed path of length

I+1 (120). This question is solved by Erdds [2]: f,(H,) is equal to the sum of

the I largest binomial coefficients (7). An optimal construction Y consists of all
i-element subsets of X with Ln Z+]J 8 < n+E-]j. O0f course, the problem posed
above is too hard to solve in full generality. We will give the exact value or

estimates of ; (H ...,Hk) only for very simple graphs Hi'

Tangentially, we will consider a slightly modified problem, too. Let then
f*(H1,.. JH ) denote the size of a maximally sized subset ¥y<2X of vertices of C
under the supp05|t|on that C (Y) does not contain any of H s o Hk as an lnduced
subgraph. This problem has any sense only when Hi are tranSItIvely closed (if (a,b)

and (b,c) are edges of H{ then (a,c) is also an edge of it). The inequality
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(1) f:(Hl""’Hk)zth(Hl""’Hk) is obvious.

The case k = 1, H,
FE] =1, F2(H)

({a,b},#) shows that sometimes strict inequality can hold:

n+l.

2, NO ¥V, NO A

The vertices of Cn are usually imagined to be drawn according to their sizes. The
big sets are upstairs, the small ones downstairs. Consequently, the edges are direct-
ed similarly, say toward the top. Thus the graph ({x1,x2,w3},{(x1,xz),(x],m3)}) can
be visualized as a letter V. Therefore we denote it by V. Similarly,

A= oy ,ep,25), (25,2, (25,2 D). |

n=1
THEOREM 1, f';‘;(V,A) = £, (V,A) = 2 [E'_lj (n=3).
2

Proof. 1. The inequality > in the first place follows by (1). Let us prove the
second inequality > by a construction. Fix an element xeX and take all the Ln_1j—

=
-element sets of X-{x} with and without x:

Y= {A: 141 = [251, xéA]‘su{{x}uA: 1a] = |21, xet/l‘,L.
= J = J

It is easy to see that the graph induced by Y contains only edges of form {4,4u{x}},

consequently, it cannot contain adjacent edges, i.e., edges with a common vertex.

2, Let us prove now the inequality
n-1

(2) f;(V,A)SZ Lﬁ%]-.l .

Let Y be a subset of 2X such that Cn(Y) does not contain a V or A as an induced sub-
graph. That is, Cn(Y) contains adjacent edges only directed oppositely concerning
the meeting-vertex. It follows that Cn(Y) splits into vertex-disjoint directed com-
plete graphs (and isolated vertices). Denote by Ai and Ci the first and last verti-
ces of these complete graphs, resp. (1<7Z<k). Here Aich iff Z = j. Using the

complements B = X-Ci’ this can be restated as

(3) AinBj=¢ iff 2 =g (1<2,7<k).
The following theorem is known for such a system of subsets:

THEOREM A. If the sets A],..., Ak, Biseees Bk satisfy (3) then

(")




(This theorem is a slightly modified version of a theorem of Bollobss [1]. This
form is published by Tarjdn [8], his proof can be also found in [4].)

The number of vertices in the complete graphs from Ai to Ci can be upperbounded
by ]CiI-IAiI+1 = n—IAiI-IBiI+1, Therefore we will investigate

k n=|A4.|=|B.|+1
; Z %
(5) iZ] [ T+T5] <1
%

rather than (4). Using the notation m, = ]Aii+]Bil we have the trivial inequality

m.

1 m.

(6) m. (n-mi+1)2{ " l](n—miﬂ)

2 7

for the nominators of (5). Vle intend to show that the left hand side of (6) is mini-

mal for m, = n-1 (0 Sngisn-i). For later use we prove a more general inequality:

LEMMA 1. Tf n, m and 1 are integers, 0<m<n-1, (n,m,1)# (2,0,1), then

n-1 m
(7 2[l£%£J]2 -{Ugj].

Proof. First, the inequality
il n-m-1 L -m+z
(3) |_m+]J I_ JZ I_mJ I_ J (1Sm5n‘l-])

will be verified. (8) is trivial for odd m. Suppose that m is even. It is obvious

again if the integer parts are equal. The only case what we have to consider is
Lln=m. In this case (8) is equivalent to

(9) m(n-m-1) = 21.

Here m>2 since m>1 and it is even. On the other hand, n-m-1 21 follows from

n-m-121 and 7|n-m. (9) and (8) are proved. (7) follows if
[ n-1
| 5=

be easily proved for n>17+2 by induction. It is

also true for n = 7 and for n = 7+1 except when 7 = 1, n = 2. The lemma is proved.[]

n+l

This is true if n = I+2, and it can

Let us turn back to the proof of the theorem, By (5), (6) and Lemma 1 (L = 1)
we have
kK n-|A.|-|B.|+1
T T

< -1
i=1 i
2 L?’l“]
2

(10)
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K
Since the number of vertices of C (Y) is < ) (n-!AiI-IBi|+1),(1D) proves (2) when
=1

n23. The proof is complete.[]

REMARK 1. f,(V,A) = 2, f;(V,A) = 3 but the theorem is obviously true for n = 1,

REMARK 2. Theorem 1 is a sharpening of the Sperner theorem if n is even. A weaker

condition implies the same result.

REMARK 3. P. Frankl and Z. Furedi have proved Theorem 1 independently of us (per-
sonal communication).

Our next theorem will be a slight generalization of Theorem 1. But we will formu-
late it in a different way. Namely, fn(V,A) can be defined equivalently, as the
maximal number of different subsets of an n-element set such that there are no

three sets satisfying either AnB>C or CoAuB. MNow we will add the condition that

there are no two sets with

AcB , |B-A| <L

in the family of subsets.

In this case we may follow the proof of Theorem 1. The number of vertices along
the path from Ai to Ci is at most

lCi]'lAi]J+1 a n-IAiI"IBil+1J
Z -
Ln-m+ 7 J -
Therefore we have to investigate the function mi|. This is done in Lemma 1

consequently we have

THEOREM 2. Let 4,,..., A be a family of different subsets of an n-element set.
m
Suppose that it contains no 3 different members with

AinAjDAk or AkDAiUAj

and no 2 members with

Then

and this is the best possible estimate.

Although we did not formulate it in this way, the ¥-type result holds.



3. PUSHING TO THE MIDDLE

The graph B, * ({xﬂ,x],...,xu},{(x1,x0),...,(xu,xo)}) will be called a u-broom
while Fu = ({xn,x],...,xu},{(xo,ml),...,(xo,xu)}) is a u—fork.

Let YCZX then Yi denotes the family of Z-element members of Y. s is defined Dy
|Yé| >0, IYS+1E = L., = iynl =
LEMA 2. If C (Y) contains no B, as a subgraph and s 2 E%E then there is an

injeetion f: Yé-+(sf])~Ys_] (f(4) = f(B) <f A=B) with the property f(4)cA.

Proof. The graph C ( ((s 1) o 1)) is a bipartite graph. The lemma states
that one can find IY | non-adjacent edges in this graph. This is true if the Konig-

-Hall condition is satlsfled, that is, for any subset Yécfs there are at least ]Y;I
elements of(sf1 _Ys-l connected with Yé. In other words, the number of those s-1-ele-
ment subsets of the members of Yé which are not in Ys—l is at least lYél. \le prove

now that this is true.

Any member of Yé contains s (s-1)-element subsets. At most u-1 of them belong to

Ys I,so)_’ contains at least s-u+1 members of 4 *YS_]. Hence the number of elements

1
of (; ‘) -Y i being a subset of any member of Yé is at least

|y? soutl
8 n-s+1°

Here (s-u+1)/(n-s+1) 21 follows by the supposition g2 (n+u)/2. The Konig-Hall condi-

tion holds which completes the proof of the lemma.[]

The next theorem says that if Bu (uz1) is among the exluded subgraphs then it is
enough to consider the subsets with size < Ln+ﬁ-]J.

THEQREM 3. f (B wHos++sH;) can be realized with a family Y of subsets A satis-

fyﬁng IAI<|.n+u 1J.

e Y * * i :
Proof. Let f(Ys) 35_1. Since Yé_lnys_] $ and |YS_]] ]Ysl, the family
= (Y‘YS)UY;_] has as many members as Y has. On the other hand C (¥Y*) does not
contain Hi (or Hy = Bu) as a subgraph. If, on the contrary, it contalns an H then
changing the possible vertices 4 in y* 4 for f (A) it leads to a subgraph H in Y.

This contradiction shows that C (¥Y%) does not contain H as a subgraph.

By repeated application of this transformation v y* we finally obtain a family
% catisfying
LhF A2 = 17,

(ii) it containsru:Hi as a subgraph,



o ) : n
(iii) the sizes of its members are < |

The proof is complete.[]

THEOREM 4. o (FslyseensHy) can be realized with a family Y of subsets A satis-—
- 2
fying 1412 |2222].

Proof. It follows from Theorem 3 by taking the complement sets.[]

THEOREM 5. fﬁ(Bu?Fb’HB”"’Hk) can be realized with a family Y of subsets A sa-
. : ¢ fp=p2 n+u-1
tisfying ("] =< lal <|=5—].

Proof. It is an easy consequence of Theorems 4 and 5.0
Let us see now some applications of the above theorems.

COROLLARY 1.~fﬁ(V;A) ean be realized with a family Y of subsets A satisfying

12]'s 1a) s 221,

“

Hence the statement of Theorem 1 follows immediately for even n. However, the
odd case can be obtained from the even case by a little trick: Suppose Y is a family
such that Cn(Y) contains neither V nor A. Fix an xeX and divide Y into two classes.

Iy » {A: AeY, xdAl, Y, = {A-{x}: 4eY, xeA}. Heither Cn(yl) nor Cn(YZ) contains a ¥V

n-2 =1
or A. Consequently, [Y| = |¥,[+]Y,] <h Lnnzj = Z[Ln—1j] holds as desired.
- 2 2

COROLLARY 2. fﬁ(V;B3) can be realized with a family Y of subsets A satisfying
n+2
]_%_ls 4] < |

2 .

It means that only the two "middle levels' should be considered when looking for
the maximum. However, we were not able to determine it:

CONJECTURE 1. fﬁ(V;B3) 18 equal to the size of the following family
-9 -2 { -
{{x}qu z,ydd, 14| = L«’—i-;:ﬂru{{y}um z,y4d, 14| = L"T“J}Uﬁ Gy il s s e QAL 2 L%J}
L J L L
n
U{A: xz,y44, 4| = Lij}’

WNote that for odd n, the construction of Theorem 1 has the same number of subsets.

We conjecture that the statement of Theorem 5 is true in a more general context.

It is always possible to push the subsets of the optimal family to the middle:



CONJECTURE 2. For any system of directed graphs Hiseon,s Hk there 7s an integer

M= M(H1,...,Hk) independent of n such that fﬁ(H1,...,Hk) can be realized with
a family Y of subsets A satisfying

14l -2%| <m.

There are some ways to weaken the condition of Theorem 5, but we were not able
to prove Conjecture 2 for the simple case kK = 1, H] = V. One can push the sets to
the middle from below by Theorem 4, but nothing ensures the same from the top. In

spite of these difficulties we have some results concerning fﬁ(V). This is the
purpose of the next section.

4, NO Vv

THEOREM 6.

(1) |.".| (1+1+o(1))5fn(1/)s [g.l (1+-f£—),

Proof (Mixed with some remarks).

1. The construction of Theorem 1 does not contain any V or A, consequently, it
is good here, If n is odd then

n-1 "N
gy 1B [_t%J](‘ )

n
the lower estimate is proved. However, for even n it gives only [L J], we need a bet~-
ter construction.

2. Let Y consist of all the [%J-element sets and some of the [%J+1-element ones

with the property that their symmetric difference is at least 4. It is obvious, that
CH(Y) contains no V for this Y. |Y| = -EJ + number of %~+1-e]ement sets in Y.
> 2

Associate a 0,1-sequence with each of the L%j+1—element sets in the natural way.

These 0,1-sequences of length n contain L%J+1 1’s and any two differs in at least 4
places. The number of 1’s in a sequence is called its weight. In coding theory,
A(n,d,w) denotes the maximal number of 0,1-sequences of length n, with weight w and

satisfying the property that they differ in at least d places. Using this notation,
we obtained the lower estimate

(12) [L%JM(n,‘*,L%JH)an(V).
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Graham and Sloane [3] constructed a code proving
n

511
n

A(n,h,[%d+l) >

By (12) it proves the lower estimate of Theorem 6. On the other hand the best know
upper estimate on A(n,h,[%J+l) is about the double of the above lower estimate.

(12) shows that we cannot hope to improve easily the right hand side of (11).

3. Now we give an example showing that none of the above constructions are
1
always best possible. For n = 5 the first construction gives 2(;) = 12, the second
o
one 12 (all 2-element sets and at most two 3-element ones), again. However, the

following family of subsets contains 13 sets and it does not contain any V:

{1,2}’ {],3}, {1:4]’, {1,5}’ {2;3}: {2’4}3 {2’5}’ {3’“}: {3a5}’ {1)213}’ {1’1"5}’
12,4,6%, 13.4,5).

L. Now we start to prove the upper estimate of the theorem. Let Y be an optimal

family satisfying the conditions of the theorem. By Theorem 4 it can be supposed
that

(14) all its members are of size > L%j.

Suppose A,BeY, Ac<B, |B-A| >=2. Take an arbitrary element x of B-A. Au{z} can not be
in Y because Cn(Y) does not contain a V. It is easy to verify that for the family

Y' = (¥y-{BHu{du{x}} Cn(Y') contains no V. Therefore we may suppose that
(15) A,BeY, AcB implies |B-A| = 1.

It follows that Cn(Y) contains no directed path of length = 2 and the edges connect

sets with difference 1. Therefore Y has the form

r
Y={E,...,E.}VU Z.,
1 roaq T
where Zi is a set of certain IEi[—l-e!ement subsets of Ei' Summarizing this section,
we may suppose that the optimal Y satisfies (14) and (15).

5B = {CO,C],...,Cn} with CocC1c...c0n, |Ci| =7 (0<Z<n) is called a chain.
Let Z(Zi) denote the number of chains such that either Cj'= Ei or cjezi for some j.

He will prove the inequality

(16)

L(z,) Q_%J.—H)!(n-l_%])!.

12,1+ ZJ+2

Using the notations IEiﬁ = e, IZi} =2, it is easy to count Z(Zi) = gl(n-e) !+

+z(e=1)!(n-e)!(n-e). Therefore we have to find the minimum of



el(n-e)l+z(e-1)1(n-e) ! (n-e)
a7 z+1

where 0<z<e and either e2|_-7-,;'—]+1 or e = 1,2,-, z =0 follows from (1h).

<

(17) can be re-
written into the form

(18) (e—])!(n_e)!(n_e)_l_e (n- e)'—(ezli (n-e) ! (n- e)

Here el!l(n-e)!l-(e-1)!(n-e)!(n-e)=>0 iff 2e=>n. The latter condition holds with one

: . n-1 A : she . g
exception: n is odd, e = ——, z = 0. In this exceptional case it is easy to check

that (17) is larger than the right hand side of (16). Thus we may suppose 2e>n. In
¥

this case the denominator in (18) is = 0, (18) is minimal for the maximal z: z = e.

Therefore we need the minimum

. fel(n-e+1)!
JESMEEET )
(19) e }

in place of (17). With an easy computation, one can see that the minimum in (19) is

attained for e = [n+2J This proves (16).

6. The total number of chains is simply n!. By the suppositions, if a chain con-

tains two different elements of Y, then one of them must be an Ei and the other one

be an element of Zi' Consequently
r
(29) I Wz <nl.
i=1
Now (16) and (20) imply the inequalities
n
r |_-—_|+2 r |5]+2

)

Lo g 8 EDIGEN] U (G ) (-130)
[L"Z”% "E

This is somewhat stronger than the right hand side of (11).

1¥1

It should be mentioned
that Kleitman [5] proved almost the same upper estimate under a much weaker condition:

If Y is a family of different subsets of an n-element set X and it contains no three

n o7
different members with AnB = C then |Y]| < n]-+ -+0(( /h)) 0
2
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