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Abstract: Let EG(m,2) denote the m-dimensional finite Euclidean space (or geometry) based on
GF(2), the finite field with elements 0 and 1. Let 7 be a set of points in this space, then 7T is said
to form a g-covering (where q is an integer satisfying 1 < ¢ < m) of EG(m, 2) if and only if 7 has
a nonempty intersection with every (m — gq)-flat of EG(m, 2). This problem first arose in the statis-
tical context of factorial search designs where it is known to have very important and wide ranging
applications. Evidently, it is also useful to study this from the purely combinatorial point of view.
In this paper, certain fundamental studies have been made for the case when g=2. Let N denote
the size of the set 7. Given N, we study the maximal value of m.
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1. Introduction

In this paper we shall restrict ourselves to the combinatorial aspects of this
development. Researchers interested in the statistical context of the problem may
kindly refer to the articles by Srivastava (1975, 1978).

Let L,, denote the set of the first m positive integers {1,...,m}. If 1<w<m,
and 1 <h;<--<h,<m, then (hy,...,h,) is called a w-subset of L,,. Let T be an
(N x m) matrix of zeros and ones. The columns of 7 will be indexed by the elements
of L,, and will therefore, be numbered respectively columns 1,...,m. Let L™ de-
scribe the class of all the 2 possible subsets of L,,, including, of course, the empty
set (which is denoted by @). Thus, (4, ...,h,,) is a typical member of L™, where w
and the A’s are restricted as above. Next, we define an (N x2"") matrix Z, whose
columns are indexed by the members of L™. Without loss of generality, we shall
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assume that the indices of the columns of Z are, respectively,

0,(1),(2), ..., (m),(1,2),(1,3), ..., (1,m), (2,3), ..., (n — 1, m),
(1,2,3), .0, (m=2,m-1,m),(1,2,3,4),...,(1,2, ...,m).

The first column of Z (i.e. the one corresponding to @) has 0 everywhere. The next
m columns of Z (i.e. those corresponding to the subsets (1),...,(m) of L,,) are
respectively indentical to the corresponding columns of 7. In other words, the
(N X m) submatrix of Z sitting in the m columns of Z after the first column, is T,
The other columns of Z are obtained from the columns of 4 in 7T as follows. For
w, and Ay, ..., h, restricted as before, the column of Z corresponding to the member
(hy,...,h,) of L™ is the sum (over GF(2)) of the columns of T corresponding to the in-
dices (h,), ..., (h,). For example, if m > 4, the column of Z corresponding to (1,2, 4)
is the sum of the three columns of T corresponding to (1), (2) and (4) respectively.

Let T be obtained from T by interchanging 0 and 1. Then for statistical applica-
tions, 7 is a factorial design of the 2” type, and the N rows of T represent the N
treatment combinations to be used in the experiment.

Let A be the (/V X 2™) matrix with elements 1 and (—1) over the real field, obtained
from Z by replacing 0 by 1, and 1 by (—1). Also, let us say that a given matrix M
(over any given field F') has the property P, (with ¢ being a positive integer), if and
only if every set of # columns of M is linearly dependent over F. It is well known that
certain matrices with property P, play a central role in the theory of factorial de-
signs, and in coding theory. In the theory of factorial search designs, we are interested
in the matrix A having the property P, over the real field, for various values of ¢.
Since, clearly, A is obtained from 7, we wish to characterize the property P, of 4
in terms of properties in 7 which could be checked relatively easily. It turns out that
although this characterization problem is easy to explain and understand, it is diffi-
cult to solve. On the other hand, from the combinatorial angle, it is elegant, multi-
aspected and rich in structure, and hence, its solution is justified in its own right.

In this paper, we study the case  =4. From the point of view of statistical needs,
this value of ¢ is much too small. (A value of ¢ of the order of 1m?, will perhaps
be closer to practical needs in many cases.) However, the higher values of 7 can not
be studied without first considering the lower values. Thus, the present series of
papers (going up to ¢ < 8) have a basic importance.

For later use, we now present some results which are either essentially obvious,
or known (or both).

Definition 1.1. Let G(g; X g;) and Gy(g;0X &), be two (0, 1)-matrices such that
g1 =810 and g, = g59. Then we say that G, is hidden in G if there exists a submatrix
G,(810% g2) of G, such that every row of G, is a row of G, and vice versa.

Definition 1.2. Let g be a positive integer. We shall denote by B, the g-dimen-
sional vector space over GF(2), whose elements are column vectors of size (g X 1).
Let G and G, be as above with g,9=g, and g,,=2%. Then we say that B, is hidden
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in G if and only if G, is hidden in G and G, has, in some order, the vectors of B,
as its columns.

Theorem 1.1. Let t be a positive integer. Then A has the property P, iff every set

of (t—1) columns of Z (whose indices are distinct and do not include 9) are linearly
independent over the real field.

Theorem 1.2. (1a) The matrix A has property P,.

(1b) Each of the following conditions is necessary and sufficient in order for A
to have property Py: (i) Only one column of Z has 0 everywhere. (ii) Only one col-
umn of A has 1 everywhere. (iii) All columns of Z are distinct. (iv) All columns of
A are distinct. (v) The rank of T over GF(2) is m. (vi) In every (N X q) submatrix
T* of T, with 1 < q < m, there exists a row with an odd number of zeros. (vii) The
rows of T, considered as points of EG(m,2), constitute a 1-covering of EG(m,2).

(1¢) If A has property P,, then A also has P;.

(1d) If t is a positive integer, and a matrix M has property P,,,, then it also
has P,.

(le) Let Z be obtained from Z by interchanging 0 and 1. Then A has property
P, iff Z does.

(1f) Let G be a (0,1)-matrix such that the first row of G has 1 everywhere. (1)
Suppose over the real field, G has the property P, but not P, .. Then, over

GF(2), G does not have property P,,. (ii) G has P,, ., over the reals if G has P,
over the real field and also over GF(2).

Theorem 1.3. Let A have property P,. Then each of the following conditions is
necessary and sufficient for A to have the property Py:

(2a) The rows of T, considered as points of EG(m,2), taken together, constitute
a 2-covering of EG(m,2).

(2b) The space B, is not hidden in Z.

(2¢) The matrix Z has P, over the real field, and furthermore, satisfies one of
the following conditions for every pair of nonzero columns: (i) The two sets of
1-coordinates (in the two columns of Z under consideration) do not contain each
other. (ii) In the (N X 2)-submatrix of Z, formed by the two columns, the set of the
N rows includes the two row vectors (0,1) and (1,0). (iii) The two sets of 1-coordi-
nates (in the two columns of Z under consideration) are not disjoint. (iv) In the
(N % 2) submatrix of Z formed by the two columns, the set of N rows includes the
row vector (1,1). (v) In the (N % 2) submatrix of Z formed by the two columns, the
set of the N rows includes the three row vectors (0,1), (1,0) and (1,1).

Proof (sketch only). (2a) This is established in Srivastava (1975, 1978).
(2b) If B, is hidden in Z, then there are four columns of Z which after re-
arrangement, constitute an (N X 4) matrix Z, in which the submatrix

[0101
0 0 1 1
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is hidden. But the last three columns of Z, are obviously dependent. Hence, by
Theorem 1.1, A does not have P,. On the other hand, if 4 has P,, then by (2a),
T constitutes a 2-covering of EG(m,2). This in turn implies that B, is not hidden
in Z.

(2¢) (i) and (iii) follow directly from (2b). Also, (ii) is a restatement of (i), and
(iv) of (iii). Finally, (v) follows from (i) and (iii). This completes the proof.

2. Designs for increasing m

In this section, we consider the question of obtaining designs with a higher value
of m from those with a lower value of m.

Definition 2.1. A (0, 1) matrix T(N X m) is said to be a (pure) search design of order
q for m factors, if the corresponding matrix A4 (N x2™) has property P,,.

Suppose we are given a design T(N x m) of order 2. Below we give some results
on obtaining a design T for (m+1) factors and of order 2, using 7.

Throughout this and related papers, we shall use the following notation. The
symbol 7, will denote the (g q) identity matrix, J,, a (p X q) matrix with 1 every-
where, and 0,, a (p X g) matrix with 0 everywhere. We shall write J, =J,=J and
0,;=0,=0, if the value of p is clear from the context. If G, and G, are two
matrices (or vectors) of the same size, then G, ® G, will denote the Schur product
of G, and G,, so that G;® G, is of the same size as G, or G, and is obtained by

multiplying the corresponding elements of G, and G,. For two designs 7,(V, X n)
and T,(N, x m), the symbols

( Tl ) and T] + T2
T,

will both denote the designs with (¥, + N,) treatments obtained by taking 7T, and 75
together. Prime (’) will denote transpose (of a matrix) as usual.

Theorem 2.1. Let T(N,xm) and T,(N,xm) be two (0,1)-matrices with T{=
[0,,,,,] so that Ny=1+m. Let T=T,+T,. Then a necessary and sufficient condition
that T is a 2-covering of EG(m,2) (i.e. T is a search design of order 2) is that for
every pair of nonzero (0,1)-vectors a and B of size (mx 1) such that a© =0,

there exists a row x in T, such that a’x =p’'x=1. (Of course, x may depend upon
the chosen values of o and f.)

Proof. (a) Sufficiency. Let a,, f, be a pair of distinct nonzero (0, 1)-vectors of size
(mx1). Let

Y2 =0a;©p, oy = a;+7, P> =P+ 7,
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Then o, @y, =, Oy, =0, ® p,=0,,. Let C,, C, € GF(2). We must show that there
is a row y in T such that a{y = C,, By = C,. Four cases arise:

(i) C;=C,=0. For this case, we can take y=0,,, which is in /i

(i) C,=1, C,=0. Two subcases arise: a, =0 and o, #0. If a,#0, take a row y
in I, (which is in 7}) such that ¢;y=1. Then clearly y;y=0, B>y =0. Hence

ajy=03y+p;y=1 and B{y=py+r,y=0.
Hence

ajy=asy+py;y=1 and Biy=py+y;y=0.

If o, =0, then y,+#0 since otherwise & would be 0. Similarly, §,# 0 since otherwise
o, =p,. From the conditions of the theorem, there exists a row y in T, such that
p5;y=y5y=1. But this gives ajy=1, p{y=0.

(ili) C,=0, Cy=1. Proof is similar to (ii).

(iv) C;=C,=1. If p5#0, choose a row y in I, such that y;y=1. This clearly
does the job. If y,=0, then the conditions of the theorem ensure the existence of
a yeT,, such that a;y=p;y=1, so that aj y=p1y= 1.

(b) Necessity. Take a; and f8, to be such that a; © f; =y, =0. Clearly, there is no
row yeT; which would give af{ y=p{y=1. Now, suppose there is also no row
ye T, such that e{ y=f{y=1. Then clearly, T does not cover the (m —2)-flat whose
equation is e{x=fB{x=1. This completes the proof.

Theorem 2.2. (a) Let g be a nonnegative integer and let T be a g-covering of
EG(m, 2). Choose a particular column of T and interchange 0 and 1 in this column
and let T* be the matrix so obtained. Then T* is also a q-covering of EG(m,2).

(b) Let T be as in (a). By interchanging 0 and 1 in selected columns of T, we can
obtain a matrix T which has at least one row equal to 0;,, and whose rows con-
stitute (together) a q-covering of EG(m,2).

(c) Let T be as in (a), let G(m x m) be a nonsingular matrix over GF(2), and let
Toy=TG. Then Ty, is a q-covering of EG(m,2).

(d) Let g = 1. By using transformations as in (b) and (c), we can reduce T to a
matrix Ty, of the same size such that Ty, contains Ty of Theorem 2.1 as a sub-
matrix, and such that Ty, constitutes a g-covering of EG(m,2).

Proof. (a) Without loss of generality, choose the first column of T. For g =0, the

result is obvious. For ¢ > 1 we proceed as follows. Take any 6m — g)-flat and let its
equation be

U,~1x1+---+0',-mxm=C,- (izl,...,Q).

As the C; are varied, we obtain a parallel pencil of 29 flats, all of which are (by
assumption) covered by 7. If we interchange 0 and 1 in the first column of 7, then
a typical row (x%,...,x*) of T will be changed to (1+xf...,x5). If (x{...,x7%)
satisfies

gnXx;+ ot OpXm = Ci’
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then (1+x7,...,x,,) satisfies the same equation but with C; replaced by C;+g;,.
However, just as the vector (Cy, ..., C,) takes all the possible 27 values as the C’s
are varied, so does (C; + g, ...,C;+0,). Hence, the pencil is still covered.

(b) This is obvious in view of (a).

(c) This follows since clearly, T and TG generate the same matrix Z.

(d) This follows from (b), (¢c) and Theorem 1.2 (condition 1b(v)).

Remark 2.1. In view of the above, it is clear that a 2-covering T* is ‘equivalent’ to
a covering T=T,+T,, where T, and T, are as in Theorem 2.1. Thus, there is no
loss of generality in restricting attention to the coverings of this type (i.e., T+ T5).

3. Bounds on m, given N

We first ask the question: given N, what is the maximum value that m can have
so that T is a search design of order 2, i.e., A has property P,. The development
below could be made using the well known Sperner theorem, and related results, and
also in terms of (0, 1)-matrices. For clarity of discussion, we follow the latter route
in this first paper. Throughout this paper, for any matrix M, the symbol w(M) will
denote the number of nonzero elements in M. Also, M, will denote the set of col-
umns of M. Furthermore, if M, and M, are two matrices of the same size, then we
shall say that M, is contained in M, (and M, contains M,) if, and only if,
M, =M, ® M,. Notice that if M, and M, are (0, 1)-matrices, then M, contains M,

if, and only if, the set of nonzero cells of M, contains the set of nonzero cells of
M,.

Lemma 3.1. Let T be of order 2. Consider Z. Suppose there is a z€ Z, such that
w(z) =u, a nonnegative integer. Then

(1) the vectors z*©z, when z* varies over Z,, are all
distinct, and 3.1
(i1) m< u.

Also, equality can occur in (ii) only if the set {z ® z* | z*eZ.} is the set of the 2"
vectors (over GF(2)) contained in z.

Proof. Suppose z;,2,€Z., and 7, ©z=2,®z. Then (z,+2,) ©z=0,,. By Theorem
3 (Part 2c(i)), it follows that (z, +2z,) =0, or z,=2z,. This proves (i). Also, clearly
the set {z®z*|z*eZ.} has 2" elements, each z*®z is contained in z, and the
number of distinct (0, 1)-vectors contained in z is 2¥. Hence, 2™ < 2%, leading to (ii).
The remaining statement of Lemma 3.1 is now obvious. This completes the proof.

We now derive another similar bound on m using (z+J). Let z, and z, be (m x 1)
vectors over GF(2) such that

210@+J)=2,0(z+J). (3.2)
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Then we have (z;+2,) ©(z+J) =0, so that (z,+2,) ©z=(z;+2,). Hence, if z; and
Z, are distinct, we must have

L1+t =23 (3.32)
(2192)+(2,©02) =2z, (3.3b)
(71©02)©(z,02) =0. (3.3¢)

Notice that (3.3a,b) imply (3.2) and recall that Z_ is a vector space. Thus, if z, € Z,
there is exactly one z, € Z. (with z,#2z,) such that (3.2) holds. Hence, the 2" col-
umns of Z get divided into 2™ ! pairs, such that each of the two columns within
a pair give the same Schur Product (®) when multiplied with (z+J). Also, every
such Schur Product is contained in (z +J), and the number of distinct (0, 1)-vectors
contained in (z+J) is 2%, Hence, 2"~ ! <2¥~#. We have proved

Lemma 3.2. Suppose Z and z are as in Lemma 3.1. Then

(1) m<N-u+1; (3.4)

(ii) equality holds in (1) only if for each vector z* contained in
(z+J) there are exactly two columns z{* and z3 in Z, such that

Z¥=zfO @+ =¥ +J). (3.5)

Next, we establish some connections with coding theory. Let

¥,2(N,d) = maximum number of (binary) code words of
length N such that the distance between a pair of distinct (3.6)
code words is at least d,

¥,2(N,d) = maximum number of (binary) code words of
length N such that the distance between a pair of distinct

code words is at least d and at most (N—d + 1), and such (27
that the set of code words is closed under additions over
GF(2).
Theorem 3.1. Let T(N xm) be a search design of order 2. Then
m 2 max min (d, N —d + 1, log, w, (N, d)). (3.8)
d
Proof. Let d be defined by
d= min (min(w(y),N—w(y)+1)) 3.9
y#0,yeZ,
Then,
m<min(d,N—-d+1) (3.10)

follows from Lemmas 3.1 and 3.2. Now, since Z is a vector space, it is clear that
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any two different members of Z, have a difference whose weight is between d and
(N —d +1). Hence, if the elements of Z, are considered as code words, the distance
between any distinct pair of them is between d and (N—d +1). Since Z,. has 2"
elements, we therefore have

m < log, y,(N, d). 3.11)

Since d depends upon Z and hence on 7, combining (3.10) and (3.11), the inequality
(3.8) is obtained.

Define
| 6 | = largest integer less than or equal to (the real
number) J, (3.12)
[6] = smallest integer greater than or equal to (the real
number) J, (3.13)

m(N, t) = the maximum value of N such that there exists a
(1,—1)-matrix AN x2™), defined as earlier, which has the (3.14)
property P, over the real field.

Theorem 3.2. We have

lim %m(]\f,4)g0.2835. (3.15)

N— o
Proof. Define for a real number J, such that (0<Jd <3), the quantity
e ol |
w(9) = lim — log, y1 (N, LON]). (3.16)

Let ¢(J) be a decreasing function which satisfies the condition
w(©@)<e@), 0<o<T. (3.17)

Notice that w(0)=1< ¢(0). Let & be the (unique) solution to the equation

£ = o(c). (3.18)
We shall prove that
lim -—1—-m(N,4) <e. (3.19)
N—o N

From (3.6)-(3.8) we obtain

m(N, 4) < max min (d, log, v, (N, d)), (3.20)
d

and
N—wx N— d

= d 1
lim —m(N,4) < lim maxmin | —, —1lo N, d
( ) (N e g wi( )>

< lim sup min (5,%10;52 v, (N, |_¢§NJ)>, (3.21)

N—ow §
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where throughout the supremum is taken over all values of J satisfying 0 <d < 4.
If the last expression is <&, we are done. Suppose on the contrary that

lim sup min <5,%10g2 w (N, I_éNJ)) =g*>e¢. (3.22)

N—w ¢

This implies that

sup min (5, —}\} log, w (N, | 6N | )> > L(e+3¢e¥), (3.23)
5

for infinitely many N. In other words, there are an infinite number of values of N
for each of which there exists a é (possibly depending on N) such that

min <5, %logz wi (N, | N | )> > L(e+e*). (3.24)
But (3.24) give

0>L(e+e*) and %logz Wi (N, | 6N |) > (e +¢*).
Since y;(MV,d) is a decreasing function of d, the inequality

1

~ g vy, Lie+e*)N])> J(e+e*)

follows immediately for infinitely many N. This, with (3.16), implies
w(i(e+¢%) = (e +¢%).

Hence, since y(d) is also a decreasing function, we obtain
w(e) = 1(e+e*) > ¢

contradicting (3.17) and (3.18). Thus (3.22) cannot hold and (3.19) is proved.

On the other hand, McEliece, Rodemich, Rumsey and Welch (1977) showed that
(3.17) holds with

¢(d) = H(3—)/o(1-9)), (3.25)
where H is the entropy defined by

H@)=-0logd—(1-9)log(1-9). (3.26)
Since the solution of

6 = H(3 —)/6(1-9)), (3.27)

is approximately 6 =0.2834..., the theorem is proved.

The above result gives an upper bound for m(N, 4). Helgert and Stineff (1977)
have collected the values of B(n,d) for small values of N and d. Using their tables,
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we computed the upper bounds given below on m (N, 4) for small values of NV using
Theorem 3.1:

N = 4567891011 12 13 14 15

(3.28)
mN,49)<222333 4 4 4 455

Theorem 3.3. Suppose every nonzero column of Z(N x2™) is of weight (3N).
Then for some integer m >0, we have

N = n2", (3.29)

Proof. Let z; and z, be two unequal columns of Z. Clearly, the weight w(d,z,+4,2,)=
1N, unless A;=A4,=0. Hence, it is easy to see that w((z;+A,;J)© (2, +1,J))=%N,
for all 4,1, € GF(2). If a;,a, are the two columns of 4 corresponding to z;, and z,
in Z, then the above shows us that (over the real field) aja,=0. Hence, the col-
umns of A are pairwise orthogonal and hence, independent over the real field. Thus
N>=2". If N=2" then A is clearly the Hadamard matrix of size 2" x2™. If

N>2™ then it is easy to show that 4 must consist of a few (say m) such matrices
put together. This completes the proof.

4. Value of m(N, 4) for small n

We shall use Theorems 2.1 and 2.2 extensively. For a given N, m(N,4) is the
largest value of m such that there exists a search design T(/N X m) or order 4. Simi-
larly, let N(m,2q) be the minimum value of N, given m, such that there exists a

search design of order g. Investigations on m(MN,4) and N(m,4) are essentially
equivalent.

For m=2, Theorem 2.1 immediately gives NM,=1 and T,=(1,1), so that
N(2,4)=4.

For m=3, clearly N,>1. Also

010
T2=TZO= 101
110

does the job. Hence 6 < N(3,4) <7. Now
- 011
T —
- [1 0 1}
cannot do the job of T, since the case a’=(100), f’=(010) is not covered.
Similarly,
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will not work since a’=(1 0 0), ’=(0 1 1) is left out. Thus, because of symmetry,
it is clear that N,>2. Hence N(3,4)=7. Also, notice that a 3-rowed matrix whose

one row is (1 1 1) and the other two rows are identical with any two rows of T,
will not work. For example,

—_— O
—_— O

0
1
1
does not work since the case ¢'=(010), f'=(1 0 1) is left out. We have proved:
Theorem 4.1. We have

m6,4) =2, m(7,4)=3. (4.1)

Also, there is a unique (7 %X 3) matrix T (apart from a permutation of rows) and a

unique (7 X 8) matrix Z (apart from a permutation of rows and columns) serving the
case N=17, m=3.

Consider the case m=4. We show that N(4,4)>9. Notice that like (4.1), follows
from (3.28). However, a direct argument is instructive. It is T, is (5 x 4). Consider
a matrix T);(4 X 4) as a candidate for 7,. Now, the weight of each column of 7 is 1.
Also, Lemma 3.1 tells us that the weight of each column of Z (and hence of 7') must
not be less than 4. Hence, the weight of each column of 7,; must be at least 3. On

the other hand, the rows of 7,; must be such that we are able to cover each of the
three cases

(@=(1100), f/=0011), (a’=(1010), /=010 1)),
(@=(1001), /=011 0)).

It is easy to check that this implies that at least two rows of T,3; must be distinct,
and must be of weight 2, and must not add to (1 1 1 1). Now, assume for a moment
that 7,5 has the rows (1 1 0 0) and (1 0 1 0); then the weight of the last column of
T»; cannot exceed 2. This contradicts the earlier requirement that the weight of
each column of T,; be at least 3. Similar is the situation with any other pair of
vectors of weight 2 being the rows of T,;. Hence N(4,4)>9.

Next, we show that N(4,4)=10. Let T,4(5 X 4) be the candidate for 7,. We shall
determine the structure of 754 up to a permutation of rows and/or columns. From
the preceeding argument, we can assume, without loss of generality, that the first
and second rows of T, are (11 00) and (0 110). Let 754, be the (3 xX4) matrix
formed by the last three rows of T,;. Now, the weight of any linear combination
of columns of T must be at least 4. Hence, the weight of each column of T5, must
be at least 3. This, in turn, implies that the 4th column of T4, is (1 1 1)’. Similarly,
it is obvious that the sum of any two columns of T,, must be of weight at least 2.
Hence, without loss of generality, the 3rd column of T4, is (0 1 1)’, and the first
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column is either (0 1 1)’ or (1 0 1)". Since T, must cover the case a’=(0 0 1 0) and
B’=(100 1), we find that the first column of T, is (1 0 1)".

Let (3 X 1) be the second column of T,,,. Clearly, r’#(0 0 0)". Also, the three
cases when f'=(1100), (0110) and (1110) (a’ being (000 1) in each case)
respectively knock out the values (1 0 1), (0 1 1)’ and (1 1 0) for r’. It is easily
checked that the remaining four values of 7’ are permissible. Of these, the two values
(1 00) and (0 1 0)" lead to two values of T, which are equivalent under permuta-
tion (or rows and/or columns). We have proved:

Theorem 4.2. We have
m(8,4) =m(9,4) =3, m(10,4) = 4. 4.2)

Also, there are three nonisomorphic (under permutations of rows and/or columns)
solutions for T; the corresponding (nonunique) matrices T, being

(1100 [1100] (1100 |

0110 0110 0110
T,={1101], |1101| and | 1001 (4.3)

0011 0111 0011

(1011 ] [1111]| 1111 |

Next we consider m=5. From (3.28), we obtain N(5,4) > 14. We prove that
N(5,4)=14 and obtain a T,(8 x 5) serving this case. However, we first note the

following result which helps in obtaining a T, for (m+1) factors in case we are
given a T, for m factors.

Theorem 4.3. Let T, be an (N, X m) matrix such that T,=T, ,, satisfies the con-

ditions for T, in Theorem 2.1. Also, let K(m x m) be a nonsingular matrix over
GF(2). Let

Ty iy = . 4.4)

Then T,=T, ., satisfies the condition for T, in Theorem 2.1, corresponding to
(m+1) factors.

Proof. We use the notation of Theorem 2.1, but with (7 + 1) factors. Consider «’
and #’. Notice that both of them cannot have 1 in the (m + 1)th position since other-
wise ¢ ®© f##0. Now, if both & and f# have 0 in the (m + 1)th position, then such a
case is already covered by the structure of T, ,,. The same is true if one of & and
B (say, @) has 1 in the (/m +1)th position, provided w(a)>1. We are left with the
case when w(a)=1, so that a’=(0 0---0 1). However, this case is also covered in
view of Theorem 1.2 (1b(v),(vi)). This completes the proof.
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Definition 4.1. Let T;,(N, % m) be a pure search design of order g for m factors. If
there exists a row in T}, such that the design 7 ((N—1) X m) obtained from 7, by
deleting this row is also of order g, then 7, is said to be unsaturated. Otherwise,
T, is called saturated. Also, T, is said to be minimal if and only if Ny=N(m,2q).

Clearly, ‘minimal’ implies ‘saturated’, but ‘saturated’ does not necessarily imply
‘minimal’.

Notice that the designs 7, ,,., of (4.4) are not necessarily minimal or even
saturated. However, K is at our disposal and can have one out of a rather large
number of values. It is, therefore, sometimes possible to choose K in such a way
that T, ,, ., is unsaturated so that some of its rows can be deleted, and the size of
the design be reduced. This will be studied in later communications. Here, we illus-
trate the above by obtaining a design T(14 x 5) of order 2.

For the 75 4 of (4.4) (with m =4), we take the first matrix on the right hand side
of (4.3). Notice that the rows 1, 3, 4 and 5 of this last matrix cover all cases of values
of a and f except two cases, namely

(¢’=(1100), p/'=(0011)) and (¢'=(0100), p'=(©010)),

which are covered by row no. 2. If we wish to cover these cases (for m=35) using

a Tz,s as at (4.4), we need to choose K so as to cover, if possible, four values of a
and S, namely

(¢'=(11001), p'=(00110)), (¢'=(11000), B’'=(00111)),
(¢’=(01001), p'=(00100)) and (¢’'=(01000), p’'=(00101)),

which are arrived at in an obvious manner from the two values of (&, ) mentioned
in the previous sentence. It is easy to check that

00

1
0
) (4.5)
1

(==
—_— O
-0 O O

satisfies this requirement. Thus, a minimal design of order 2 with m =35 is given by
the following 14 points:

0/10000[1101[0010
0/01000[{1100[01.01
T'=|0{00100[0011|1011 (4.6)
0jooo010[0111[0001
1 0]/00001(0000|111T1 |

That this design is not unique, is exemplified by the existence of the following non-
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isomorphic minimal design:

0/10000[/01111100 |

0{01000/1110001 1
7'=10/00100{1011000 1 4.7)

0{00010{11000110

1 0/00001|11101000 |
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